- The validity of the gas/fluid approximation (→ recap notes)
- Gravitational instabilities: Jeans and Toomre (→ recap and finish)
- Kelvin-Helmholtz and Rayleigh-Taylor instability

- The validity of the gas/fluid approximation (ightarrow recap)
- Gravitational instabilities: Jeans and Toomre (ightarrow recap and finish) \cdot
- Kelvin-Helmholtz and Rayleigh-Taylor instability

Validity of the Gas/Fluid Approach

Gas/Fluid approximation only valid if particle mean free path much less than scales of interest

(particle collisions are sufficiently frequent on microscopic level)

Medium	Particle mean free path	Size scale
Water	9 x 10 ⁻⁹ cm	
Air	5 x 10 ⁻⁶ cm	
Solar core	2 x 10 ⁻⁸ cm	$\sim R_{sol}/4 \sim 2 \times 10^{10} \text{ cm}$
Solar corona	1x10 ⁸ cm	$\sim R_{sol} \sim 7 \times 10^{10} \text{ cm}$
Solar wind	1x10 ¹³ cm	$\sim AU \sim 1.5 \times 10^{13} \text{ cm}$
Interstellar medium	1x10 ⁵⁻¹⁵ cm	$\sim pc \sim 3 \times 10^{18} cm$
Galaxy cluster (intracluster medium)	1x10 ²³ cm	~ Mpc ~ 10 ²⁴ cm

If the gas/fluid approximation breaks down, kinetic treatment is required.

- The validity of the gas/fluid approximation (ightarrow recap)
- Gravitational instabilities: Jeans and Toomre (→ recap and finish)
- Kelvin-Helmholtz and Rayleigh-Taylor instability

Jeans fragmentation

Equation of State – Chemistry / Heating / Cooling

Chemistry / Heating / Cooling: (Glover+2007, 2010, Micic+2012, Clark+2012)

Molecule formation in high-density gas: t_{form}~ 1/n

Micic et al. (2012), Hollenbach et al. (1971)

Toomre (gravitational disc) instability

Condition for disc instability

$$\frac{c_s \kappa}{\pi G \Sigma} < 1$$

 c_s is the speed of sound κ is the epicyclic frequency Σ is the surface density

(Toomre 1964; Romeo et al. 2010)

For Jeans instability, we basically compare thermal pressure versus gravity. For Toomre, we compare thermal pressure + rotation versus gravity.

Notes:

- Surface density can have gas and star contribution
- Sound speed could be modified to include turbulence and/or magnetic pressure
 (e.g., turbulent, magnetic Jeans length)

(Federrath & Klessen 2012)

Toomre (gravitational disc) instability

Movies available: https://www.mso.anu.edu.au/~chfeder/pubs/turb_driv_gal/turb_driv_gal.html
For example, simulations of disc galaxies:

(Jin et al. 2017)

- The validity of the gas/fluid approximation (ightarrow recap)
- Gravitational instabilities: Jeans and Toomre (→ recap and finish)
- Kelvin-Helmholtz and Rayleigh-Taylor instability

(clouds)

(Saturn)

- Derivation of the KH instability
- Simulation movies of KH instability
- Relation to Rayleigh-Taylor instability

Movies available: http://www.mso.anu.edu.au/~chfeder/movies/tracer_particles/tracer_particle_movies.html

Movies available: https://www.mso.anu.edu.au/~chfeder/movies/kh/kh.html

Movies available: https://www.mso.anu.edu.au/~chfeder/movies/kh/kh.html

Movies available: https://www.mso.anu.edu.au/~chfeder/movies/kh/kh.html

Rayleigh-Taylor instability

Gravity

Denser fluid (red) mixes with less dense fluid (transparent)

https://images.slideplayer.com/14/4208308/slides/slide_21.jpg

Rayleigh-Taylor instability

Rayleigh-Taylor instability

Movies available: http://www.mso.anu.edu.au/~chfeder/movies/supernova/supernova movies.html

(Simulation of Type Ia Supernova explosion)

NEXT TIME:

Spherically symmetric stationary flows (stellar winds and accretion)