
Relativistic Gases

1 Relativistic gases in astronomy

Optical

RadioThe inner part of M87
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Evidence for relativistic motion

Motion of the knots in the M87 jet
indicates apparent velocities in
excess of the speed of light

Large scale component velocities
are of the order of 0.5-1.0 c

Credits: Biretta and
colleagues
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2 Some relevant aspects of relativity

2.1 Four vectors and tensors
Special relativity is based on the geometry of space-time de-
scribed by the metric

(1)

The interval between two points is

(2)

where 

(3)

 diag (-1,1,1,1)=

ds2 dxdx dx0 2– dx1 2 dx2 2 dx3 2+ + += =

x0 ct=
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Indices

Latin go from 1 to 3; Greek from 0 to 3

Timelike and spacelike

Displacements are timelike if  and spacelike if .
For timelike displacements, the proper time, , is given by

(4)

Lorentz factor

The Lorentz factor is defined by

(5)

ds2 0 ds2 0


c2d2 ds2–=

 1

1
v2

c2
-----–

-------------------
1

1 2–
-------------------= =
Astrophysical Gas Dynamics:   Relativistic Gases 4/73



Note that we use  for the Lorentz factor corresponding to the
bulk motion of the fluid. We use  for the Lorentz factors of the
particles making up the fluid. 

Since, for a timelike displacement (the displacement of a mate-
rial particle)

 (6)




c2d2 ds2– dx0 2 dx1 2– dx2 2– dx3 2–= =

dx0 2 1
dx1

dx0
--------- 
  2 dx2

dx0
--------- 
  2

–
dx3

dx0
--------- 
  2

––=

c2dt2 1
v2

c2
-----–=  2– c2dt2=
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then

(7)

Signature of metric

Note the signature of the metric . Other expositions of
special or general relativity adopt

. 

The main 4–vector that we deal with here is the fluid 4-velocity,

(8)

cd  1– cdt=

–,+,+,+ 

+,–,–,– 

u
dx

cd
--------- dx

cdt
---------  vi

c
---- 

 = = =
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where

(9)

and  are the coordinates of a fluid element through space time.

2.2 Raising and lowering indices
Indices are raised and lowered by means of the Minkowski ten-
sor. Some results to remember are as follows.

The inverse of the Minkowski tensor,  is defined by:

(10)

vi dxi

dt
-------=

xi



 =

 1 1 1 1  – =
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Indices are raised and lowered by the Minkowski tensor

(11)

3 The stress-energy tensor

3.1 Definition
The stress–energy tensor is defined by the following compo-
nents:

(12)

v v= v v=

T
 T00 T0i

Ti0 Tij
=
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where

(13)

We also have

(14)

T00 Energy density (incorporating rest mass energy etc.)=

cT0i Flux of energy in the i direction=

Ti0 T0i=

Tij Flux of the i component of momentum in the = j direction

1
c
---T

i0
i component of momentum density =

1

c2
----- Flux of energy in the i direction=
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The relationship of  to both momentum and energy

Why should we have these two different roles for the compo-

nents ? Remember that in special relativity, mass and energy
are related by

(15)

Therefore a flux of energy is equivalent to  times a flux of

mass. But the mass flux is  and this is just the momentum
density. Hence

(16)

T0i

T0i

E mc2=

c2

vi

Energy flux c2 Momentum density=
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and

(17)

3.2 Stress energy tensor for a perfect fluid
The above characterisation of the stress-energy tensor is valid in
general. For a perfect fluid in which the pressure is isotropic and
normal to any surface we develop an expression for the stress-
energy tensor as follows.

Consider the rest-frame of the fluid. This is defined as that frame
in which

(18)

Momentum density
1

c2
----- Energy flux=

u 1 0 0 0   =
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In this frame,

(19)

Hence,

(20)

This can be covariantly expressed as

(21)

Energy density e=

Energy flux 0=

Momentum flux density pij=

T

e 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

e p+ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

p– 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

+= =

T e p+ uu p+=
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Relativistic enthalpy

The quantity 

(22)

is called the relativistic enthalpy similar to the corresponding
non-relativistic expression

(23)

Note that the relativistic expression contains the rest-mass ener-
gy. Often we expression the relativistic enthalpy in the form:

(24)

w e p+=

h  p+=

w c2  p+ +=
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where  is the rest-mass energy density and  is
the internal energy. Therefore,

relativistic enthalpy = rest mass energy + internal energy + pres-
sure.

c2  e c2–=
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3.3 Expressions for the components of  in an arbi-
trary frame
The various components of the stress-energy tensor can then be
expressed as:

(25)

T

T00 e p+ u0u0 p– 2 e p+  p–= =

T0i e p+ 2vi

c
----=

Tij e p+ 2vivj

c2
--------- pij+=
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4 The relativistic fluid equations

4.1 Energy and momentum equations
The relativistic fluid equations are 

(26)

To see why these are the equations, let us examine the different
equations corresponding to  and .

T,
T
x

------------- 0=

 0=  i=
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Time component

(27)

In words:

(28)

 0= T00
,0 T0j

,j+ 0=

1
c
---

T00
t

------------
T0j
xj

-----------+ 0=

T00
t

------------
cT0j 

xj
-------------------+ 0=

Energy density 
t

-------------------------------------------- divergence Energy flux + 0=
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0

Spatial component

(29)

In words:

These are the appropriate conservation laws for energy and mo-
mentum.

 i= Ti0
,0 Tij

,j+ 0=

1
c
---

Ti0
t

-----------
Tij
xj

---------+ 0=

c 1– Ti0 
t

------------------------
Tij
xj

---------+ 0=

Momentum density 
t

------------------------------------------------------ divergence Momentum flux density + =
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4.2 The conservation of number density
Assuming that our fluid consists of particles that do not trans-
form into other particles, then their number is conserved. Let

(30)

i.e.  is the number density of particles in the rest frame of the
fluid. We often use the baryon number density for .

The conservation law for number is

(31)

n Number of particles per unit proper volume=

n
n

nu 
x

----------------- 0=
1
c
---

n 
t

--------------
nvi c 

xi
--------------------------+

n 
t

--------------
nvi 

xi
-------------------+ 0=
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This makes sense since the number density in an arbitrary frame
is .

Rest mass density

Let  be the average rest mass of particles in the fluid. The rest-

mass energy density in the rest frame is . The rest-mass en-
ergy density in an arbitrary frame is

 (32)

5 Non-relativistic limit

The non-relativistic limit is instructive since it 

•  Confirms that we have the right equations
•  Clarifies the relationship between energy flux and momentum 

n

m

nmc2

c2 nmc2=
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density 

5.1 Nonrelativistic limits of the components of the 
energy-momentum tensor
In proceeding to the non-relativistic limit, we express the energy
density in the form:

(33)

where  is the internal energy density.

The  component

(34)

e nmc2 +=



T00

T00 2 e p+  p–=

2 nmc2  p+ +  p–=

 nmc2  2  p+  p–+=
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Now

(35)

So

(36)

So we can see that the energy density in an arbitrary frame,
breaks up into the rest mass energy density plus the kinetic ener-
gy density plus the internal energy density.

 1
v2

c2
-----– 

  1 2/–
1

1
2
---

v2

c2
-----+=

2 1
v2

c2
-----+=

T00 1
1
2
---

v2

c2
-----+ 

  c2  p+  p–+ c2 1
2
---v2 + 
 +=
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The components 

(37)

T0i

T0i e p+ 2vi

c
---- nmc2  p+ + 2vi

c
----= =

c2vi

c
---- 2  p+ v

i

c
----+=

1
1
2
---

v2

c2
-----+ 

  c2vi

c
---- 1

v2

c2
-----+ 

   p+ v
i

c
----+

c2vi

c
----

1
2
---v2vi

c
----  p+ v

i

c
----+ +=
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(38)

The components 

(39)

Momentum density
1
c
---T0i vi 1

2
--- v

c
-- 
  2

vi  p+ 
c2

----------------vi++= =

Energy flux density cT0i c2vi 1
2
---v2vi  p+ vi++= =

Tij

Tij e p+ 2vivj

c2
--------- pij+ nmc2  p+ + 2vivj

c2
--------- pij+= =

c2vivj

c2
--------- 2  p+ v

ivj

c2
--------- pij+ +

vivj pij+   p+ v
ivj

c2
--------- Higher order in  

v2

c2
-----+ +=
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The term 

This originates from the continuity equation for the number of
particles. 

(40)

5.2 Non-relativistic equations

Continuity equation

The conservation equation for rest-mass

(41)

nmvi

nmvi vi=

nm 
t

-------------------
nmvi 

xi
------------------------+ 0=
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is, without approximation:

(42)

Momentum equation

The relativistic form

(43)


t

------
vi 
xi

---------------+ 0=

c 1– Ti0 
t

------------------------
Tij
xj

---------+ 0=
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becomes

(44)

(45)

vi 1
2
--- v

c
-- 
  2

vi  p+ 
c2

----------------vi++ 
 

t
--------------------------------------------------------------------------------

vivj pij+   p+ v
ivj

c2
---------+ 

 

xj
---------------------------------------------------------------------------

+

0=
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The leading terms are the usual non-relativistic terms, the others

are of order  by comparison. Hence, the momentum
equations become:

(46)

The energy equation

The relativistic form is:

(47)

v c 2

vi 
t

---------------
vivj pij+ 

xj
-------------------------------------+ 0=

T00
t

------------
cT0j 

xj
-------------------+ 0=
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With the non-relativistic expressions:

(48)

In this case we need to go beyond the zeroth order expression
since this is

(49)

i.e. the continuity equation for rest mass energy density.

c2 1
2
---v2 + 
 +

t
---------------------------------------------------

c2vj 1
2
---v2vj  p+ vj++

xj
--------------------------------------------------------------------------------+ 0=

c2 
t

-----------------
c2vj 

xj
---------------------+ 0=
Astrophysical Gas Dynamics:   Relativistic Gases 29/73



The next order in  gives:

(50)

which is the non-relativistic form of the energy equation.

Note that both the momentum equation and the energy equation

have involved the same term . It is the different contributions

from terms of different orders in  which have given rise
to the different contributions to both the energy and momentum
equations.

v c 2

1
2
---v2 + 
 

t
------------------------------

1
2
---v2vj  p+ vj+

xj
------------------------------------------------------+ 0=

T0i

v c 2
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6 Equations of state

6.1 Ultrarelativistic particles and the distribution func-
tion
Often when we have relativistic motion, the internal composi-
tion of the fluid is relativistic, as in the case of the M87 jet. Most
extragalactic jets are made up of ultrarelativistic particles with
Lorentz factors much greater than unity. In this case the energy
of a particle is the speed of light times the momentum, i.e.

(51)

as it is for photons.

E cp=
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To derive the equation of state, we use a distribution function
 so that

(52)

For the so-called perfect fluids we are dealing with here, the dis-
tribution function is isotropic, i.e.

(53)

and depends only only on the magnitude of the momentum.

f p 

Number density of particles in volume d3p of momentum space

f p d3p=

f p  f p =
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6.2 The energy density and the pressure
The energy density is

(54)

The pressure tensor (equivalently, the stress tensor in the rest
frame) is

(55)

e Ef p d3p

p
 4 Ef p p2 pd

0



= =

4c f p p3 pd
0



=

Tij pivjf p d3p

p space–
 4 pipj

m
---------f p p2 pd

0



= =
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Here we take  to be the mass of the particle,  to be the

Lorentz factor and  to be the rest-mass energy.

The isotropy of the distribution function guarantees the isotropy
of the stress tensor. Hence

(56)

and the value of  can be estimated from the trace, i.e.

(57)

Now

(58)

m m0= 

m0

Tij Pij=

p

3P Ti
i 4 p2

m
------f p p2 pd

0



= =

m
E

c2
-----

p
c
---= =
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Hence

(59)

This is of course is also true for a photon gas where  is
exact. 

We have used the symbol  above, to distinguish he pressure
from the momentum. Henceforth, we use  for pressure and the

ultra-relativistic equation of state is .

3P 4c pf p p2 pd
0



 e= =

P 1
3
---e=

E cp=

P
p

p
1
3
---e=
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7 The relativistic fluid equations

7.1 The fluid equations in terms of the 4-velocity
Let us now consider the fully relativistic equations derived from
the divergence of the stress-energy tensor, i.e.

(60)

The divergence is:

(61)

(Note that )

T, 0= where T wuu p+=

T, u wu , wuu, p,+ +=

p, p,=
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This has a form similar to that of the non-relativistic equations.

However, the term  is a bit anomalous. We deal with

this as follows. 

Take the scalar product of this equation with . Then,

(62)

Since

(63)

then

(64)

wu ,

u

uu wu , wuuu, up,+ +

uu 1–=

u,u uu,+ 2uu, 0= =
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Hence,

(65)

i.e.

(66)

The equations of motion of the fluid then become:

(67)

wu , up,+– 0=

wu , up,=

wuu, p, uup,+ + 0=
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Projection operator

The terms involving the pressure can
be written:

(68)

The tensor

(69)

is the projection operator. Every vector contracted with  is

othorgonal to .

v
u

qv p, uup,+  uu+ p,=

q  uu+=

q

u
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Final form of fluid equations

Using the projection operator, we have,

(70)

The left hand side represents the relativistic generalisation of the
non-relativistic differentiation following the motion of the
three–velocity,

 (71)

The right hand side is the negative of the pressure gradient per-
pendicular to the 4–velocity. Since the scalar product of these

equations with  now leads to an identity, the above four equa-
tions are equivalent to three.

wuu, qp,–=

 vi
t

------- vj vi
xj

-------+

u
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7.2 The entropy equation in relativistic fluid dynamics

The second law of thermodynamics

Consider a comoving volume of gas (i..e an elementary volume
with a fixed number of baryons) in which

(72)

 Entropy per baryon=

n baryon density=

e Energy density (inc. rest mass)=

p pressure=

T
temperature in energy 

units
=
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The equation of state of all fluids, including relativistic fluids has
other consequences that can be derived by consideration of the
second law of thermodynamics.

Consider the second law of thermodynamics in the form

(73)

where,  is the temperature (in energy units),  is the entropy,
 is the internal energy and  the volume of a comoving ele-

ment of fluid which contains a fixed number,  of baryons. This
equations applies in the rest frame of the fluid.

Why concentrate on baryons? In most fluids, except under the
most extreme of conditions, the baryon number is conserved.
For example, even when nuclear reactions are being considered,
the number of baryons is conserved.

TdS dU pdV+=

T S
U V

N
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Also, the rest-mass energy of such a volume is constant so that
we can replace the internal energy with the total energy, . This
appropriate for a relativistic approach. The entropy equation
then becomes

(74)

In terms of the variables in the above diagram

(75)

E

TdS dE pdV+=

S N= E N energy per baryon N
e
n
---

V
N
n
----=

= =
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Hence:

(76)

The equivalent equation in non-relativistic fluid dynamics is

(77)

In this case  is the entropy per unit mass.

Td N  d N
e
n
--- 

  pd
N
n
---- 
 +=

Td d
e
n
--- 
  pd

1
n
--- 
 +=

Tds d


--- 
  pd

1

--- 
 +=

s
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Entropy and enthalpy

We have

(78)

We can also express this equation in terms of the differential of
the enthalpy, viz.

(79)

Td d
e
n
--- 
  pd

1
n
--- 
 +

1
n
---de

e p+ 
n2

----------------dn–
1
n
---de

w

n2
------dn–= = =

Td d
e p+

n
------------ 
  e

n2
------dn

dp
n

------–
p

n2
------dn

e p+ 
n2

----------------dn–+ +=

d
w
n
---- 
  dp

n
------–=
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The constancy of entropy along a streamline

Let us return to the equation that we derived from the scalar

product of the fluid equations with , i.e.

(80)

We can write this as

(81)

Now use the conservation of baryon density

(82)

u

wu , up,=

wu, uw,+ up,=

nu , un, nu,+ 0= =

u, 1
n
---un,–=
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Therefore,

(83)

The operator

(84)

wu, uw,+ uw,
1
n
---un,– nu

w
n
---- 
 

,
up= = =

u
w
n
---- 
 

,

1
n
---up,– 0=

u

x

---------
d
ds
-----=
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i.e. differentiation along a world line. Hence the above equation
for the relativistic enthalpy is

(85)

 Consider the equation for the differential of the entropy

(86)

i.e. entropy is constant along a streamline.

d
ds
-----

w
n
---- 
  1

n
---

dp
ds
------– 0=

Td d
w
n
---- 
  dp

n
------–=

T
d
ds
------ d

ds
-----

w
n
---- 
  1

n
---

dp
ds
------– 0= =
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8 The speed of sound

8.1 Sound waves from perturbation of the relativistic 
fluid equations
The speed of sound in a relativistic gas is of interest. This is best
derived directly from perturbation of

(87)

We take as the unperturbed state,

(88)

T
x

------------- 0=

vi 0= p p0= e e0= w w0 e0 p0+= =
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and the perturbed variables are

(89)

(90)

We expand to first order in these quantities.

The perturbation to the Lorentz factor is given by:

(91)

vi v1
i= p p0 p1+= e e0 e1+=

w w0 e1 p1+ +=

 1
v2

c2
-----– 

  1 2/–
1

1
2
---

v2

c2
-----+ 1 O2+= =
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The perturbations to the stress-energy tensor are give by:

(92)

T00 2 e p+  p–= e0 e1+

T0i w
vi

c
---- w0 w1+ 

v1
i

c
----- w0

v1
i

c
-----==

Tij 2w
vivj

c2
--------- p0 p1+ ij p0 p1+ ij+=
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The perturbation equations are, 

(93)
 0=

T00
x0

------------
T0i
xi

-----------+
1
c
---

e0 e1+ 

t
-------------------------

w0
vj

c
---- 

 

xj
--------------------+ 0=

e1

t
-------- w0

vj
xj

-------+ 0=
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and

(94)

Hence the two perturbation equations are:

(95)

 i=
Ti0
x0

-----------
Tij
xj

---------
1
c
---

w0
vi

c
---- 

 

t
--------------------

p0 p1+ ij 

xj
-------------------------------------++

w0

c2
------

vi
t

-------
p
xi

-------+ 0=

e1

t
-------- w0

vj
xj

-------+ 0=

w0

c2
------

vi
t

-------
p1

xi
--------+ 0=
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Take the divergence of the second equation:

(96)

From the first equation

(97)

Therefore,

(98)

w0

c2
------

t
 vi

xi
------- 
 

xi xi

2



 p1+ 0=

w0 t
 vi

xi
------- 
 

t2

2



 e1–=

xi xi

2



 p1 1

c2
-----

t2

2



 e1– 0=
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Now relate the perturbations to the pressure and energy density
via the equation of state, which we represent in the form:

(99)

Hence,

(100)

For adiabatic perturbations:

(101)

p p e  =

p1
p
e

----- 
 


e1

p


------ 
 

e
1+=

p1
p
e

----- 
 


e1=
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and the wave equation for the pressure perturbations becomes:

(102)

This represents sound waves travelling with a speed:

(103)

8.2 Sound speed for an ultrarelativistic equation of 
state
If 

(104)

xi xi

2



 e1 1

c2 p e 
--------------------------

t2

2



 e1– 0=

cs
2 c2 p

e
----- 
 


=

p
1
3
---e=
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then

(105)

This speed is quite fast, .

9 Relativistic shocks

9.1 The junction conditions
The junction conditions for relativistic shocks follow from the
same approach as for non-relativistic fluid dynamics, i.e. conser-
vation of rest-mass or number density, conservation of momen-
tum and conservation of energy across the shock.

p
e

-----
1
3
---= cs

2 1
3
---c2= cs c

3
-------=

cs 0.577c=
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In the following and in much of relativistic fluid dynamics, we
use

(106)

The relativistic Rankine-Hugoniot re-
lations are derived from continuity of
number, momentum and energy
across the shock normal.

Number

(107)

i vi

c
----=  v

c
--=

0  1 

x

y

1

2

Oblique relativistic
shock

1n11x 2n22x=
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Momentum (x-component)

(108)

Momentum (y-component)

(109)

Energy

(110)

T1
xx T2

xx=

w11
21x

2 p1+ w22
22x

2 p2+=

T1
yx T2

yx=

w11
21x1y w22

22x2y=

w11
21x w22

22x=
Astrophysical Gas Dynamics:   Relativistic Gases 59/73



Summary of relativistic junction conditions

(111)

9.2 Solution of the relativistic junction conditions
Dividing the third equation by the fourth:

(112)

i.e. the component of velocity normal to the shock is unchanged,
as in non-relativistic shocks.

1n11x 2n22x=

w11
21x

2 p1+ w22
22x

2 p2+=

w11
21x1y w22

22x2y=

w11
21x w22

22x=

1y 2y y= =
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Velocity

Equations (2) and (4) can be solved to give the velocity on both
sides of the shock in terms of the hydrodynamic variables.

Parametrisation of the velocity and Lorentz factor

(113)

Put

(114)

 2– 1 x
2– y

2–=

x 1 y
2– 1 2/ tanh =

 2– 1 y
2–  1 tanh2–  1 y

2– sech2= =

 1 y
2–  1 2/– cosh =
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Since,  is the same for both sides of the shock, then, we have

(115)

We make these substitutions into

(116)

y

1x 1 y
2– 1 2/ tanh 1= 1 1 y

2–  1 2/– cosh 1=

2x 1 y
2– 1 2/ tanh 2= 2 1 y

2–  1 2/– cosh 2=

w11
21x

2 p1+ w22
22x

2 p2+=

w11
21x w22

22x=
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1 2/

1 2/
to obtain

(117)

Velocities

The solutions for the velocities are algebraically long but
straightforward and are derived in the appendix:

(118)

w1sinh21 p1+ w2sinh22 p2+=

w1sinh 1cosh 1 w2sinh 2cosh 2=

1x 1 y
2– 1 2/ tanh 1 1 y

2– 1 2/
p2 p1–  e2 p1+ 

e2 e1–  e1 p2+ 
---------------------------------------------= =

2x 1 y
2– 1 2/ tanh 2 1 y

2– 1 2/
p2 p1–  e1 p2+ 

e2 e1–  e2 p1+ 
---------------------------------------------= =
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9.3 Ultrarelativistic equation of state
For an ultrarelativistic equation of state,

 (119)

the above equations become:

(120)

p
1
3
---e=

1x 1 y
2– 1 2/ 1

3
---

3p2 p1+

3p1 p2+
----------------------

1 2/

2x 1 y
2– 1 2/ 1

3
---

3p1 p2+

3p2 p1+
----------------------

1 2/
=

=
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9.4 Normal shocks
Mainly for convenience, let us now concentrate on normal
shocks in which . There are a couple of interesting re-

sults here

Product of velocities

(121)

Weak shock

In a weak shock . This implies that:

(122)

y 0=

1x2x
1
3
---=

p1 p2

1x
1

3
------- 2x

1

3
-------=
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i.e. the velocities, before and after the shock are equal to the
sound speed. 

Strong shock

(123)

The densities on either side of the shock are related by:

(124)

Since  is the lab frame density then

(125)

for a strong shock.

p2
p1
-----  1x 1 2x

1
3
---

1n11x 2n22x=

ñ n=

ñ11x ñ22x= ñ2 1
3
--- ñ1=
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Important points

The points to note here, are

•   In a relativistic fluid, a weak shock can travel quite fast, 
essentially because the benchmark speed, the sound speed, is 
fast.

•  The strong shock limit has quite different velocity and density 
solutions than that in a non-relativistic fluid.

10 Appendix

10.1 Solution of shock equations

(126)
w1sinh21 p1+ w2sinh22 p2+=

w1sinh 1cosh 1 w2sinh 2cosh 2=
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Taking the parameters,  and  as given, we now have to

solve for the two unknowns  and . 

Let  and square the second

of the above equations:

(127)

w1 2 p1 2
1 2

x1 cosh21= x2 cosh22=

w1 x1 1–  p1+ w2 x2 1–  p2+=

w1
2 x1 1– x1 w2

2 x2 1– x2=
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In the first of the above equations  so that these two
equations are:

(128)

p w– e–=

w1x1 e1– w2x2 e2–=

w1
2 x1 1– x1 w2

2 x2 1– x2=
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The aim of the following is use these two equations to obtain lin-
ear equations for  and . To do so we square the first and sub-

tract from the second.

(129)

x1 x2

w1
2x1

2 2e1w1x1– e1
2+ w2

2x2
2 2e2w2x2– e2

2+=

w1
2x1

2 w1
2x1– w2

2x2
2 w2

2x2–=

Subtract w1 2e1– w1x1 e1
2– w2 2e2– w2x2

e2
2–=
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Use  and the other previous linear equation,

then

(130)

In matrix form:

(131)

w1 2e1– p1 e1–=

w1x1 e1– w2x2 e2–=

p1 e1– w1x1 e1
2– p2 e2– w2x2

e2
2–=

w1 w2–

e1 p1– w1 e2 p2– w2–

x1

x2

e2 e1–

e2
2 e1

2– –
=
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The solutions are (using Maple/Mathematica)

(132)

Since  then

(133)

x1 cosh21

e2 e1–  e1 p2+ 

e1 p1+  p1 e2 p2– e1–+ 
---------------------------------------------------------------------= =

x2 cosh22

e2 e1–  e2 p1+ 

e2 p2+  p1 e2 p2– e1–+ 
---------------------------------------------------------------------= =

tanh2 1 sech2– 1
1
x
---–= =

tanh21

p2 p1–  e2 p1+ 

e2 e1–  e1 p2+ 
---------------------------------------------

tanh
22

p2 p1–  e1 p2+ 

e2 e1–  e2 p1+ 
---------------------------------------------=

=
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1 2/

1 2/
Velocities

We now have the solutions for the velocities:

(134)

1x 1 y
2– 1 2/ tanh 1 1 y

2– 1 2/
p2 p1–  e2 p1+ 

e2 e1–  e1 p2+ 
---------------------------------------------= =

2x 1 y
2– 1 2/ tanh 2 1 y

2– 1 2/
p2 p1–  e1 p2+ 

e2 e1–  e2 p1+ 
---------------------------------------------= =
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