_ 1 _
Solutions Astrophysical Gas Dynamics Assignment 6

37. Jet-driven bubble.

1. Jet-driven bubble.
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Fig. 1.— Schematic of a jet-inflated bubble.

(a) The equation for the total energy within a moving surface is

9 1 9\ 3 / 1oy, / L2 wn ds —
6t/v<e+2pv>dx—|— Sp<h+2v ving dS g 6+2pv u;n; dS =0

We apply this equation to the volume enclosed by the surfaces Sy and S;. The surface Sy
is stationary so that u; = 0 on that surface. The surface S; moves outward at the velocity
dR/dt The velocity of gas at the surface is also dR/dt. Hence the above equation becomes
(taking account of the direction of the normal on Sp):

aat/v (e + ;pv2> d3x—/so p <h + ;vz> vmidS—F/Sl Kph + ;,01)2) — <€ + ;pvz)] u;n;dS =0

Since ph — e = p and the integral over Sy is the energy flux through Sy then
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The energy flux of the jet through the surface Sy is given by

1
g = / p <h—|— U2) v;n; dS
So 2

assuming non-relativistic flow when the disrupted jet material flows through Sj.
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(b) We assume that the total energy density within the bubble is dominated by the internal

energy density € = 3p and that S is approximately spherical, with radius R. Then, the
energy within the bubble
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We have a shock outside the bubble, propagating into the external medium with velocity
Ush. Assuming that the shock is strong, the post-shock velocity, vps, is:

3
Ups = szh
:>dR 3
ek _ 2
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The pressure of the shocked, v = 5/3 external medium is

3, 4 dR\?
Psh = 4pextvsh 3Pext dt

The interface between the shocked interstellar gas and the bubble of relativistic gas is a
contact discontinuity, so that the pressure is continuous across this interface. Hence the
equations describing the evolution of the bubble are:

dp dR Fg
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b = pext dt

We assume power-law expressions for the radius and pressure:

dR
R = it = 7dt = Oélaltal_l
dpR?
p = agt™ = P _ (Ba1 + ag)ay ag’ 3entaz—l

dt
Substituting in to the two equations for p and R:
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Equating powers of t:

Jaj+az—1 = 0

a9 = 2(11—2

Solution of these equations gives
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The coefficients of the powers of ¢ give:

F
(a1 + a2) (af az) + a1 (af az) = (dox + a2) (a} az) = ﬁ
az = gpcxt O‘% a%
The solution to these equations is:
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(e) With Fg =103 W, n=10*m~3 and ¢t = 10 yr, R ~ 2.6 kpc

38. Magnetic field in a neutron star.

(a) Suppose that the geometrical configuration of the magnetic field does not change signifi-
cantly during the course of the collapse of the star and consider the flux of magnetic field
through an element of its surface. Let By be the magnetic flux density at time ¢ = 0 and let
the area of the element of surface be dSy. The flux through this element is B;,0dSy. When
the star has collapsed, use subscripts 1 to refer to the same quantities. The flux though the
elementary surface which has contracted to dS7 is now B,1dS1. The areas of the elements
of surface scale with the Radius? os the star and since the flux through these elements is

conserved, then
dSo R2
Bno dSO = Bm dSl = Bu1 = Bno dis,l = Bno Rig
where R is the radius. Since we are assuming that the magnetic field retains the same
geometrical configuration, then B,, «c B and the stellar magnetic field is given by:

R2
By = By —3
Ry
at each point of the star’s surface.

(b) For the numerical values in the question:

10 x 6.96 x 1010
105

2
Bys =1 x ( ) Gauss = 4.8 x 10" Gauss



39. Magnetic field in a jet.
Consider an elementary section of jet defined by the (7, ¢, z) coordinate lines as shown in figure 2.

The fluxes through the r, ¢ and z coordinate faces are given by

o, = B,ripdz
&, = Byoroz
b, = B,rdé¢dr

These fluxes are conserved as the gas is advected along the jet. We therefore have to determine
how the various sides of the elementary volume change. We assume that the expansion of the
jet is homologous so that the radius of the element r < R(z) where R(z) is the jet radius at z.
The ¢ coordinate of the edges of the section do not change so that d¢ does not change as the
element moves along the jet.

(a) Consider the equation for streamline separation:

dt

= v;,j0;

A

Fig. 2.— Elementary section of a jet.



which is, in dyadic form:

0
a&x—kv-V&x—&x-Vv

If we consider a streamline displacement with r, ¢ and z components, then
6x = 6r# + (rép) ¢ + 622

The full expression for A - VB is give in the Wikipedia page:
https://en.wikipedia.org/wiki/Del_in_cylindrical and_spherical coordinates.

Taking v = v, ¥ + v.Z, (i.e. vg = 0; non-rotating jet) we obtain, in cylindrical coordinates:

D, O o
a’ T e T, T o

A(rio) A(rog) A(rog) B
ot +r or + 0z = o9
0= 00 o o
ot Ur or vz 0z “ 0z

We first consider the implications of these equations for the relative separation of two
points separated by dx = (0,0,dz). The first and second separation equations show that
for 0r = d¢ = 0, initially, or and d¢ remain zero.

For a steady jet, (0/0t = 0), and neglecting v, in comparison with v, then

v % = 0z Ov,

20z 0z

105 _ low,

0z 0z v, 0z
= 0z = Constant X v,

This implies that when the jet accelerates, the separation between points increases, and
when it decelerates, the separation decreases.

We now consider the evolution of points separated in radial coordinate by dr. We are
assuming that the jet expands homologously so that for a point initially at r = rg, 2 = 2z
its radial coordinate at z is given by:

T - Tig r = To 5
RE)  R) " Rz 1)

and the evolution of the separation between points which are initially at the same height
and separated by drg is given by

or = drg

i.e the separation in creases by the factor R(z)/R(zp). This can also be shown to be
consistent with the streamline separation for dr.

Finally, consider the equation for the separation when dr = dz = 0 and d¢ # 0. When the
flow is steady, the equation for §¢ can be written

L 060) | 060) _ dbs _

"o =9z dt 0.

Hence the angular separation does not change in this case.
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(b) Returning now to the expressions for the fluxes, we have:

O, x By R(z)v,(2)
O, o< ByR(2)v.(2)
®, x B.R?(2)

All of these fluxes are conserved, so that, putting v,(z) = V(z):

B, (2)R(2)V(z) = By(20)R(20)V(20) = Br(Z)ZBr(ZO)W
BoIROV(E) = BoladRGalV () = Bals) = Bolea) o oy
2(
B.(2)R%(2) = B.(20)R*(20) = BZ(Z)ZBZ(ZO)IZQ((;))
41. Mass, momentum and enerqy fluz.
We have:
M = 2 v = 20,000kms ! =2x10°cms!
p = 107" dynesem™2 B2?/87 = 10~!! dynescm—2

Sound speed: M =v/cs =2 = cs = v/M = 10° cm s~ L.

kT 2
= s T =M — g4 10K
um vk

p=nkT =n= % —1.62 x 107 cm ™3

a) Jet temperature:
(a) D

(b) Number density:

Also, for future reference:

p=pmn=167x10"2" gmem™3

(c) Mass flux:

M = pv X Ajes
where Aje; = Jet cross-sectional area = ﬂRjzet ~ 3.00 x 103? ¢cm? for Rt = 10 pc. Hence
M =1.6x10"% M, yr!
(d) Momentum flux:

Momentum flux density = (pvjv; + pdij — Myj) nj
BiBjnj B2

— VT M — N
PUV; ]+p 7 A ] 7
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Let nj and v; be in the z-direction: n; = (0,0,1), then B, = 0 since the magnetic field is
perpendicular to to the jet, and

2

B
Momentum flux = (pv? + p + g) X Ajet

Inserting the above numerical values gives Momentum flux density = 8.68x10~ ! dynescm =2
and the momentum flux (the force exerted by the jet) is 2.6 x 10%° dynes.

Energy flux:

1 B?
Frp = ipv + ph U—I—EUL X Ajet

Since the magnetic field is perpendicular to the velocity, v; = v. Inserting numerical values
gives
Fp=4.7x10% ergs s71



