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1 Introduction

Instabilities are an important aspect of any dynamical system. It
is one thing to establish the dynamical equations for some sys-
tem or other, it is another to establish that the system is stable. If
it is unstable, then the system will evolve to some other state. For
example, we showed, in dealing with shocks that there are two
types of discontinuities - the shock discontinuity in which there
is a mass flux across the discontinuity and the tangential contact
discontinuity for which the mass flux is zero. The latter discon-
tinuity is subject to a classical discontinuity - the Kelvin-Helm-
holtz discontinuity which is one of the subjects of this chapter.
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2 The incompressible Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability relates to the following situa-
tion.

A large number of the properties of this instability can be under-
stood in terms of the following incompressible analysis.

1 v1

2 v2

p1 p2=
x

y
z
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Continuity equation for incompressible flow

(1)

Incompressibility means that the density is constant along a

streamline, so that  and

(2)

t


div v + 0=

t


v  divv++ 0=

td
d divv+ 0=

td
d

0=

div v 0=
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Perturbation

To study stability, we perturb the above system as follows:

(3)

where the  subscripts refer to the unperturbed flow. Thus

(4)

v v0 v+=

p p0 p+=

0

v0 v1 0 0  = z 0

v0 v2 0 0  = z 0
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In developing the equations which describe the development of
the instability, we develop equations which refer to either 
or  as far as possible, introducing either  or  when nec-

essary, when we come to consider the boundary conditions at the
interface.

Perturbation of the continuity equation

This is simply

(5)

Perturbation of the momentum equation

The term

(6)

z 0
z 0 v1 v2

divv 0=

v v v0 v+  v v0 v= =
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to first order, so that the perturbed momentum equation is:

(7)

Take the divergence of this equation

(8)

Since ,

(9)


t


v v0 v+ 
t


v v0 x x


v+= p–=


t


divv v0 x x


divv+ 2p–=

divv 0=

2p 0=
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Form of the perturbation

Take all perturbed quantities to be of the form:

(10)

where  and  are real components of the wave vector. (Note

the use of a 0 superscript to indicate the amplitude, as distinct
from the 0 subscript which characterizes the unperturbed initial
state. 

f r t  f0 z  i kxx kyy t–+ exp=

kx ky
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Perturbation equation for the pressure

Take

(11)

The magnitude of the wave vector  is given by

(12)

p p0 i kxx kyy t–+ exp=

2p
z2

2

d

d
p0 kx

2 ky
2+ p0– i kxx kyy t–+ exp 0= =

k2 kx
2 ky

2+=
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Hence

(13)

We take different parts of this solution on different sides of the
interface. Since the pressure is finite at  then

(14)

We now impose the boundary condition that the perturbed pres-
sures on both sides of the interface are equal so that

 (15)

z2

2

d

d
p0 k2p0+ 0= p0 z  A1ekz A2e kz–+=

z =

p0 A1ekz= z 0

p0 A2e kz–= z 0

A1 A2 A= =
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and

(16)
p0 Aekz= z 0

p0 Ae kz–= z 0
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Perturbation equation for the velocity

Taking,

(17)

vz vz
0 z  i kxx kyy t–+ exp=

x


vz vz
0 z  ik x i kxx kyy t–+ exp=

vz'

x
--------- vz

0 z  ikx  i kxx kyy t–+ exp=

vz'

t
--------- vz

0 z  i–  i kxx kyy t–+ exp=
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We substitute these expressions into the momentum equation to
obtain:

(18)

where the different signs refer to  and  respectively.

This gives us the following solution for :

(19)

0 vz
0 z  kxv0 –   i kxx kyy t–+ exp p'

z
-------–=

Ae kz i kxx kyy t–+ exp=

z 0 z 0

vz
0 z 

vz
0 z  Ae kz

0 kxv0 – 
--------------------------------=
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Displacement of the surface

To proceed further, we need to consider the displacement of the
fluid at the interface. 

Consider the displacement of a fluid element at any position in
the fluid. A given fluid element satisfies:

(20)



Unperturbed position of
interface

Perturbed interface

td
dr

v=
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so that putting

(21)

where  is the variation from the zeroth order flow as a result of
the perturbation, gives

(22)

The differentiation on the left hand side is “following the mo-
tion” so that this perturbation equation is, in fact,

(23)

r r0 r+=

r

td
d

r0 r+  v0 v+=

dr'
dt
------ v=

r'
t

------ v+ r r'
t

------ v0 x x


r+ v= =
Astrophysical Gas Dynamics:  Kelvin-Helholtz Instability 15/59



The component of this set of equation which is of the most use
to us, is the  component. Denoting the  component of  by ,

(24)

As with all other functions, we put,

(25)

z z r 

t


v0 x x


+ vz
Ae kz

0 kxv0 – 
--------------------------------= =

 0 i kxx kyy t–+ exp=

t


i0 i kxx kyy t–+ exp–=

x


ikx
0 i kxx kyy t–+ exp=
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Therefore, the equation for  becomes:

(26)

Now, at , the displacements calculated from either side of
the interface should be identical. Therefore, 

(27)



i0 kxv0 –  i kxx kyy t–+ exp Ae kz

0 kxV0 – 
---------------------------------=

i kxx kyy t–+ exp

0 Ae kz

0 kxv0 – 2
-----------------------------------=

z 0=

1 kxv1 – 2 – 2 kxv2 – 2=

1 kxv1 – 2 2 kxv2 – 2+ 0=
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0

0

0

Expanding out the quadratic terms:

(28)

and the solution of the quadratic equation for  is

(29)

1 2 2kxv1– kx
2v1

2+  2 2 2kxv2– kx
2v2

2+ + =

1 2+ 2 2kx 1v1 2v2+ – kx
2 1v1

2 2v2
2+ + =

1 2+  
kx
----- 
  2

2

kx
----- 
  1v1 2v2+ – 1v1

2 2v2
2+ + =

 kx


kx
-----

1v1 2v2+  i v1 v2–  12 1 2/

1 2+
-----------------------------------------------------------------------------------------=
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This is our main result, the dispersion relationship between fre-
quency and wave number. The important feature of this solution
is that it has both real and imaginary parts:

(30)

The imaginary part corresponds to both exponentially decaying
and growing solutions, since

(31)

R
kx
-------

1v1 2v2+

1 2+
------------------------------=

I
kx
------ v1 v2– 

12 1 2/

1 2+
--------------------------=

i R iIt exp iR Itexpexp=
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An arbitrary set of initial conditions will give both decaying and
growing solutions, so that the above solution enables us to iden-
tify a growth rate,

(32)

where, the density ratio,

(33)

and

(34)

is the component of the wave number in the direction of flow.

g v1 v2– 
12 1 2/

1 2+
--------------------------kx

1 2/

1 +
------------- v1 v2– kx= =


1
2
------=

kx k cos=
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Features

•  Growth depends upon there being a velocity difference.
•  Growth rate proportional to  (component of wave number 

in the direction of flow) so that the smallest waves (largest ) 

grow the fastest.
•  The growth rate reduces to zero for waves perpendicular to 

k kx ky =


x

y

Plan view of interface

kx

kx
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the direction of motion.
•  The growth rate is a maximum for .
•  All perturbations diminish exponentially away from the inter-
face. ( ) This is a characteristic feature 
of surface waves.

•  These features are also characteristic of the KH instability for 
compressible flows (as we show in the next section).

 1=

Perturbation kzexp
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3 Compressible Kelvin-Helmholtz instability

3.1  General comments
When we deal with compressible flow, the main complicating
factor is that we have to deal with are sound waves when we per-
turb the flow. In one sense we can think of the KH instability as
sound waves in an inhomogeneous medium. (Sound waves are
emitted as the surface is disturbed.)

The consideration of the compressible KH instability is similar
to that of the incompressible KH instability with some compli-
cations related to compressibility. The steps in the development
are:

•  Determine the dispersion relations for waves in each medium.
•  Apply boundary conditions at  and at the interface. z =
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This leads to polynomial equations and conditions on the roots 
of these leads to useful information.

3.2  Dispersion relations in each medium
We start with the usual momentum and continuity equations:

(35)

and perturb them according them according to the usual recipe:

(36)

t


xi
 vi + 0=


t

vi vj xj

vi+
xi

p
+ 0=

 0 += vi v0 i= vi+
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These perturbations imply that

(37)

(used in the continuity equation) and

(38)

1 v1

2 v2

p1 p2=
x

y
z

vi 0v0 i 0vi v0 i+ +=

vj xj

vi v0 j vj+ 
xj


vi v0 x


vi= =
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(used in the momentum equation).

Make these substitutions

(39)

'
t

------- 0

vj'

xj
-------- v0 j

'
xj

-------+ + 0=

0 t

vi v0

vi'

x
--------+

p'
xi

-------+ 0=
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In the following, we adopt the pressure as the primary variable
since it is continuous across the interface rather than the density
which may be discontinuous. In doing so we use,

(40)

Hence, the perturbed continuity equation becomes

(41)

t


xi


 
 
 
 
 
 
 

 1

cs
2

-----
t


xi


 
 
 
 
 
 
 

p=

1

c0
2

-----
p'
t

------- v0
p'
x

-------+ 0

vj'

xj
--------+ 0=
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Summary of perturbation equations

Combine  and  in continuity equation and put together with

momentum equation:

(42)

(43)

0 c0
2

p'
t

------- v0
p'
x

-------+ 0c0
2

vj'

xj
--------+ 0=

0 t

vi v0

vi'

x
--------+

p'
xi

-------+ 0=
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Similar to the compressible case, we take perturbations of  and
 proportional to

(44)

where  are real and  and  may be complex. Compare

this with the -dependence for the incompressible Kelvin-Helm-

holtz instability . 

Take

(45)

With these dependencies:

p
vi

i kxx kyy kzz t–+ + exp

kx ky  kz 

z

e kz

p A i kxx kyy kzz t–+ + exp=

vi Ai i kxx kyy kzz t–+ + exp=
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Putting all of this together, using ,

(46)

p'
t

------- v0
p'
x

-------+ i  kxv0– A i kxx kyy kzz t–+ + exp–=

vi'

t
-------- v0

vi'

x
--------+ i–  kxv0– Ai i kxx kyy kzz t–+ + exp=

vj'

xj
-------- ikjAj i kxx kyy kzz t–+ + exp=

c0
2 p0=

i–  kxv0– A p0 ikjAj + 0=

i– 0  kxV0– Ai ikiA+ 0=
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Notation for wave vector

At this point we introduce the following notation for the wave
vector

(47)

where  is the component of the wave vector parallel to the in-

terface. 

k kx ky kz   k|| kz = =

kx k|| cos= ky k|| sin=

k2 k||
2 kz

2+ kiki= =

k||
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With this notation the perturbation equations for continuity and
momentum become:

(48)

k|| kx ky 0  =


x

y

Plan view of interface

kx k|| cos=

ky k|| sin=

i–  k||v0 cos– A p0 ikjAj + 0=

i–  k||v0 cos– 0Ai ikiA+ 0=
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Take the scalar product of the second of the above equations
with . This gives

(49)

Substitute this result back into the first of the perturbation equa-
tions.

(50)

ki

i–  k||v0 cos– 0kiAi ik2A+ 0=

ikiAi ik2A
0  k||v0 cos– 
---------------------------------------------=
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Solving, and dividing out the common factor of 

(51)

Note that we have essentially recovered the dispersion equation
for sound waves!

i–  k||V0 cos– A p0 ikjAj + i–  k||v0 cos– A=

p0
0
--------

ik2A
 k||v0 cos– 

--------------------------------------+

0=

A

 k||v0 cos– 2
p0
0
--------k2 c0

2k2 c0
2 k||

2 kz
2+ = = =
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For the two different sides of the interface,

(52)

Perturbation of the surface

As before consideration of the perturbation of the surface is im-
portant.

The -component of the displacement is the same as for the in-
compressible case and is given by

(53)

 k||v1 cos– 2 c1
2k2=

 k||v2 cos– 2 c2
2k2=

z

t


v0 x


+ vz Az i kxx kyy kzz t–+ + exp= =
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Putting

(54)

gives

(55)

Now we have from the perturbation equations:

(56)

 Bz i kxx kyy kzz t–+ + exp=

i  k||v0 cos– Bz– Az=

Bz
iAz

 k||v0 cos– 
--------------------------------------=

i–  k||v0 cos– 0Ai ikiA+ 0=
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so that

(57)

and therefore, , the coefficient of the  component of displace-

ment is given in terms of , the coefficient of the pressure field,
by

(58)

This is a generic equation which applies to either region. How-
ever, both the displacement, and the pressure are continuous

Az

kzA

0  k||v0 cos– 
---------------------------------------------=

Bz z

A

Bz

ikzA

0  k||v0 cos– 2
------------------------------------------------=
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 at the interface. Therefore  is continuous, i.e.

(59)

 and

(60)

Now return to the dispersion relations which we derived for the
two regions, viz,

Bz A

Bz 1
A1

-----------
Bz 2
A2

-----------=

k1 z

1  k||v1 cos– 2
------------------------------------------------

k2 z

2  k||v2 cos– 2
------------------------------------------------=
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(61)

We make  the subject of these equations,

(62)

 k||v1 cos– 2 c1
2k2 c1

2 k||
2 k1 z

2+ = =

 k||v2 cos– 2 c2
2k2 c2

2 k||
2 k2 z

2+ = =

kz
2

k1 z
2

 k||v1 cos– 2

c1
2

----------------------------------------- k||
2–=

k2 z
2

 k||v2 cos– 2

c2
2

----------------------------------------- k||
2–=
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In the equation derived from the boundary condition, we put

(63)

giving us

(64)

1

1p0

c1
2

-----------= 2

2p0

c2
2

-----------=

k1 z

1  k||v1 cos– 2

c1
2

-----------------------------------------------

-----------------------------------------------
k2 z

2  k||v2 cos– 2

c2
2

-----------------------------------------------

-----------------------------------------------=
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Squaring,

(65)

and substituting for 

(66)

k1 z
2

1
2  k||V1 cos– 4

c1
4

------------------------------------------------

------------------------------------------------
k2 z

2

2
2  k||V2 cos– 4

c2
4

------------------------------------------------

------------------------------------------------=

kz
2

 k||v1 cos– 2

c1
2

----------------------------------------- k||
2–

1
2  k||v1 cos– 4

c1
4

-----------------------------------------------

-----------------------------------------------------

 k||v2 cos– 2

c2
2

----------------------------------------- k||
2–

2
2  k||v2 cos– 4

c2
4

-----------------------------------------------

-----------------------------------------------------=
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This can actually be simplified! We divide the numerators by 

and the denominators by  and put , the phase veloc-

ity of the wave. This gives,

(67)

k||
2

k||
4 vph


k||
-----=

vph v1 cos– 2

c1
2

---------------------------------------- 1–

1
2 vph v1 cos– 4

c1
4

----------------------------------------------

-------------------------------------------------

vph v2 cos– 2

c2
2

---------------------------------------- 1–

2
2 vph v2 cos– 4

c2
4

----------------------------------------------

-------------------------------------------------=
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Furthermore, we can make a Galilean transformation in the  di-
rection in which the velocity, , of the lower stream is zero, i.e.

(68)

and this transforms  to

(69)

Therefore, in the new frame,

(70)

x
V1

x x v1t–=

kxx t–

kx x v1t+  t–  kxx  kx– v1 t– =

  kxv1–=   kxv1+=
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and

(71)

where

(72)

is the difference in velocity between the two streams.

 kxv2 cos–  kx v2 v1–  cos–=

 kxv cos–=

v v2 v1–=
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Hence,

(73)

i.e. 

(74)

where  is the phase velocity in the primed frame, the

one in which the velocity of the lower stream is zero.


k||
----- v1 cos–


k||
-----=


k||
----- v2 cos–


k||
----- v cos–=

vph v1 cos– vph=

vph v2 cos– vph v cos–=

vph

k||
-----=
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The equation for the KH instability becomes:

(75)

Finally, we express all velocities in terms of ratios with respect
to the sound speed in medium 1, i.e.

(76)

vph
2

c1
2

------------- 1–

1
2vph

4

c1
4

-------------------

----------------------

vph v cos– 2

c2
2

------------------------------------------- 1–

2
2 vph v cos– 4

c2
4

-------------------------------------------------

----------------------------------------------------=

x
vph

c1
----------= m

v cos
c1

-------------------=
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and this gives

(77)

This is the basic dispersion relation for the compressible KH in-
stability. It is a sixth order polynomial equation when multiplied
out. 

Condition on the solution

Since we want the solutions to vanish at  then we have
the following important conditions on the solution:

(78)

x2 1–

x4
--------------

1
2

2
2

-----
c2

2

c1
2

-----
x m– 2 c2

2 c1
2–

x m– 4
------------------------------------------=

z =

Re k1 z  0 and Re k2 z  0
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3.3  Physical interpretation of  and 

(79)

x m

v



k||

x

y

x
vph

c1
----------

Phase velocity of perturbation in frame of 

lower stream relative to speed of sound
= =

m
v cos

c1
-------------------

Relative Mach number of 2 streams

in direction of perturbation
= =
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3.4  Special cases

3.4.1 Polytropic indx identical in both streams 

(80)

Take 

(81)

then the dispersion equation becomes

1 2=

a
c2
c1
----- Ratio of sound speeds= =
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(82)

Factoring the second term on the right hand side:

(83)

x2 1–

x4
-------------- a2 x m– 2 a2–

x m– 4
--------------------------------=

1

x2
-----

1

x4
-----–

a2

x m– 2
--------------------–

a4

x m– 4
--------------------+ 0=

1

x2
-----

a2

x m– 2
--------------------–

1

x4
-----

a4

x m– 4
--------------------–– 0=

1

x2
-----

a2

x m– 2
--------------------–

1

x2
-----

a2

x m– 2
--------------------+

1

x2
-----

a2

x m– 2
--------------------–– 0=
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and factorising the equation:

(84)

so that either

(85)

or

(86)

1

x2
-----

a2

x m– 2
--------------------– 1

1

x2
-----–

a2

x m– 2
--------------------– 0=

1

x2
-----

a2

x m– 2
--------------------      (quadratic)=

1

x2
-----

a2

x m– 2
--------------------+ 1      (quartic)=
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Roots of quadratic

(87)

Since

(88)

a2x2 x m– 2 x2 2mx– m2+= =

a2 1– x2 2mx m2–+ 0=

x m
1 a–
------------

m
1 a+
------------=

m
v cos

c1
-------------------= a

c2
c1
-----=
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then

(89)

Both of these roots are real and therefore neither correspond to
an instability.

Roots of quartic

(90)

x


k||c1
-----------

v cos
c2 c1–
-------------------

v cos
c1 c2+
-------------------= =


k||
-----

c1
c1 c2–
-----------------v cos

c1
c1 c2+
-----------------v cos=

1

x2
-----

a2

x m– 2
--------------------+ 1=
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Special case: Equal densities => equal sound speeds

(91)

a
c2
c1
----- 1= =

1

x2
-----

1

x m– 2
--------------------+ 1=

x m– 2 x2+ x2 x m– 2=
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In order to solve this equation, put

(92)

y x
m
2
----–=

y
m
2
----– 

  2
y

m
2
----+ 

  2
+ y

m
2
----+ 

  2
y

m
2
----– 

  2
=

2y2 m2

2
-------+ y2 m2

4
-------– 

  2
=
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making the equation into the following quadratic in :

(93)

y2

2y2 m2

2
-------+ y4 m2y2

2
-------------–

m4

16
-------+=

y4 m2

2
------- 2+ 
  y2–

m4

16
-------

m2

2
-------– 

 + 0=

y2 1
m2

4
-------+ 

  1 m2+ 1 2/=
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Now the roots for  are always positive when

(94)

If  then  is real and so is , so that there is no instability.
Hence, the condition for there to be no instability is:

(95)

y2

1
m2

4
-------+ 

  2
1 m2+

1
m2

2
-------

m4

16
------- 1 m2++ +

m2 8

y2 0 y x

m
v cos

c1
------------------- 8=
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On the other hand, the perturbation is unstable, if

(96)

where  is the relative Mach number of the two

streams.

Note that for any Mach number there is a critical angle for the
wave vector for which instability occurs given by:

(97)

Perturbations with  are unstable.

Mrel cos 8

Mrel
v
c1
------=

critcos
8

Mrel
----------=

 crit
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As the Mach number increases, the unstable waves become clos-
er to being perpendicular to the direction of the relative velocity.

v

crit

Unstable

Stable

k||

x

y
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