
Image credit: M. S. Povich

Parallel Computing

Material: https://computing.llnl.gov/tutorials/parallel_comp/

Christoph Federrath

https://computing.llnl.gov/tutorials/parallel_comp/

Why parallel computing?

Compared to serial computing, parallel computing is much better suited for
modelling, simulating and understanding complex, real-world phenomena

Main reason for Parallel Computing is that we can

 SOLVE LARGER and MORE COMPLEX PROBLEMS

Parallel computing – applications

Use of parallel computing

Science and Engineering Industrial and Commercial

- Atmosphere, Earth, Environment

- Physics - applied, nuclear, particle, condensed matter,

 high pressure, fusion, photonics

- Bioscience, Biotechnology, Genetics

- Chemistry, Molecular Sciences

- Geology, Seismology

- Mechanical Engineering - from prosthetics to spacecraft

- Electrical Engineering, Circuit Design, Microelectronics

- Computer Science, Mathematics

- Defense, Weapons

- "Big Data", databases, data mining

- Web search engines, web-based business services

- Medical imaging and diagnosis

- Advanced graphics and virtual reality

- Networked video and multi-media technologies

- Collaborative work environments

Parallel computing – top computers worldwide

See current Top 500 list:
https://top500.org/lists/top500/list/
2025/06

Top Australian Supercomputers:
- Setonix (#59 in the world)
- Virga (#106 in the world)
- Gadi (#155 in the world)

Parallel computing is the future

https://top500.org/lists/top500/list/2025/06
https://top500.org/lists/top500/list/2025/06

Parallel computing – application areas

Source: https://www.top500.org/

https://www.top500.org/

Parallel computing – basic concepts

Solving a problem in serial (single processor)

Parallel version for solving the same problem

Parallel computing – basic concepts

Performance/Popularity of programming languages

Parallel computing – basic concepts

Source: https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

Performance of Python versus C/C++ programs

Example: summation of numbers

- Write a small python program that sums up all integers from
1 to n and writes the sum to stdout.

- Use the argparse package to take an optional argument ‘-n’ to
read n from the command line (if –n is not specified, let the
program use n = 1e8 by default).

- Time the part of the code that does the summation. This
means let the code write how much time (in seconds) it took
to execute the summation. Suggest to use the timeit package.

 1. First use the numpy function numpy.sum() and time it.
 2. Now use a for-loop to sum up the numbers.
 3. Finally, try with using the numba.jit decorator.

Parallel computing – basic concepts

Performance of Python versus C/C++ programs

Example: summation of numbers

- Now let’s write a small C program that sums up the numbers.

- …

- We can use a python wrapper program to do the timing of the
C code (beware of overheads) or time it directly in the C code.

- Play with compile optimisation options such as –O3.

Parallel computing – basic concepts

4 main computer/architecture/operating classifications

Parallel computing – basic concepts

Single Instruction – Single Data (SISD)

Parallel computing – basic concepts

Single Instruction – Multiple Data (SIMD)

Parallel computing – basic concepts

Multiple Instruction – Single Data (MISD)

Parallel computing – basic concepts

Multiple Instruction – Multiple Data (MIMD)

Parallel computing – basic concepts

The sonic scale

of interstellar turbulence

- Resolution: 10,0483 grid cells

- 50 Million CPU-h (GCS and NCI)

- 65,536 compute cores

- 2 PB data

- Hybrid precision (SP + specific promotion to DP)

Technical specifications:

Movies and more info on the (10k)3 simulation:

http://www.mso.anu.edu.au/~chfeder/pubs/sonic_scale/sonic_scale.html

Estimate the amount of memory and number of CPUs required

http://www.mso.anu.edu.au/~chfeder/pubs/sonic_scale/sonic_scale.html

100 101 102 103 104 105

Number of processor cores

0

5

10

15

20

25

S
p
ee
d
-u
p
fa
ct
o
r

P = 0.25
P = 0.50
P = 0.90
P = 0.95

Parallel computing – scaling

Amdahl’s Law:
speedup =

1

P/N + S

P : Parallel fraction of the code
N : Number of processors/cores
S: Serial fraction of the code

However: STRONG SCALING versus WEAK SCALING

Parallel computing – scaling

However: STRONG SCALING versus WEAK SCALING

Weak scaling of 3 popular astro codes on different physics problems

Parallel computing – memory architectures

The two main parallel memory architectures

Shared memory
(e.g., OpenMP)

Distributed memory
(e.g., MPI)

- Pros: User-friendly programming perspective

to memory

- Cons: Lack of scalability between memory

and CPUs

- Programmer responsibility for

synchronization constructs that ensure

"correct" access of global memory

- Pros: Number of processors and size of memory

increase proportionately

- Each processor can rapidly access its own

memory without interference

- Cost effectiveness: can use commodity, off-the-

shelf processors (and networking)

- Cons: Programmer responsible for data

communication between processors

- Non-uniform memory access times

Parallel computing – memory architectures

Hybrid schemes (MPI+OpenMP)

Parallel computing – OpenMP example

Now basic parallel coding example with OpenMP…

OpenMP parallelisation (shared-memory + threads)

Fork - Join Model

Parallel computing – automatic vs. manual parallelisation

Automatic vs. Manual Parallelisation

If you are beginning with an existing serial code and have time or budget

constraints, then automatic parallelisation may be the answer (e.g., OpenMP).

However, there are several important caveats that apply to automatic

parallelisation:

 - Wrong results may be produced

 - Performance may actually degrade

 - Much less flexible than manual parallelisation

 - Limited to a subset (mostly loops) of code

 - May actually not parallelize code if the compiler analysis suggests

 there are inhibitors or the code is too complex

Message Passing Interface (MPI)

How to parallelise beyond a single node or single computer?

Parallel computing – MPI

(distributed-memory parallelisation)

Message Passing Interface (MPI)

Parallel computing – MPI

All parallelism is explicit: the programmer is responsible for correctly identifying

parallelism and implementing parallel algorithms using MPI constructs.

Reasons for using MPI

Standardisation - MPI is the only message passing library that can be

considered a standard. It is supported on virtually all HPC platforms.

Portability - There is little or no need to modify your source code when you

port your application to a different computer.

Performance!!!

E.g., on Mac OS you can install MPI via macports: port install mpich
 (or port install openmpi)

Message Passing Interface (MPI)

Parallel computing – MPI

MPI uses objects called communicators and groups to define which

collection of processes may communicate with each other

MPI processes are called “ranks”

Parallel computing – MPI

MPI communicators and groups

Parallel computing – MPI example

Now MPI example code …

MPI parallelisation – 2 main communication types

Collective communicationPoint-to-point communication

MPI parallelisation – domain decomposition

In hydro codes: space versus time decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

Parallel computing – domain decomposition

MPI parallelisation – domain decomposition

In hydro codes: space versus time decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

Parallel computing – domain decomposition

MPI parallelisation – domain decomposition

In hydro codes: space versus time decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

Parallel computing – domain decomposition

Kelvin-Helmholtz instability

(Saturn)

(clouds)

Kelvin-Helmholtz instability

Kelvin-Helmholtz instability

Uniform grid Adaptively refined grid

Movies available: https://www.mso.anu.edu.au/~chfeder/movies/kh/kh.html

https://www.mso.anu.edu.au/~chfeder/movies/kh/kh.html

Thank you!

JWST Carina: National Aeronautics and Space Administration, NASA Official: NASA Office of Communications

