- Parker wind solution (→ recap)
- Bondi accretion
- Shu accretion rate

- Parker wind solution (→ recap)
- Bondi accretion
- Shu accretion rate

Stellar winds

In planetary nebula NGC 6565, a cloud of gas was ejected from the star after strong stellar winds

We will now derive the Parker wind solution in spherical symmetry...

Stellar winds and their impact on the surrounding

Wind-cloud interactions

https://youtu.be/gviipq6EFdw

(Banda-Barragan et al. 2018)

- Parker wind solution (→ recap)
- Bondi accretion
- Shu accretion rate

Parker wind versus Bondi accretion

Bondi accretion (influence of the EOS)

Bondi accretion rate for isothermal versus adiabatic gas (Polytropic EOS: $P_{\rm th} = K \rho^{\Gamma}$)

Why is the accretion rate higher for lower Gamma?

Bondi-Hoyle accretion

Build-up of circum-binary discs

Movies available: https://www.mso.anu.edu.au/~chfeder/pubs/binary_turb/binary_turb.html

Turbulence makes bigger discs → relevant for planet formation

- Parker wind solution (→ recap)
- Bondi accretion
- Shu accretion rate

Shu accretion rate

Collapse of a singular isothermal gas sphere

Accretion rate:
$$\dot{M}=m_0\,\frac{c_{
m s}^3}{G}$$
 (Shu 1977)

Collapse of a singular isothermal gas sphere

Shu (1977)

$$\dot{M} = m_0 \frac{c_s^3}{G}$$
 with $m_0 = 0.975$ would give $m_0 c_s^3 / G = 1.06 \times 10^{-6} M_{\odot} \,\mathrm{yr}^{-1}$

...but here, the gas cloud is highly unstable!

With A = 29, we get $m_0 \sim 130$, which gives exactly the correct accretion rate.

Conclusion: Beware, m_0 is not necessarily 1. And hence c_s^3/G may be way off!

Instability parameter $A=4\pi G\,\rho(R)\,R^2/c_{\rm s}^2$

(Federrath et al. 2010)

NEXT TIME:

- Steepening of sound waves → shocks