

VLA, Very Large Array New Mexico

GBT

Green Bank West Virginia

... the newest... ... and *last* (*perhaps*)... ... big dish

Unblocked Aperture

LOFAR "elements"

Dipole + ground plane: a model

<u>4x4 array</u> of dipoles on ground plane

- the 'LFD' element

(many analogies to gratings for optical wavelengths)

'sin projection'

 $P(\theta) \sim sin^2 [2\pi h \cos(\theta)/\lambda]$

(maximize response at $\theta=0$ if $h=\lambda/4$)

Atacama L Millimeter Array

Westerbork Telescope Netherlands

VLBA

Very Long Baseline Array

for: Very Long Baseline Interferometry

EVN: European VLBI Network (more and bigger dishes than VLBA)

ESO Paranal, Chile

Observational Techniques: Radio Astronomy Techniques

- Kraus, J. D. 1986, Radio Astronomy (QB476.5.K725 1986).
- Rohlfs, K. 1986, Tools of Radio Astronomy (QB475.R63 1986).
- *** Thompson, A. R., Moran, J. M., & Swenson, G. W.
 1986 Interferometry and Synthesis in Radio Astronomy (QB479.3.T47 1986). *(biblical status in field)*
 - Brouw, W. N. 1975, Methods in Computational Physics, Vol. 14, 131 (QB475.M47 1975).
 - Ball, J. A. 1975, Methods in Computational Physics, Vol. 14, 177 (QB475.M47 1975).
 - Christiansen, W. N., & Högborn, J. A. 1985, Radio Telescopes (QB479.2.C5 1985).
 - Kitchin, C. R. 1984, Astrophysical Techniques (QB461.K57 1984).

More references:

• Synthesis Imaging in Radio Astronomy, 1998, ASP Conf. Series, Vol 180, eds. Taylor, Carilli & Perley

• Single-Dish Radio Astronomy, 2002, ASP Conf. Series, Vol 278, eds. Stanimirovic, Altschuler, Goldsmith & Salter

• AIPS Cookbook, http://www.aoc.nrao.edu/aips/

Radio "Sources"

Thermal Non-Thermal

1) Thermal

emission mechanism related to Planck BB... electrons have ~Maxwellian distribution

2) Non-Thermal

emission typically from relativistic electrons in magnetic field... electrons have ~power law energy distribution

Distinctive Radio Spectra !

Radio map of cold hydrogen gas

Basic Definitions

Solid angle of a cone is:

$$\Omega = \frac{A}{r^2}$$

- $-\Omega$ measured in units of steradians.
- 4π sterad \equiv whole sky.
- Basic parameter for specifying radiation energy is $I_{\nu} \equiv$ "brightness" or "specific intensity":
 - I_{ν} is energy per unit time per unit area per unit frequency per unit solid angle.
 - I_{ν} is measured in units of W m⁻² Hz⁻¹ sterad⁻¹.
 - 1 Watt \equiv 1 Joule s⁻¹ \equiv 10⁷ erg s⁻¹.
- Flux density S_{ν} of a source of extent $\Delta \Omega$ and brightness distribution I_{ν} is:

$$S_{\nu} = \int_{\Delta\Omega} I_{\nu} d\Omega$$

- $S_{\nu} = \int_{\Delta\Omega} I_{\nu} d\Omega$ S_{ν} is measured in units of 1 Jansky = 10^{-26} W m⁻² Hz⁻¹.
- S_{ν} is often erroneously called *flux*.

Basic Definition (cont'd)

• Define total brightness I to be the integral of I_{ν} over some frequency range $\Delta \nu$:

$$I = \int_{\Delta\nu} I_{\nu} d\nu$$

• The flux F in a given direction is the net radiant energy in the frequency range $\Delta \nu$ crossing unit area normal to that direction per unit time:

$$F = \int_{\Delta\Omega} I \cos \theta d\Omega$$

- F is measured in units of W m⁻².
- The luminosity L of a source is the total radiant energy emitted per unit time:

$$L = \int_{A} F dA = \int_{A} \int_{\Delta\Omega} I \cos \theta d\Omega dA = A \int_{\Delta\Omega} I \cos \theta d\Omega$$

- L is measured in units of Watts.
- The radio power W received over bandwidth $\Delta \nu$ from solid angle $\Delta \Omega$ is:

$$W = A \int_{\Delta\nu} \int_{\Delta\Omega} I_{\nu} \cos \theta d\Omega d\nu \equiv L$$

- W, like L, is measured in units of Watts.

Basic Definitions (cont'd)

- $\kappa_{\nu} = \text{absorption coefficient} \equiv \text{opacity.}$
- $\epsilon_{\nu} = \text{emission coefficient} \equiv \text{emissivity}.$
- Then equation of radiative transfer through a slab of thickness ds is:

$$\frac{dI_{\nu}}{ds} = -\kappa_{\nu}I_{\nu} + \epsilon_{\nu}$$

• Define the optical depth $d\tau_{\nu}$ by:

$$d\tau_{\nu} = -\kappa_{\nu}ds$$

• Then for an isothermal gas in thermodynamic equilibrium at temperature T:

$$I_{\nu}(s) = I_{\nu}(0)e^{-\tau\nu(0)} + B_{\nu}(T)(1 - e^{-\tau\nu(0)})$$

B_ν(T) is the Planck function.

$$B_{\nu}(T) = \frac{2h\nu^{3}/c^{2}}{e^{h\nu/kT} - 1}$$

 <u>Rayleigh-Jeans approximation applies at radio frequencies</u> (hν << kT):

$$B_{\nu}(T) \sim \frac{2\nu^2 kT}{c^2} = \frac{2kT}{\lambda^2}$$

• For $\tau_{\nu}(0) \to \infty$, $I_{\nu}(s) \to B_{\nu}(T)$.

Basic Definitions (cont'd)

- Brightness temperature T_B is used to measured radio power:
 - T_B is the temperature of an optically-thick blackbody filling the telescope beam and producing the same radio power.
 - From the Rayleigh-Jeans approximation:

$$T_B = \frac{\lambda^2}{2k} I_{\rm v}$$
 where $I_{\rm v} \sim {\rm S_v}/\Omega$

- $T_B < T_{source}$ if $\tau_{\nu} < 1$ when $\Omega_{source} > \Omega_{beam}$.

-
$$T_A < T_B$$
 when $\Omega_{source} < \Omega_{beam}$

Spectral index (α) is another measure of radio spectrum shape:
 With S_ν ∝ ν^{-α},

$$\alpha = -\frac{\log(S_1/S_2)}{\log(\nu_1/\nu_2)}$$

can assign "brightness temperature" to objects where "Temp" really has no meaning...

Brightest Sources in Sky

Goals of telescope:

• maximize collection of energy (sensitivity or gain)

isolate source emission
from other sources...
(directional gain... dynamic range)

Collecting area

Radio telescopes are *Diffraction Limited*

Celestial Radio Waves?

Radio sky in 408 MHz continuum (Haslam et al)

Difference between pointing at Galactic Center and Galactic South Pole at the LFD in Western Australia

(antennas are "reciprocal" devices... can receive or broadcast)

... wait a while... reach equilibrium... at T

warm resistor delivers power P = kT B(B = frequency bandwidth; k = Boltzmann Const) real definition...

Measure Antenna output Power as "T_a" = **antenna temperature**

warm resistor produces $P = kT B = P_a = kT_a B$

Collecting area

(!! No dependence on telescope if emission fills beam !!)

receiver "temperature"...

quantify Receiver internal noise Power as "Tr"
= "receiver temperature"

"*system temperature*"...

quantify total receiver System noise power as " T_{sys} " [include spillover, scattering, etc]

RMS fluctuations = ΔT

$$\Delta T = (fac)T_{sys}/(B t_{int})^{1/2}$$

Fac ~
$$1 - 2$$

B = Bandwidth, Hz
t_{int} = integration time, seconds

(To reach $N_{HI} = 1 \times 10^{17}$ cm⁻² need 10,000 times longer ~ 3 hours)

 $\begin{array}{ll} \underline{\text{ATCA (B=128 MHz)}:} & 1 \text{ mJy} = 5 \text{ rms means } \Delta S = 0.2 \text{ mJy} \\ rms = \Delta S = (\text{fac})(T_{\text{sys}}/K_{\text{a}})/(B t_{\text{int}})^{1/2} \\ &= (1.4)(30/0.6)/(B t_{\text{int}})^{1/2} \\ t_{\text{int}} = (70/0.0002)^2/(128 \times 10^6) \\ &\sim \underline{16 \text{ min}} \end{array}$