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1 Speed of sound

The phenomenon of sound waves is one that can be understood
using the fundamental equations of gas dynamics that we have
developed so far.
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1.1 Perturbation equations
Simplest case: fluid equations without magnetic field and gravi-
ty (Euler equations):

(1)

t


xi
 vi + 0=


t

vi vj xj

vi+
xi

p
–=
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Consider small perturbations to state , and .

Without loss of generality we may take .

(2)

Expand to first order:

(3)

 0= vi v0 i=

v0 i 0=

 0 +=

vi v0 i vi+=

vi 0 + vi 0vi O2+= =

vj xj

vi O2=
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The symbol  means second order in the quantities , , i.e.

terms such as , ,  etc.

The perturbation to the pressure is determined by the perturba-
tions to the density and entropy:

(4)

If we take the flow to be adiabatic, then . Define the pa-
rameter  by:

(5)

O2  vi

 2 vivj vi

p p  s =

p


p =
s

ps+

s 0=
cs

cs
2


p

s
= p cs

2 p0 0 =
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The perturbation equations become:

(6)

Time derivative of first equation and divergence of second equa-
tion:

(7)

t
  0 xi

 vi+ 0=

0 t
 vi cs

2
xi
 + 0=

t2

2


  0

2

txi
-------------vi+ 0=

0
2

xit
-------------vi cs

2 2

xixi
---------------+ 0=
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Subtract =>

(8)

This the wave equation for a disturbance moving at velocity .

(9)

2
t2

------------ cs
2 2
xixi
---------------– 0=

cs

Speed of sound cs=
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1.2 Plane-wave solutions
Take

(10)

 A i k x t– exp=

2
t2

------------ 2–=

2
xixi
--------------- k2–=

2 1

cs
2

-----
2
t2

------------– k2–
2

cs
2

-------+
 
 
 

 0= =

 csk=
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What does this plane wave represent?

Consider a surface of constant phase

(11)

From the expression for the density,
this represents a surface of constant
density whose location evolves with
time. This surface is planar and for
our purposes is best represented in
the form:

(12)

x

y
z

n
k
k
---=  k x t– 0= =

k
k
--- x 

k
----t

0
k

------+=
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From the above equation, we read off the normal to the plane:

(13)

and the perpendicular distance of the plane from the origin is

(14)

Therefore, the speed at which the plane is moving away from the
origin is:

(15)

n
k
k
---=

D

k
----t

0
k

------+=


k
---- cs=
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Thus the solution represents a wave moving at a speed  in the

direction of the wave vector 

Solution for velocity

The velocity perturbations are derived by considering perturba-
tions  of the form:

(16)

Note the appearance of a vector  for the amplitude since  is

a vector.

cs

k

vi Ai i k x  t– exp=

Ai vi
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The time and spatial derivatives of  are:

(17)

Substitute into perturbation equation for velocity:

(18)

vi

t
 vi iAi i k x  t– exp–=

xi
  ikiA i k x t– exp=

0 t
 vi cs

2
xi
 + 0=
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(19)

The amplitude of the velocity perturbation

(20)

i0Ai– cs
2ikiA+ 0=

A i cs
2

ki

----

A
0
------ cs

2
ki
k
----

k

----

A
0
------= =

cs

ki
k
----

A
0
------=

Ai cs
A
0
------ 
 =
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i.e.

(21)

What does small mean?

(22)

i.e perturbation velocities much less than the speed of sound.

Nature of sound wave

Since

(23)

Amplitude of 

velocity perturbation
cs

Relative amplitude

density perturbation
=




------ 1« vi cs«

Ai cs

ki
k
----

A
0
------=
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then the velocity of the oscillating elements of gas are in the di-
rection of the wave-vector, i.e. the wave is longitudinal.

1.3 Numerical value of the speed of sound
Take the equation of state

(24)

p K s =

cs
2


p

s
=

K s  1– p

-----= =

kT
m
---------=
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Therefore:

(25)

N.B. The speed of sound in an ideal gas only depends upon tem-
perature.

e.g. air at sea level on a warm day

(26)

 atmosphere in an elliptical galaxy

, , 

(27)

cs
kT
m
---------=

 1.4= T 300 K=  28.8= cs 340 m/s=

T 107K=

T 107 K=  0.62=  5
3
---=

cs 480 km/s=
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2 Subsonic and supersonic flow

Disturbances in a gas travel at the speed of sound relative to the
fluid. i.e. information in the gas propagates at the sound speed

V cs

Sound wave

v cs=
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A wave travelling at a velocity of  wrt to the fluid cannot

send a signal backwards to warn of an impending obstacle. This
leads to the formation of shocks (to be considered later). There-
fore the speed  is a critical one in gas dynamics.

(28)

(29)

Nobody ever heard the bullet that killed him -Th. von Karman

v cs=

V cs=

Supersonic Flow v cs

Subsonic Flow v cs

Mach Number M
v
cs
----=
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3 Energy & momentum in sound waves

3.1 Expressions for energy density and energy flux

Energy density

(30)

Expand out the quantities in this equation to second order

(31)

tot
1
2
---v2 +=

  s  0 


s


s



s+ +=

1
2
---

2

2



   2( )
 s

2


  s  1

2
---+

s2

2


  s 2+ +
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Since we are only considering adiabatic fluctuations, then
 and

(32)

We now evaluate these terms using thermodynamic identities.
Since,

(33)

then

(34)

s 0=

   s  0 


s
 1

2
---

2

2


   2+ += =

kTds
1

---d h


---d–=

d hd kTds+=



s

 h=
Astrophysical Gas Dynamics: Sound waves 19/52



and

(35)

2
2
---------

s 
h

s 
  p+


------------ 
 = =

1

2
------  p+ –

1

---


 p


------+ 

 +=

h

---–

h

---

cs
2


-----+ +=

cs
2


-----=
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Hence the total (kinetic + internal) energy is to second order:

(36)

The term  is associated with a change in energy in a given

volume due to a change in mass and eventually disappears.

Energy flux

(37)

tot 0
1
2
---0 v 2 h0

1
2
---

cs
2

0
------
 
 
 

 2+ + +=

h0

FE i vi
1
2
---v2 h+ 
 =

0h0vi 0hvi h0vi O3+ + +=
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Note that the kinetic energy term is of third order.

We need to relate  to the variations in other thermodynamic
variables. Since

(38)

then

(39)

and

(40)

h

kTds dh
1

---dp–=

dh
1

---dp kTds+=

p
h

s
 1


---=

h
1

---p

cs
2


-----= =
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Hence, using the previous expression for :

(41)

We combine this with the expression for the energy density:

(42)

Because of the energy equation, we have the conservation law:

(43)

FE i

FEi 0h0vi h0vi 0hvi+ +

0h0vi h0vi c+
s
2vi+

=

=

tot 0 h0
1
2
---0 v 2 1

2
---

cs
2

0
------
 
 
 

 2+ + +=

t

tot
xi

FEi+ 0=
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Some of the terms in these expressions can be simplified. First,
the leading red term in ,  is constant and is just the back-

ground energy density.

Now examine the continuity equation written out to second or-
der:

(44)

Multiplying this by  gives:

(45)

 0

t
 

xi
 0vi vi+ + 0=

h0

t


h0 
xi


h00vi h0vi+ + 0=
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so that when we insert the red and blue terms in the energy con-
servation equation, they drop out and we are left with

(46)

Hence, we take for the energy density and its associated energy
flux

(47)

t
 1

2
---0 v 2 1

2
---

cs
2

0
------
 
 
 

 2+
 
 
 

xi


cs
2vi + 0=

sw 1
2
---0 v 2 1

2
---

cs
2

0
------  2+=

FEi
sw cs

2vi pvi= =
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3.2 Energy density and energy flux in a plane wave

Express  and  in terms of travelling waves and take the real

part:

(48)

 vi

 A i k x t– exp= A k x t– cos

vi cs

ki
k
----

A
0
------ i k x t– exp=

cs

ki
k
----

A
0
------ k x t– cos
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Hence,

(49)

Average the energy density and flux over a period 
of the wave using:

(50)

sw 1
2
---0 v 2 1

2
---

cs
2

0
------  2+

cs
2

0
------A2cos2 k x t– = =

FEi
sw cs

2vi

cs
3

o
------A2

ki
k
----cos2 k x t–  cs

sw
ki
k
----= = =

T 2 = 

1
T
--- cos2 k x t–  td

0

T

 1
2
---=
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so that the average energy density and flux are:

(51)

Notes

•  The energy flux is in the direction of the wave.
•   and is equal to the sound speed times the energy density.

sw  1
2
---

cs
2

0
------A2=

FEi  1
2
---

cs
3

o
------A2

ki
k
---- cs sw 

ki
k
----= =
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4 Jeans mass - sound waves with self gravity

4.1 Physical motivation
There are numerous sites in the interstellar medium of our own
galaxy that are the birthplaces of stars. These are cold dense
clouds in which stars can form as a result of the process of grav-
itational collapse. Why is ‘‘cold’’ and ‘‘dense’’ important? Sur-
prisingly, we can get some idea of this by looking at the
propagation of sound waves in a molecular cloud.
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The Horsehead nebula is a dark mo-
lecular cloud that is the site of ongo-
ing star formation. The image at the
left was obtained at the Kitt Peak Na-
tional Observatory in Arizona

The image at the right was ob-
tained using the Hubble Space
Telescope.
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4.2 Mathematical treatment of gravitational instability
Continuity, momentum and Poisson equations:

(52)

In order to model self-gravity of the gas we have included Pois-
son’s equation for the gravitational potential.

t


xi
 vi + 0=

t

vi vj xj

vi 1

---

xi
p

xi


+ + + 0=

2 4G=
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Perturbations:

(53)

 0 += 0 constant

vi vi=

 0 +=
Astrophysical Gas Dynamics: Sound waves 32/52



Perturbation equations:

(54)

Zeroth order terms are shown in blue. 

The term in red is associated with what is sometimes unkindly
known as the Jeans Swindle. Jeans neglected this term in his der-
ivation of the Jeans Mass.

t
 0 + 

xi
 0vi +

t
  0 xi

 vi( )
xi

0vi+ +=

t

vi 1
0
------

xi

p0 1
0
------

xi
 p


0

2
------

xi

p0–
xi

0
xi
 + + + + 0=

02 2+ 4G 0 + =
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When can we neglect the pressure gradient term?

Compare  with . Let us suppose that the back-

ground pressure gradient has a length scale , and that the per-
turbations have a length scale  i.e.

(55)

and

(56)

1
0
------

xi
 p


0

2
------

xi

p0

L
l

1
0
------

xi
 p

p
0l
--------


0

2
------

xi

p0 
0

2
------

p0
L
-----
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The pressure gradient term associated with the perturbations is
larger than the background pressure gradient term if

(57)

So, for perturbation length scales much less than the background
lenght scale in the cloud, we can neglect the background pres-
sure gradient.

p
0l
--------


0

2
------

p0
L
-----

l
L
---

p

------

0
p0
------«» c0

2 
c0

2
----- = =
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Now use the zeroth order equations:

(58)

1
0
------

xi

p0
xi

0+ 0=

02 4G0=
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This gives:

(59)

Simplest case: initial density constant and neglect variation of
potential.

(60)

(61)

t
  0 xi

 vi( )
xi

0vi+ + 0=

t

Vi 1
0
------

xi
 p


0

2
------

xi

p0–
xi
 + + 0=

2 4G=

0 constant=

0 constant=
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 The assumption means that the red term  above is neglected. The
perturbation equations simplify to:

(62)

Plane wave solution:

(63)

t
  0 xi

 vi( )+ 0=

t

vi 1
0
------

xi
 p

xi
 + + 0=

2 4G=

 A i k x t– exp=

vi Ai i k x t– exp=

 B i k x t– exp=
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Substitute into perturbation equations:

(64)

iA– 0ikiAi+ 0=

iAi–
cs

2

0
------ikiA ikiB+ + 0=

k2B– 4GA=
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We can arrange these equations into the following set of linear
equations:

(65)

A 0kiAi– 0=

cs
2

0
------kiA Ai– kiB+ 0=

4GA k2B+ 0=
Astrophysical Gas Dynamics: Sound waves 40/52



There are a number of ways of dealing with this set of linear al-
gebraic equations for the quantities,  and . One of the best

is simply to write them as a set of 5 equations as follows:

A Ai B
Astrophysical Gas Dynamics: Sound waves 41/52



(66)

 0k1– 0k2– 0k3– 0

cs
2

0
------k1 – 0 0 k1

cs
2

0
------k2 0 – 0 k2

cs
2

0
------k3 0 0 – k3

4G 0 0 0 k2

A

A1

A2

A3

B

0

0

0

0

0

=

Astrophysical Gas Dynamics: Sound waves 42/52



This is a homogeneous set of equations that only has a non-triv-
ial solution if the determinant is zero. It is possible to work the
determinant out by hand, since it contains a number of zeroes.
However, Maple/Mathematica also readily provides the follow-
ing expression for the determinant:

(67)

Apart from the trivial solutions ( ) to , the only
non-trivial solutions are described by:

(68)

giving

(69)

 2k2 2– cs
2k2 4G0–+ =

 or k 0=  0=

2 cs
2k2 4G0–=

 cs
2k2 4G0–=
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This constitutes an interesting and fundamental difference from
normal sound waves because of the additional term relating to
self-gravity.

Define the Jeans wave number  by

(70)

Then if 

(71)

kJ

cs
2kJ

2 4G0=

2 cs
2 k2 kJ

2– =

k kJ

2 0 i g  say=
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For these imaginary solutions the perturbation in each variable is
proportional to

 . (72)

One of the imaginary roots corresponds to decaying modes, the
other to growing modes, i.e. instability.

(73)

it exp gtexp=

Jeans Length J
2
kJ
------ 2

cs
2

4G0
-----------------= = =
Astrophysical Gas Dynamics: Sound waves 45/52



Jeans length in a molecular cloud

(74)

n 109 m 3– T 10 K  1

cs
kT
m
--------- 
  1 2/

= 0.29 km/s 

J
kT

mG0
------------------- 
  1 2/ 1

m
--------

kT
Gn

------------ 
  1 2/

2pc= =
Astrophysical Gas Dynamics: Sound waves 46/52



Jeans mass

The Jeans mass,  is defined to be the mass in the region de-

fined by the reciprocal of the Jeans wave number:

(75)

MJ

MJ 0kJ
3–=

0

cs
2

4G0
-----------------
 
 
  3 2/

=

kT

4Gm0
1 3/

--------------------------------
 
 
  3 2/

=

0.4solar masses
Astrophysical Gas Dynamics: Sound waves 47/52



for the above parameters.

Star formation - the modern approach

The above discussion is the standard treatment for gravitational
instability without the influence of a magnetic field and gives in-
teresting sizes for the initial collapsing region and the mass of
the collapsing object. 

The current attitude to the Jeans mass is that the physics of star
formation is more complicated and that magnetic fields and tur-
bulence are involved. However, it is thought that the Jeans Mass
is relevant to the masses of molecular cloud cores.
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Physics of the Jean mass

Consider a gas cloud of mass M and radius R and neglect pres-
sure forces. Then the equation of motion of the cloud is:

(76)

M R

vid

td
------- –

GM

R2
---------

xi
R
----–=
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Dimensionally, this equation is:

(77)

Now consider the sound crossing time:

(78)

R

t2
----

GM

R2
---------= Free-fall time tff

R3

GM
--------- 
  1 2/

G  1 2/– =

t s
R
cs
----
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If the sound-crossing time is less then the free-fall time, then the
collapsing region is able to produce enough pressure to halt the
collapse since signals have the time to go from one side of the
region to the other. Thus the condition for collapse is

(79)

Another criterion:

Euler’s equations with pressure and gravity:

(80)

t s tff R
cs
---- G  1 2/– R

cs
2

G
-------
 
 
 

1 2/

J 

dvi
dt
-------

1

---

xi
p

–
xi


–=
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Collapse will occur if gravitational forces overwhelm the pres-
sure forces. Since

(81)

then Euler’s equations are:

(82)

For collapse the gravitational forces have to win, so that,

(83)

xi
p


p

xi


cs
2

xi


= =

dvi
dt
-------

cs
2


-----

xi


–
xi


–

cs
2


-----


R
---

GM

R2
---------–

cs
2

R
-----

GM

R2
---------– =

GM

R3
---------

cs
2

R2
------ R

cs
2

G
-------
 
 
 

1 2/

 J
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