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Validity of the Fluid/Hydro 

Approach 

»mfp

L

frequent collisions between particles -> isotropic 

temperature, pressure in a fluid region
< < 1

> 1 Weakly collisional / collision-less gas



Solar Wind

L > 1 au »mfp > 1 au



Galactic center

Galactic center (Chandra image)

L > 0.1 pc

»mfp > 0.1 pc



 Hot gas in clusters emitting X-rays detected by Chandra (pink), optical image 

from Hubble and inferred dark matter distribution (blue)

Intracluster Medium

L > 50 2 100 kpc

»mfp > 10 kpc



Beyond the fluid approach

• In weakly-collisional plasma like ICM,   fluid approximation 

breaks down  kinetic / particle-in-cell (PIC) methods 

• Model charged particles using distribution functions and study their 

evolution using the Vlasov equation 

  ;  and  for 

collision-less plasma  

• Charged particles are accelerated by the Lorenz force    

    ;  are charge and mass of ion-species  ,  and  

electric and magnetic field

L > »mfp ³
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Innocenti et al. 2017

Typical length 

and time scales 

in the earth’s 

environment 

Explicit 

Particle-in-cell

Hybrid kinetic 

approach

Fluid approach
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Hybrid kinetic approach
• Ions (protons) are treated as particles and electrons are treated 

as a fluid  Hybrid kinetics  

• Protons (  )   

• Electrons  hydro approach  continuity, momentum, energy 

equations 
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Ohm’s Law

We can re-write the electron momentum equation by using 

 or  

 

 (electron kinematic physics excluded)

J = JI + Je = Ã(uI + ue) ue =
J
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• Again, closure!  

 (isothermal) or  (adiabatic)

E = 2 uI × B +
J × B
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Ohm’s Law

added resistive terms



Evolution of electromagnetic fields is governed by Maxwell’s equations 

•  

•  (  )  

•  

  (Ampere’s Law) and  
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Maxwell’s equations 



 E = 2 uI × B +
J × B
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convective term resistivity

Recap : non-relativistic MHD Ohm’s law 

Ohm’s Law

 J = Ã ( E + v × B ) ³ E = 2 v × B + ·J (· =
1

Ã
)

bulk velocity  uI >
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thermo-electric term

Ohm’s Law

Recap : Induction equation  
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Source/seed magnetic fields ?
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Biermann battery!



 E = 2 uI × B +
J × B
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Ohm’s Law

Hall electric field



 E = 2 uI × B +
J × B

Ã
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Hyper-resistivity

Ohm’s Law

Whistler oscillations : grid-scale oscillations Ë ? k2 ³

Speed of light  or physical velocities are unbounded c ³ >

To remove energy at high-k and for stability of numerical simulations



Source terms in Ohm’s law ( ,  )  from collision-less particles  

Moments of density and bulk velocity 

         

How to solve these equations numerically?  

1. Evolution of protons (  ) 

  

6-D in space and momentum + time evolution  

2. Sample the distribution function using (meta) particles and 

calculate density, velocity … directly from particles
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Hybrid kinetic approach



 Hybrid Particle-In-Cell 

Algorithm
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= v
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Particle evolution

Density  and ion 

currents 
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Calculated on particles 

interpolated to grid
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Particle        Grid Interpolation



Charged Particle in Uniform 

Magnetic Field

F = mqV × B

rLarmor =
mV

qB

tLarmor =
2Ãm

qB



Charged Particle in Uniform 

Magnetic Field

Trajectory of charged particle Energy of charged particle



Waves in cold plasma

• Cold plasma  without resistivity ( ) 

• Consider a uniform magnetic field (  ) with fluctuations in a 

perpendicular direction  

• Linearising the hybrid-kinetic equations (perturbation analysis) 

Recap : Wave solutions to Linearised MHD equations  Wave 

solutions in a collision-less plasma  

• Ion-inertial length (  ) and larmor-gyration time  

Tp = Te = 0 · = 0

B0 �x

Bz > (B0/1000) cos(kx)
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Alfven waves 

k = 1 (kdi = 0.045)

Waves propagating through the computational domain

Bz

k = 2 (kdi = 0.09)

ppc = 100



Dispersion relation
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Whistler wave

Ion-cyclotron wave

Analytical
Kunz et al. 2014
Simulation

Right-circularly 

polarised wave

Left-circularly 

polarised wave
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Thermal distribution of 

protons

• Collection of protons are 

initialised with a Maxwellian 

distribution with 

temperature  

• Thermal velocity of the 

protons  

    

Tp

vrms =
3kbTp

mp



Landau Damping 
Thermal plasma  and (Te b 0, Tp b 0) B = 0

Density perturbation 

E = 2
'pelectron
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Landau Damping 

• Setup a density 

perturbation in the 

plasma (ion-acoustic 

wave) 

•   

•Wave loses energy to 

particles

E = 2
'pelectron

Ã

Wave-particle interaction!



Hot Intracluster Medium

• Very hot (  ) and very diffuse plasma  

•  kpc and  kpc;  

•  

• Kinetic Reynolds number  

• Magnetic Reynolds number  

• Magnetic Prandtl number  

•Turbulent : Galaxy mergers, wakes of infall events,  AGN feedback 

events, shocks 

T > 107 2 108K (n > 1023cm23)

»mpc > 10 L > 100 »mfp/L > 0.1

3avg > 0.1

Re ¯ 100

Rm k 1

Pm k 1



Magnetic Field 

• Magnetic field observations: 

Faraday rotation, synchrotron 

radiation  

• Strong fields with strength ~ 

Gauss observed in galaxy 

clusters, close to the 

equipartition value of 

magnetic field for the ICM   

(Carilli & Taylor 2002, Govoni 

& Feretti 2004, Bonafede et 

al. 2010)

¿

Bonafede et. al. 2010



  Small-Scale Turbulent Dynamo

• In the ideal MHD limit, the magnetic 

field lines are frozen into the 

plasma 

• Fluid motions stretch-twist-fold the 

flux tubes 

• Exponential amplification of 

magnetic energy,  

• SSD is a generic mechanism for 

turbulent magnetised plasma 

(Vainshtein & Zel’dovich 1972; 

Schekochihin et al. 2004; Federrath 

et al. 2011; Seta et al. 2020)

Em ? e�t

  Illustration of the stretch-twist-fold 

model of the MHD small-scale dynamo



  PIC Dynamo Simulations

Possibility of a “Plasma 

dynamo" has only been 

explored recently by 

numerical simulations 

(Rincon et al.2016, St-Onge 

and Kunz 2018) 

Re|| > 3
L

»mfp

Growth of magnetic energy as a function of time from plasma 

dynamo simulations adopted from Rincon et al. 2016

Schekochihin & Cowley 2005, 2006



Magnetic energy
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Time Evolution of the 

Plasma Dynamo

Reynolds number ~ 50 - 1200

Growth rate : Em ? e�t

Saturation eûciency : 

 at saturationEmag/Ekin



Kinetic Instabilities

St-Onge 2019
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Kunz, Schekochihin, Stone 2014

Melville, Schekochihin, Kunz 2016 Boyd & Sanderson 2004



Growth Rate Vs Rm

Rmcrit > 188

~ MHD turbulent dynamo
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Simulation growth rate

Fit from equation (3)

Rmcrit =188±6
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Saturation Eûciency Vs Rm
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Close to equipartition values for 

magnetic energy at high Rm



Summary

• Motivation for kinetic approaches 

• Hybrid kinetics - derivation and numerical scheme 

• Particle motion with a hybrid-PIC code 

• Waves in a collision-less plasma 

• Wave-particle interaction —> energy transfer in 

collision-less plasma 

• Collision-less turbulent dynamo in the ICM


