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Maxwell’s equations (cgs Gaussian units)

Displacement
current

Electric current

Ampere’s law ‘
Gauss’s law of electrostatics At 1 OF

V-E = 4drp, vxB = ?Jelcé’t
v-B =0 VxEIlaB = 0
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No magnetic monopoles
Faraday’s law of induction

Particle equations of motion
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Lorentz force Gravitational force




Cartesian form of Maxwell’s equations
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Equations of motion of a charged particle
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Energy density, Poynting flux and Maxwell stress
tensor
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EEM = 3 = Electromagnetic energy density
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Relationships between electromagnetic energy,
flux and momentum

The following relations can be derived from Maxwell’s equations:
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Momentum equations

Consider the electromagnetic force acting on a particle
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X refers to specific
particle

Consider a unit volume of gas and the electromagnetic force
acting on this volume
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where the sum is over all particles within the unit volume.
N.B.The velocity here is the particle velocity not the fluid
velocity.




Momentum (cont’d)
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We can identify the following components
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pe. = Electric charge density

87
Z q"v; = J; = Electric current density
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so that the electromagnetic force can be written
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Momentum (cont’d)

We add the body force to the momentum equations to obtain
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Now use the equation for the conservation of electromagnetic
momentum:
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Momentum (cont’d)

so that the momentum equations become:

Bulk transport of  Flux of momentum

momentum due to EM field
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density due to pressure force

For non-relativistic motions and large conductivity some very
useful approximations are possible




Limit of infinite conductivity

In the plasma rest frame (denoted by primes), Ohm’s law is

J. = oF;

Conductivity

The conductivity of a plasma is very high so that for a finite

current
E; ~ 0

This has implications for the lab-frame electric and magnetic field
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Transformation of electric and magnetic fields

Lorentz transformation of electric and magnetic fields
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This is the magnetohydrodynamic approximation.
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Maxwell tensor

B
Since E = C’)(v—>

then
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Hence, we neglect the electric component of the Maxwell
tensor. We can also neglect the displacement current, as we
show later.
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Electromagnetic momentum

We want to compare the electromagnetic momentum
density with the matter momentum density, i.e.
compare
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Electromagnetic momentum

As we shall discover later, the quantity

B2

47T,0 v4 = (Alfven speed)”
where the Alfven speed is a characteristic wave speed within the
plasma. Ve assume that the magnetic field is low enough and/or
the density is high enough such that
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and we neglect the electromagnetic

momentum density.
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Final form of the momentum equation

Given the above simplifications, the final form of the
momentum equations Is:
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We also have
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Thus the momentum equations can be written:
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Either form can be more useful dependent upon
circumstances.




Displacement current

Let L be a characteristic length, T a characteristic time andV
= L/T a characteristic velocity in the system

The equation for the current is:
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Displacement current (cont'd)

In the MHD approximation we always put
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Energy equation

The total electromagnetic energy density is

EEM B E2 _|_B2 N B2
N ST 87
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In order to derive the total energy equation for a
magnetised gas, we add the electromagnetic energy to the
total energy and the Poynting flux to the energy flux
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Energy equation (contd)

The final result is:
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where wv;- = Component of velocity

perpendicular to magnetic field
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The induction equation

The final equation to consider is the induction equation, which
describes the evolution of the magnetic field.

We have the following two equations:
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Faraday’s Law: V x E A =0
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Infinite conductivity: E-—- xB
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Together these imply the induction equation

oB = curl(v x B)
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Summary of MHD equations

Continuity:
0p
| i) =20
ot 8213@ (pU )
Momentum:
def,; B 8p 8gb | 0 BZB] B2
Pat T oz om0z | Am 87

24



Summary (cont.)

Energy:
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Summary (cont.)

Induction:
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