
Simple Waves

Reference: Landau & Lifshitz, Fluid Mechanics

1 Nonlinear waves

1.1 Small amplitude waves

When we considered sound waves we considered small ampli-
tude perturbations to the fluid equations. In 1D
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The solution to this equation, of course, is:

(2)

where  and  are arbitrary functions. The perturbation to the

velocity is given by:
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Note that for the wave travelling in each direction
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1.2 Simple waves

The above relationship suggests looking for a full nonlinear so-
lution in which

(5)

Such a solution of the Euler equations is called a simple wave.

Take the 1D Euler equations
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Since  and  then  and the above
equations can be written:

(7)

1.2.1 Aside - Profile velocity

We would like to work out the velocity of a point on the density
profile, at a fixed density, as shown in the figure. The aim of the

following is to determine . 

v v  = p p  = p p v =


t
------

d
d v 

x
------+ 0=

v
t
----- v

1

---
dp
dv
------+ 

 
xd
dv

+ 0=

x
t
-----



Astrophysical Gas Dynamics: Simple Waves 4/33



To determine the vlocity of a point with constant density, we
consider a transformation of independent variables from  to

 defined by:
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the reverse transformation being:
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In the new variables 
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Similarly, in order to consider the profle velocity at a given ve-
locity value, we consider a transformation

(11)

from  to  and the rate of change of  at a fixed  is giv-
en by
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1.3 Continued solution for simple wave:

Given the above expression for a simple wave and the continuity
equation we have
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The momentum equation implies that

(14)

t
x

 d
d v  v 

d
dv

+= =

t
x
v

v
1

---
vd
dp

+=
Astrophysical Gas Dynamics: Simple Waves 9/33



Now the crucial point in the development of this solution is that
since  then  corresponds to 
and 
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Hence,

(16)

v
1

---
vd
dp

+ v 
d
dv

+=

cs
2


-----

vd
d 

d
dv

=

d
dv
 
  2 cs

2

2
------=

d
dv cs


----=
Astrophysical Gas Dynamics: Simple Waves 11/33



Thus  as a function of  is given by:

(17)

We take a polytropic equation of state

(18)

and take  to be a reference density corresponding to .

Hence,
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Hence the relationship between  and  for a polytropic gas is:

(20)

Solving for the sound speed:
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1.3.1 Wave velocity

(22)

Since  then
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where  is an arbitrary function of v. Using the solution for
 then
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This is one of the most useful forms of the solution for a simple
wave.
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NB. Waves travelling to the right represented by the + sign in the
above expressions; waves travelling to the left by the - sign.

1.3.2 Velocity and the formation of shocks

From the above

(25)

and this shows the nonlinear effect on the profile velocity. When

 then , i.e. the standard relation for a sound

wave. However, when  nonlinear effects have a marked

effect on the profile.

t
x
 
 

v

 1+
2

-----------v c0=

v c0«
t

x
 
 

v
c0=

v c0
Astrophysical Gas Dynamics: Simple Waves 15/33



The increase of the profile velocity with increasing positive v
and the decrease with decreasing negative  means that the pro-
file steepens as shown in the figure. The end result is a series of
ever steepening profiles which eventually become unphysical.

v
t1

x

v

Astrophysical Gas Dynamics: Simple Waves 16/33



When the profile becomes infinitely steep a shock forms. In this
region the assumptions embodied in the Euler equations break
down i.e. it is no longer possible to neglect viscosity. (More
about this later.)
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At the time of formation of the shock:

(26)

Moreover, the shock represents a point of inflection in the profile
so that 

(27)

If we use the solution:
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then the conditions for the formation of a shock are:

(29)

and

(30)

Both of these conditions have to be satisfied simultaneously.

1.3.3 Fluid outside the region at rest

This is a special case.
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In this case the condition for a shock to form is simply

(31)

since the velocity profile beyond this point is simply . This

gievs the condition 
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2 Piston moving out of a pipe as an example of a simple wave

2.1Formation of solution
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The piston is initially at  and moves towards the left with
acceleration a. A sound wave travels towards the right with ve-
locity  since the gas is at rest to the right of the piston. 

We can solve for this flow as a simple wave. Take the general
solution:

(32)

The + sign applies to a wave travelling to the right so that

(33)

(Note: the wave is travelling to the right although the piston is
travelling to the left.) 
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The arbitrary function may be calculated using the boundary
condition that the gas remains in contact with the piston, i.e.

(34)

Write the solution in the form:
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Therefore

(36)

and the solution for x as a function of x and t is given by the so-
lution of the quadratic:
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The other boundary condition to incorporate is the condition that
a sound wave moves away from the piston. i.e.  at

. We can readily see that the - sign in the above expres-

sion gives the correct boundary condition so that
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Does a shock form in this solution?

(39)

The second derivative is always non zero so that if a shock forms
it does so when  i.e. when
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Negative values of t are outside the domain of validity of our so-
lution so that a shock does not form.

2.2Maximum Velocity

An intriguing aspect of the above solution is that a velocity is
reached at which a cavity forms behind the piston. Consider our
solution for the sound speed in a simple wave:
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Now in order that the density remain positive, the sound speed
must also remain positive and

(42)

Once the gas (and hence the piston) reaches this velocity a vac-
uum forms.
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3 Piston moving into gas

3.1 Solution

Piston accelerates from zero velocity to a velocity  and a

position  at time t.
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Again we use the general simple wave for a wave moving to the
right

(43)

and we use the boundary condition  for gas at the surface
of the piston:
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3.2 Formation of shock:

We have

(45)

so that the only place where a shock can form is at . The
time of formation of the shock in this case is:

(46)

Note that the velocity of the piston is not supersonic with respect
to the undisturbed gas when the shock forms:
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3.3 Velocity of gas

The expression for the velocity profile is, in this case (exercise):

(48)

One can show directly from this expression that the velocity pro-

file becomes infinitely steep at  when .
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