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Solutions Astrophysical Gas Dynamics Assignment 6

37. Jet-driven bubble.

1. Jet-driven bubble.
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Fig. 1.— Schematic of a jet-inflated bubble.

(a) The equation for the total energy within a moving surface is

∂

∂t

∫
V
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ρv2
)
d3x+

∫
S
ρ
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)
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∫
S
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ρv2
)
uini dS = 0

We apply this equation to the volume enclosed by the surfaces S0 and S1. The surface S0
is stationary so that ui = 0 on that surface. The surface S1 moves outward at the velocity

dR/dt The velocity of gas at the surface is also dR/dt. Hence the above equation becomes

(taking account of the direction of the normal on S0):
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∫
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Since ρh− ε = p and the integral over S0 is the energy flux through S0 then

∂

∂t

∫
V

(
ε+

1

2
ρv2
)
d3x+

∫
S1

puini dS = FE

The energy flux of the jet through the surface S0 is given by

FE =

∫
S0

ρ

(
h+

1

2
v2
)
vini dS

assuming non-relativistic flow when the disrupted jet material flows through S0.
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(b) We assume that the total energy density within the bubble is dominated by the internal

energy density ε = 3p and that S1 is approximately spherical, with radius R. Then, the

energy within the bubble∫
V

(
ε+

1

2
ρv2
)
d3x ≈ 3p× 4π

3
R3 = 4πpR3

and ∫
S1

puini dS ≈ p×
dR

dt
× 4πR2 = 4πpR2dR

dt

so that

d

dt

[
4πpR3

]
+ 4πpR2dR

dt
= FE

⇒ d

dt
(pR3) + pR2dR

dt
=

FE
4π

⇒ R3dp

dt
+ 4pR2dR

dt
=

FE
4π

(c) We have a shock outside the bubble, propagating into the external medium with velocity

vsh. Assuming that the shock is strong, the post-shock velocity, vps, is:

vps =
3

4
vsh

⇒ dR

dt
=

3

4
vsh

⇒ vsh =
4

3

dR

dt

The pressure of the shocked, γ = 5/3 external medium is

psh =
3

4
ρextv

2
sh =

4

3
ρext

(
dR

dt

)2

(d) The interface between the shocked interstellar gas and the bubble of relativistic gas is a

contact discontinuity, so that the pressure is continuous across this interface. Hence the

equations describing the evolution of the bubble are:

⇒ R3dp

dt
+ 4pR2dR

dt
=

FE
4π

p =
4

3
ρext

(
dR

dt

)2

We assume power-law expressions for the radius and pressure:

R = a1t
α1 ⇒ dR

dt
= α1a1t

α1−1

p = a2t
α2 ⇒ dpR3

dt
= (3α1 + α2)a1 a

3
2 t

3α1+α2−1

Substituting in to the two equations for p and R:

(3α1 + α2)a1 a
3
2 t

3α1+α2−1 + α1 a
3
1 a2 t

3α1+α2−1 = FE

a2 t
α2 =

4

3
ρexta

2
1 α

2
1t

2α1−2
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Equating powers of t:

3α1 + α2 − 1 = 0

α2 = 2α1 − 2

Solution of these equations gives

α1 =
3

5
α2 = −4

5

The coefficients of the powers of t give:

(3α1 + α2) (a31 a2) + α1 (a31 a2) = (4α1 + α2) (a31 a2) =
FE
4π

a2 =
4

3
ρext α

2
1 a

2
1

The solution to these equations is:

a1 =

[
53

3× 27π

FE
ρext

]1/5
a2 − 12

25
ρext a

2
1 =

12

25
ρext

[
53

3× 27π

FE
ρext

]2/5
(e) With FE = 1037 W, n = 104 m−3 and t = 106 yr, R ≈ 2.6 kpc

38. Magnetic field in a neutron star.

(a) Suppose that the geometrical configuration of the magnetic field does not change signifi-

cantly during the course of the collapse of the star and consider the flux of magnetic field

through an element of its surface. Let B0 be the magnetic flux density at time t = 0 and let

the area of the element of surface be dS0. The flux through this element is Bn0dS0. When

the star has collapsed, use subscripts 1 to refer to the same quantities. The flux though the

elementary surface which has contracted to dS1 is now Bn1dS1. The areas of the elements

of surface scale with the Radius2 os the star and since the flux through these elements is

conserved, then

Bn0 dS0 = Bn1 dS1 ⇒ Bn1 = Bn0
dS0
dS1

= Bn0
R2

0

R2
1

where R is the radius. Since we are assuming that the magnetic field retains the same

geometrical configuration, then Bn ∝ B and the stellar magnetic field is given by:

B1 = B0
R2

0

R2
1

at each point of the star’s surface.

(b) For the numerical values in the question:

BNS = 1×
(

10× 6.96× 1010

105

)2

Gauss = 4.8× 1011 Gauss
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39. Magnetic field in a jet.

Consider an elementary section of jet defined by the (r, φ, z) coordinate lines as shown in figure 2.

The fluxes through the r, φ and z coordinate faces are given by

Φr = Br rδφ δz

Φφ = Bφ δr δz

Φz = Bz rδφδr

These fluxes are conserved as the gas is advected along the jet. We therefore have to determine

how the various sides of the elementary volume change. We assume that the expansion of the

jet is homologous so that the radius of the element r ∝ R(z) where R(z) is the jet radius at z.

The φ coordinate of the edges of the section do not change so that δφ does not change as the

element moves along the jet.

(a) Consider the equation for streamline separation:

d(δxi)

dt
= vi,jδxj

r 

r 
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Fig. 2.— Elementary section of a jet.
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which is, in dyadic form:
∂

∂t
δx + v · ∇δx = δx · ∇v

If we consider a streamline displacement with r, φ and z components, then

δx = δr r̂ + (rδφ) φ̂+ δz ẑ

The full expression for A · ∇B is give in the Wikipedia page:

https://en.wikipedia.org/wiki/Del in cylindrical and spherical coordinates.

Taking v = vr r̂ + vzẑ, (i.e. vφ = 0; non-rotating jet) we obtain, in cylindrical coordinates:

∂

∂t
δr + vr

∂δr

∂r
+ vz

∂δr

∂z
= δr

∂vr
∂r

∂(rδφ)

∂t
+ vr

∂(rδφ)

∂r
+ vz

∂(rδφ)

∂z
= vr δφ

∂δz

∂t
+ vr

∂δz

∂r
+ vz

∂δz

∂z
= δz

∂vz
∂z

We first consider the implications of these equations for the relative separation of two

points separated by δx = (0, 0, δz). The first and second separation equations show that

for δr = δφ = 0, initially, δr and δφ remain zero.

For a steady jet, (∂/∂t = 0), and neglecting vr in comparison with vz, then

vz
∂δz

∂z
= δz

∂vz
∂z

⇒ 1

δz

∂δz

∂z
=

1

vz

∂vz
∂z

⇒ δz = Constant× vz

This implies that when the jet accelerates, the separation between points increases, and

when it decelerates, the separation decreases.

We now consider the evolution of points separated in radial coordinate by δr. We are

assuming that the jet expands homologously so that for a point initially at r = r0, z = z0
its radial coordinate at z is given by:

r

R(z)
=

r0
R(z0)

⇒ r =
r0

R(z0)
R(z)

and the evolution of the separation between points which are initially at the same height

and separated by δr0 is given by

δr = δr0
R(z)

R(z0)

i.e the separation in creases by the factor R(z)/R(z0). This can also be shown to be

consistent with the streamline separation for δr.

Finally, consider the equation for the separation when δr = δz = 0 and δφ 6= 0. When the

flow is steady, the equation for δφ can be written

rvr
∂(δφ)

∂r
+ vz r

∂(δφ)

∂z
= r

dδφ

dt
= 0.

Hence the angular separation does not change in this case.



– 6 –

(b) Returning now to the expressions for the fluxes, we have:

Φr ∝ BrR(z)vz(z)

Φφ ∝ BφR(z)vz(z)

Φz ∝ BzR2(z)

All of these fluxes are conserved, so that, putting vz(z) = V (z):

Br(z)R(z)V (z) = Br(z0)R(z0)V (z0) ⇒ Br(z) = Br(z0)
R(z0)V (z0)

R(z)V (z)

Bφ(z)R(z)V (z) = Bφ(z0)R(z0)V (z0) ⇒ Bφ(z) = Bφ(z0)
R(z0)V (z0)

R(z)V (z)

Bz(z)R
2(z) = Bz(z0)R

2(z0) ⇒ Bz(z) = Bz(z0)
R2(z0)

R2(z)

41. Mass, momentum and energy flux.

We have:

M = 2 v = 20, 000 km s−1 = 2× 109 cm s−1

p = 10−11 dynes cm−2 B2/8π = 10−11 dynes cm−2

Sound speed: M = v/cs = 2⇒ cs = v/M = 109 cm s−1.

(a) Jet temperature:

cs =

√
γkT

µm
⇒ T =

µmc2s
γk

= 4.47× 109 K

(b) Number density:

p = nkT ⇒ n =
p

kT
= 1.62× 10−5 cm−3

Also, for future reference:

ρ = µmn = 1.67× 10−29 gm cm−3

(c) Mass flux:

Ṁ = ρv ×Ajet

where Ajet = Jet cross-sectional area = πR2
jet ≈ 3.00× 1039 cm2 for Rjet = 10 pc. Hence

Ṁ = 1.6× 10−6 M� yr−1

(d) Momentum flux:

Momentum flux density = (ρvivj + pδij −Mij)nj

= ρvivjnj + pni −
BiBjnj

4π
+
B2

8π
ni
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Let nj and vj be in the z-direction: ni = (0, 0, 1), then Bz = 0 since the magnetic field is

perpendicular to to the jet, and

Momentum flux = (ρv2 + p+
B2

8π
)×Ajet

Inserting the above numerical values gives Momentum flux density = 8.68×10−11dynescm−2

and the momentum flux (the force exerted by the jet) is 2.6× 1029 dynes.

(e) Energy flux:

FE =

[(
1

2
ρv2 + ρh

)
v +

B2

4π
v⊥

]
×Ajet

Since the magnetic field is perpendicular to the velocity, v⊥ = v. Inserting numerical values

gives

FE = 4.7× 1038 ergs s−1


