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Solutions to Astrophysical Gas Dynamics Assignment 5

23. Bernoulli’s equation.

(i) Start with the momentum equations in the form:
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Divide by the density and take the scalar product with v;:
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Now take the scalar product of this equation with v; using:
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Also use the entropy equation:
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(ii) Substituting in the above equation:
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Now if the flow is stationary (time-independent), then ds/0t = 0h/0t = 0¢/0t = 0 and
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When the flow is adiabatic, ds/dt = 0, and we obtain

d [v?
dt<2+h+¢> =0
2

= % +h+¢ = Streamline constant

24. Stagnation pressure of a cloud shock.

(a) Let p1,p1,v1 be the density, pressure and velocity of the cloud in the ambient medium and
let pa, p2, Vo be the post-shock pressure. We analyse the physics in the frame of the cloud
and shock. The stagnation pressure is determined from Bernoulli’s equation. Assuming
adiabatic post-shock flow:
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At the stagnation point, v = 0 and we obtain for the stagnation specific enthalpy hg:
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where My is the post-shock Mach number.

(b) The relationships between the post-shock and pre-shock Mach numbers My and M, and
the relationship between the post-shock pressure ps and pre-shock Mach number are:
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My is the Mach number of the cloud in the interstellar medium.

Therefore, for a strong shock (M7 — 00):
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Substituting in to the above equation for hg:
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(c) Since, in the post-shock region,
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and K (s) is constant, then
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Therefore

The post-shock pressure for a strong shock (M; — o0) is p2 = 2/(7+1)p1v? and the square
bracket terms has been evaluated above. Hence,
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32. Interacting winds in planetary nebulae.

(a) Following the derivation of the shell mass given in lectures, we integrate throughout a
volume whose inner and outer surfaces are just inside and just outside the shell. This gives:
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where subscripts RG, b and s refer to the red giant wind, the bubble and the shell respec-
tively. Since vy, = vg, then the inner surface does not contribute to this integral and the
only term that does contribute is the integral over the outer surface:
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Furthermore, the density of the red giant wind is given by
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When the shell velocity is much greater than the velocity of the red giant wind,
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(b) The other equations for momentum and energy are as derived in lectures, viz,
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We look for power-law solutions of the form:
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Substitution in the differential equations gives
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giving the solutions:
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(c) For the typical parameters M, = 107Mg yr=t, vy, = 2000 km s, Mgg = 107° Mg yr—1,
vrg = 10kms™!, L, = 1.3 x 29 W and A = 6.3 x 1013kg m~'. Hence, the radius of the
planetary nebula is 0.11¢spc where t3 is the time since the onset of the fast wind in units
of a thousand years.



