Simple Waves

Reference: Landau & Lifshitz, Fluid Mechanics

1 Nonlinear waves

1.1 Small amplitude waves
When we considered sound waves we considered small ampli-
tude perturbations to the fluid equations. In 1D

0%8p 1 9%8p _
Ox? c? Ot2

0 (1)
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The solution to this equation, of course, 1s:
op = f1(x—ct) +fr(x+ct) (2)

where f; and f, are arbitrary functions. The perturbation to the

velocity 1s given by:

ooV 2 2
X s 00p s
= — = — —c 1)+ +
p > ox > [f’l(x ¢ 1) f’z(x ct)]
(3)
C
oV = ES[]”1 (x—c ) —fr(x T c )]
Note that for the wave travelling 1n each direction
CS
dv_ = iBSp (4)
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1.2 Simple waves

The above relationship suggests looking for a full nonlinear so-
lution in which

v =v(p) (5)
Such a solution of the Euler equations 1s called a simple wave.

Take the 1D Euler equations

op , Apv) _
Ot 0x
0 ov 10 ©
_V—I—v—v—l-—£ =0
ot Ox pox
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Since v = v(p) and p = p(p) then p = p(v) and the above
equations can be written:

op  d op
_I_ —_ =
3t FapPa T 0

ov ( ldp)dv ~ 0
ot pdv/ dx

1.2.1 Aside - Profile velocity

We would like to work out the velocity of a point on the density
profile, at a fixed density, as shown 1n the figure. The aim of the

Ox
8t

(7)

following 1s to determine =2
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To determine the vlocity of a point with constant density, we

consider a transformation of independent variables from (x, ¢) to
(p, t) defined by:

N

p(x, 1)
, (8)
I = 1

-
|
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the reverse transformation being:

X = x(t’, p)

[ =1

)
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In the new variables (p, t)

op| — Op|Ox| L Op| ot
Gt’ P Ox f@t, p ot X0t D

p (10)
op
G .
dtlp  op
ox |t
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Similarly, in order to consider the profle velocity at a given ve-
locity value, we consider a transformation

v = v(x,t)
: (11)
I = 1

from (x, t) to (v, t) and the rate of change of x at a fixed 7 1s g1v-
en by

ov
ox| - 9t (12)
orly v

OX
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1.3 Continued solution for simple wave:

Given the above expression for a simple wave and the continuity
equation we have

ol d ( _ dv
o= —(pv) = v+ p— (13)
ot|p dp dp
The momentum equation implies that
OX| = y+ Ldp (14)

ot |y pdv
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Now the crucial point in the development of this solution is that

since v = v(p) then v = constant corresponds to p = constant
and

OX OX
X X (15)
Otly  Ot|p
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Hence,

ldp dv
+ 2 = 4 g2l
Y pdv Y pdp
2
sdp _ dv
p dv pdp
) (16)
= ()°-%
dp p2
dp P
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Thus v as a function of p 1s given by:

CS
v = x| —=dp (17)
I3
We take a polytropic equation of state

p = K(s)p' (18)
and take p, to be a reference density corresponding to v = 0.

Hence,

K =popy! 5 = vKp} !

~1
2o a-d@ amel
Po Po Po Po
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Hence the relationship between V' and p for a polytropic gas is:

Y —3
(S, PY 2 P
v = 2] Sdp = e (g) d(g)

_ v — 1 _

2c —
_ .0 (ﬂ) 2 | =
Po

Solving for the sound speed:

’Y_

A

2
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1.3.1 Wave velocity

8x)
_ — + L = + ——F = v+
(5t ) V V vice (22)

Since ¢ = ¢ (p) = ¢ (v) then

x = t(vie ) T+ f(v) (23)
where f(v) 1s an arbitrary function of v. Using the solution for
c . then

S
X = t[y; lvicOJ + f(v) (24)

This 1s one of the most useful forms of the solution for a simple
wave.
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NB. Waves travelling to the right represented by the + sign in the
above expressions; waves travelling to the left by the - sign.

1.3.2 Velocity and the formation of shocks
From the above

@c) _y+1 N
(ﬁt ) 5 vic (25)

and this shows the nonlinear effect on the profile velocity. When

V«c, then (%C) = *c), 1.e. the standard relation for a sound
\4

wave. However, when v ~ C nonlinear effects have a marked

effect on the profile.
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The increase of the profile velocity with increasing positive v

and the decrease with decreasing negative v means that the pro-
file steepens as shown 1n the figure. The end result 1s a series of
ever steepening profiles which eventually become unphysical.
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4 Y. Infinitely steep N
profile

iy ¢ t I?physical

Ny

- J

When the profile becomes infinitely steep a shock forms. In this
region the assumptions embodied in the Euler equations break
down 1.e. 1t 1s no longer possible to neglect viscosity. (More
about this later.)
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At the time of formation of the shock:

ox| _
ox| = g (26)
oV |¢

Moreover, the shock represents a point of inflection in the profile
so that

2
0“x| = 27)
o2 {
It we use the solution:
X = t(ico + 1 ; lv) + f(v) (28)
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then the conditions for the formation of a shock are:

ox _vy+1 _ :_2f(V)
= Tt+f(v) 0=1 =25 (29)

and

f(v) =0 (30)
Both of these conditions have to be satisfied simultaneously.

1.3.3 Fluid outside the region at rest
This 1s a special case.
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N J
In this case the condition for a shock to form 1s simply

Xl =0 at v=0 (31)
ov A
since the velocity profile beyond this pointis simply v = 0. This
gievs the condition ¢ = _Z_f (0)
y+1
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2 Piston moving out of a pipe as an example of a simple wave

2.1Formation of solution

a B v I
~+2 Mt'x
L L
2
}
u = —at
v 4_‘ x — O @
|
& —
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The piston is mitially at x = 0 and moves towards the left with
acceleration a. A sound wave travels towards the right with ve-

locity ¢, since the gas 1s at rest to the right of the piston.

We can solve for this flow as a simple wave. Take the general
solution:

x = t[i co+ %(y " 1)\»} v (32)

The + sign applies to a wave travelling to the right so that

v = eg e Dy £ 53)

(Note: the wave 1s travelling to the right although the piston 1s
travelling to the left.)
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The arbitrary function may be calculated using the boundary
condition that the gas remains 1n contact with the piston, 1.e.

2
Vv = —at at x = 4 (34)

Write the solution 1n the form:

fv) = x—t[cOerer lvj

= f(—at) = —c%z—t[co—(y; l)at} (35)
_ 0 a2
~ —a-(—a ) Z—a(_a )

Astrophysical Gas Dynamics: Simple Waves 23/33



Therefore

_ Y .2
= — vy 4+
f(v) A
(36)
_ Lt 1)} USSR
—> X t[co 5 av 2av

and the solution for x as a function of x and 7 1s given by the so-
lution of the quadratic:

C
Y 2. (0, VT 1) _
55V +(a+ 5 tjvtegt—x =0

(37)

2
_ 0., v+ 0 v+l ) 2a
= v = — (at)+/\/(——l— at| +=(x—cpt)
Y 2y Y 2y Y 0
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The other boundary condition to incorporate 1s the condition that
a sound wave moves away from the piston. 1.e. v = 0 at
X = c,t. We can readily see that the - sign in the above expres-

sion gives the correct boundary condition so that

B 0 CO y-l-l 2a
_y = 7 (a) J(7+ > at) +—(x cot) (38
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Does a shock form 1n this solution?

f(v) = Cov+lv2

a 2a
a a
fiwvy =1

The second derivative 1s always non zero so that if a shock forms
it does so when v = 0 1.e. when

C
20 _ 2 % _,
v+ 1 v+ 1 a

(40)
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Negative values of 7 are outside the domain of validity of our so-
lution so that a shock does not form.

2.2Maximum Velocity

An 1ntriguing aspect of the above solution 1s that a velocity 1s
reached at which a cavity forms behind the piston. Consider our
solution for the sound speed 1n a sitmple wave:

Y- 1 v —1

c. = CO TV = CO‘|‘TV (41)
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Now 1n order that the density remain positive, the sound speed
must also remain positive and

CO TV>O
260 (42)
V< —
v—1

Once the gas (and hence the piston) reaches this velocity a vac-
uum formes.

Astrophysical Gas Dynamics: Simple Waves 28/33



Astrophysical Gas Dynamics: Simple Waves 29/33



3 Piston moving into gas

N

u = at

xpiston 7 a

3.1 Solution
Piston accelerates from zero velocity to a velocity u = at and a

position x = iatz at time 7.
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Again we use the general simple wave for a wave moving to the
right

y—l—

5 IVJ + f(v) (43)

X = t[cOJr

and we use the boundary condition v = at for gas at the surface
of the piston:

| v+ 1
:iat —t[coﬂL > atJﬂLf(at)

=00t — (a2 (44)
= f(at) a(at) 2a(at)

C
__ 0 ¥y.2
Jv) av 2av
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3.2 Formation of shock:

We have

F(v) = ———gv and f'(v) = —-<o (45)

so that the only place where a shock can form 1s at v = 0. The
time of formation of the shock 1n this case 1is:

_2/(0) _ 2 o
v+ 1 v+ 1a

(46)

Note that the velocity of the piston 1s not supersonic with respect
to the undisturbed gas when the shock forms:

y+1CO<CO for y>1 (47)
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3.3 Velocity of gas
The expression for the velocity profile 1s, 1n this case (exercise):

C C 2
B 0 'Y‘l'l ) J( 0 y-l—l ) 2a
v__(__ at] + YT at) 2 x—cpt) (48
Y 2y Y 2y b 0

One can show directly from this expression that the velocity pro-

2 €
y-l—la.

file becomes intinitely steep at x = c,¢ when 7 =
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