
– 1 –

Solutions to Astrophysical Gas Dynamics Assignment 5

23. Bernoulli’s equation.

(i) Start with the momentum equations in the form:

ρ
∂vi
∂t

+ ρvj
∂vj
∂xj

=
∂p

∂xi
− ρ ∂φ

∂xi

Divide by the density and take the scalar product with vi:

vi
∂vi
∂t

+ vjvi
∂vj
∂xj

=
1

ρ
vi
∂p

∂xi
− vi

∂φ

∂xi

Now take the scalar product of this equation with vi using:

vi
∂vi
∂t

=
∂

∂t

(
v2

2

)
vivj

∂vi
∂xj

= vj
∂

∂xj

(
v2

2

)
Also use the entropy equation:

kTds = dh− dp

ρ

⇒ kTvi
∂s

∂xi
= vi

∂h

∂xi
− 1

ρ

∂p

∂xi

(ii) Substituting in the above equation:

d

dt

(
v2

2

)
=

∂

∂t

(
v2

2

)
+ vj

∂

∂xj

(
v2

2

)
= kTvi

∂s

∂xi
− vi

∂h

∂xi
− vi

∂φ

∂xi

Now if the flow is stationary (time-independent), then ∂s/∂t = ∂h/∂t = ∂φ/∂t = 0 and

d

dt

(
v2

2

)
= kT

ds

dt
− dh

dt
+
dφ

dt

When the flow is adiabatic, ds/dt = 0, and we obtain

d

dt

(
v2

2
+ h+ φ

)
= 0

⇒ v2

2
+ h+ φ = Streamline constant

24. Stagnation pressure of a cloud shock.

(a) Let ρ1, p1, v1 be the density, pressure and velocity of the cloud in the ambient medium and

let ρ2, p2, v2 be the post-shock pressure. We analyse the physics in the frame of the cloud

and shock. The stagnation pressure is determined from Bernoulli’s equation. Assuming

adiabatic post-shock flow:

1

2
v2 + h = Streamline Constant =

1

2
v22 + h2
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where the specific enthalpy

h =
γ

γ − 1

p

ρ
.

At the stagnation point, v = 0 and we obtain for the stagnation specific enthalpy hs:

hs =
v22
2

+ h2

⇒ hs
h2

= 1 +
1

2

v22
h2

= 1 +
γ − 1

2
M2

2

where M2 is the post-shock Mach number.

(b) The relationships between the post-shock and pre-shock Mach numbers M2 and M1, and

the relationship between the post-shock pressure p2 and pre-shock Mach number are:

M2
2 =

2 + (γ − 1)M2
1

2γM2
1 − (γ − 1)

p2
p1

=
2γM2

1

γ + 1
− γ − 1

γ + 1

M1 is the Mach number of the cloud in the interstellar medium.

Therefore, for a strong shock (M1 →∞):

M2
2 =

γ − 1

2γ

Substituting in to the above equation for hs:

hs
h2

= 1 +
γ − 1

2
× γ − 1

2γ
=

(γ + 1)2

4γ

(c) Since, in the post-shock region,

h =
γ

γ − 1

p

ρ
=

γ

γ − 1
K(s)ργ−1
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and K(s) is constant, then

hs
h2

=

(
ρs
ρ2

)γ−1

=

(
ps
p2

)(γ−1)/γ

Therefore

ps = p2

[
1 +

γ − 1

2
M2

2

]γ/(γ−1)

The post-shock pressure for a strong shock (M1 →∞) is p2 = 2/(γ+1)ρ1v
2
1 and the square

bracket terms has been evaluated above. Hence,

ps =
2

γ + 1
ρ1v

2
1

[
(γ + 1)2

4γ

]γ/(γ−1)

(d) For γ = 5/3

ps
.
= 0.88ρ1v

2
1

32. Interacting winds in planetary nebulae.

(a) Following the derivation of the shell mass given in lectures, we integrate throughout a

volume whose inner and outer surfaces are just inside and just outside the shell. This gives:

d

dt

∫
s
ρd3x+

∫
Outer surface

(ρRGvRG − ρRGvs) dS −
∫

Inner surface
(ρbvb − ρbvs) dS

where subscripts RG, b and s refer to the red giant wind, the bubble and the shell respec-

tively. Since vb = vsh then the inner surface does not contribute to this integral and the

only term that does contribute is the integral over the outer surface:∫
Outer surface

(ρRGvRG − ρRGvs) dS = −4πR2
sρRG(vs − vRG)

Furthermore, the density of the red giant wind is given by

ρRG =
ṀRG

4πR2
s

and therefore
dMs

dt
=
ṀRG

vRG
(vs − vRG)

When the shell velocity is much greater than the velocity of the red giant wind,

dMs

dt
=

Ṁ

vRG
vs =

Ṁ

vRG

dRs
dt

⇒Ms = ARs

where A = ṀRG/vRG
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(b) The other equations for momentum and energy are as derived in lectures, viz,

d

dt

(
Ms

dRs
dt

)
= 4πpbR

2
s

d

dt

(
pbR

3
s

)
=

Lw
2π
− 2pbR

2
s

dRs
dt

We look for power-law solutions of the form:

Rs = a1t
α1 pb = a2t

α2

Substitution in the differential equations gives

α2 = −2

a2 = α1(2α1 − 1)
A

4π
3α1 + α2 − 1 = 0

(3α1 + α2 + 2)a31a2 =
Lw
2π

giving the solutions:

α1 = 1 α = −2 a1 =

(
2Lw
3A

)1/3

a2 =
A

4π

(c) For the typical parameters Ṁw = 10−6M� yr−1, vw = 2000 km s−1, ṀRG = 10−5M� yr−1,

vRG = 10 km s−1, Lw = 1.3 × 29 W and A = 6.3 × 1013kg m−1. Hence, the radius of the

planetary nebula is 0.11t3pc where t3 is the time since the onset of the fast wind in units

of a thousand years.


