q‘
L

h'rlstoph Federrath feEE L e g

y X g AP
"
"o
RSty A g S
e
- . .
. .
.
- .
- " .
- 2 "
.
0% ’
-3 P
.
. .

Image credit: M. S. Povich

https://computing.llnl.gov/tutorials/parallel_comp/

Why parallel computing?

Main reason for Parallel Computing is that we can

SOLVE LARGER and MORE COMPLEX PROBLEMS

Galaxy Formation Climate Change

Compared to serial computing, parallel computing is much better suited for
modelling, simulating and understanding complex, real-world phenomena

Parallel computing — applications

Use of parallel computing

Science and Engineering Industrial and Commercial

- Atmosphere, Earth, Environment - "Big Data", databases, data mining

- Physics - applied, nuclear, particle, condensed matter, - Web search engines, web-based business services
high pressure, fusion, photonics - Medical imaging and diagnosis

- Bioscience, Biotechnology, Genetics - Advanced graphics and virtual reality

- Chemistry, Molecular Sciences - Networked video and multi-media technologies

- Geology, Seismology - Collaborative work environments

- Mechanical Engineering - from prosthetics to spacecraft
- Electrical Engineering, Circuit Design, Microelectronics
- Computer Science, Mathematics

- Defense, Weapons

Parallel computing — top computers worldwide

Parallel computing is the future

Projected Performance Development

10 EFlop/s ".

1 EFlop/s #® s

100 PFlop/s “' .
10 PFlop/s L
1 PFlop/s C 4% >

"
100 TFlop/s & 7 s

Performance
%
%
| &
B
>
2]
%

L
10 TFlop/s P “ L
1 TFlop/s L4 e Iz

Top Australian Supercomputers: "% ¢r®

- Setonix (#28 in the world) 10 GFlop/s &
- Virga (#72 in the world) I ._'.-'
op/s .

- Gadi (#103 in the world) -

100 MFlop/s
1990 1995 2000 2005 2010 2015 2020 2025

See current Top 500 list: Lists
https://www.top500.0rg/lists/top500 Vs e s
/list/2024/06/ o

https://www.top500.org/lists/top500/list/2024/06/
https://www.top500.org/lists/top500/list/2024/06/

Parallel computing — application areas

Segments System Share

® Industry

® Research
Academic

@ Government

® Vendor

@ Others

Segments Performance Share

® Industry
® Research

Academic

@® Government
® Vendor
® Others

Source: https://www.top500.org/

https://www.top500.org/

Parallel computing — basic concepts

Solving a problem in serial (single processor)

instructions

Parallel computing — basic concepts

Parallel version for solving the same problem

problem instructions

-~ 1 -=
-~ 1 -=
-l 1 -
~ il | 1-=

Parallel computing — basic concepts

Performance/Popularity of programming languages

TIOBE Programming Community Index

Source: www.tiobe.com

5 15
: A

10 “An

; M AV

A e W " A‘ P~
—r— - — — S
0 | | | | | | | | |
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024
Python e= C++ C Java == C# JavaScript SQL == Visual Basic Go Fortran

Source: https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

Parallel computing — basic concepts

Performance of Python versus C/C++ programs
Example: summation of numbers

- Write a small python program that sums up all integers from
1 to n and writes the sum to stdout.

- Use the argparse package to take an optional argument *-n’ to
read n from the command line (if —n is not specified, let the
program use n = 1e8 by default).

- Time the part of the code that does the summation. This
means let the code write how much time (in seconds) it took
to execute the summation. Suggest to use the timeit package.

1. First use the numpy function numpy.sum() and time it.
2. Now use a for-loop to sum up the numbers.
3. Finally, try with using the numba.jit decorator.

Parallel computing — basic concepts

Performance of Python versus C/C++ programs

Example: summation of numbers

Now let’s write a small C program that sums up the numbers.

We can use a python wrapper program to do the timing of the
C code (beware of overheads) or time it directly in the C code.

Play with compile optimisation options such as -03.

Parallel computing — basic concepts

4 main computer/architecture/operating classifications

SISD SIMD

Single Instruction stream Single Instruction stream
Single Data stream Multiple Data stream

MISD MIMD

Multiple Instruction stream | Multiple Instruction stream
Single Data stream Multiple Data stream

Parallel computing — basic concepts

Single Instruction — Single Data (SISD)

SISD Instruction Pool load A

load B
C=A+B

aw)

store C
A=B*2

Data Pool
)
(-
T

store A

Parallel computing — basic concepts

Single Instruction — Multiple Data (SIMD)

SIMD

Instruction Pool

» | PU | +—

»| PU | +—

Data Pool

» | PU | +—

| PU |+

prev instruct

load A(1)

load B(1)

C(1)=A(1)*B(1)

store C(1)

next instruct

P1

prev instruct

prev instruct

load A(2) load A(n)
load B(2) load B(n)
C(2)=A(2)*B(2) C(n)=A(n)*B(n)|
store C(2) store C(n)

next instruct

P2

next instruct

Pn

awi}

Parallel computing — basic concepts

Multiple Instruction — Single Data (MISD)

MISD

Data Pool

Instruction Pool

prev instruct prev instruct
load A(1) load A(1)
C(1)=A(1)"1 delta=A(1)"4
store C(1) B(i)=psi+8
next instruct next instruct

P1

P2

prev instruct

load A(1)

mat(n)=A(1)

write(mat(n))

next instruct

Pn

awn

Parallel computing — basic concepts

MIMD

Multiple Instruction — Multiple Data (MIMD)

Instruction Pool

PU

PU

Data Pool

PU

PU

prev instruct prev instruct
load A(1) call funcD
load B(1) x=y*z
C(1)=A(1)*B(1) sum=x*2
store C(1) call sub1(i,j)
next instruct next instruct
P1 P2

prev instruct

do 10 i=1,N

alpha=w**3

zeta=C(i)

10 continue

next instruct

Pn

swi}

Parallel computing — scaling

Amdahl’s Law: 1 P: Parallel fraction of the code
speedup = N: Number of processors/cores
b b P / N -+ S S': Serial fraction of the code
25 AL I L) L L R L] I B LLL) B LAY
 —— P =0.25]
20 F P =0.50 ’
s [—— P=090 '
§ 15 _ — P =0.95 -
Q »
T [
F% 10 - -
oy -
N |
Sr J
O:n"'l L 1 ool a1l o il ol o
10V 101 10? 10° 10 10°

Number of processor cores

However: STRONG SCALING versus WEAK SCALING

Parallel computing — scaling

FLASH code scaling for HD and MHD turbulence:

number of compute cells

10° 10 1010 10t 1012
LR L L coor T L '

129 FFLASH code scaling (public vs. own modifications)-
R S, e S
’ 10 - 7
= ! —+— FLASH public version on SuperMUC-NG
8 8 —=— FLASH hybrid precision on SuperMUC-NG p
= —— FLASH hybrid precision on Gadi
= 6 —e— FLASH hybrid precision on Setonix B
7‘8 4 B _
\ -
= I
= 2¢

10 102 10 104 10° 106

number of compute cores

However: STRONG SCALING versus WEAK SCALING

Parallel computing — memory architectures

The two main parallel memory architectures

Shared memory
(e.g., OpenMP)

Distributed memory
(e.g., MPI)

- ==

Pros: User-friendly programming perspective
to memory

Cons: Lack of scalability between memory
and CPUs

Programmer responsibility for
synchronization constructs that ensure
"correct" access of global memory

Pros: Number of processors and size of memory
increase proportionately

Each processor can rapidly access its own
memory without interference

Cost effectiveness: can use commodity, off-the-
shelf processors (and networking)

Cons: Programmer responsible for data
communication between processors
Non-uniform memory access times

Parallel computing — domain decomposition

£

Estimate the amount of memory and number of CPUs required

d

s
Mov)ee,'
http://w

nore info on the (10k)3 simu

Thelongand the
shortof turbulence 5

s/sonic scale/sonic scale.html

so.anu.edu.au/~chfeder/p

L ’
~ ~

Te nical speci_fication%:_
- Resolution: 10,0482 grid cells
=50 Million CPU-h (GCS and NCI)

65,536 compute cores
2PBdata @

.

4‘{ » .
Hybrid precisic‘i‘E-\(SP + specific promotion te'DP)

=
5
(ol
(b}
1)
va

http://www.mso.anu.edu.au/~chfeder/pubs/sonic_scale/sonic_scale.html

Parallel computing — memory architectures

Hybrid schemes (MPI+OpenMP)

Parallel computing — OpenMP example

OpenMP parallelisation (shared-memory + threads)

aster thread - -
\ - | 12N
L NP el threads
threads . - EE - ,
. threads .
parallel region parallel region parallel region

Fork - Join Model

Now basic parallel coding example with OpenMP...

Parallel computing — automatic vs. manual parallelisation

Automatic vs. Manual Parallelisation

If you are beginning with an existing serial code and have time or budget
constraints, then automatic parallelisation may be the answer (e.g., OpenMP).

However, there are several important caveats that apply to automatic
parallelisation:

- Wrong results may be produced

- Performance may actually degrade

- Much less flexible than manual parallelisation

- Limited to a subset (mostly loops) of code

- May actually not parallelize code if the compiler analysis suggests
there are inhibitors or the code is too complex

Parallel computing — MPI

How to parallelise beyond a single node or single computer?

NODE NODE NODE NODE NODE NODE
memory memory memaory memory memory memaory
core |core core |core core |core core |core core |core core |core
core |core core [core core [core core [core core [core core [core
NETWORK

Message Passing Interface (MPI)

(distributed-memory parallelisation)

Parallel computing — MPI

Message Passing Interface (MPI)

All parallelism is explicit: the programmer is responsible for correctly identifying
parallelism and implementing parallel algorithms using MPI constructs.

Reasons for using MPI

Standardisation - MPl is the only message passing library that can be
considered a standard. It is supported on virtually all HPC platforms.

Portability - There is little or no need to modify your source code when you
port your application to a different computer.

Performancel!!l

E.g., on Mac OS you can install MPI via macports: port install openmpi

Parallel computing — MPI

Message Passing Interface (MPI)

MPI uses objects called communicators and groups to define which
collection of processes may communicate with each other

MPI_COMM_WORLD
G @
@

MPI processes are called “ranks”

Parallel computing — MPI

MPI communicators and groups

MPI_COMM_WORLD

© ©0 o
@ @ P = ©
@
@
@ @
o o ° group1 group2 e 00
@

c/a e ¢
oo

©
Vs

Parallel computing — MPI example

MPI parallelisation — 2 main communication types

Point-to-point communication Collective communication

Processor 1 Processor 2 6 6 6 6 6 0 0 0
\\6// \\é/

T T broadcast scatter

= Y Y

gather reduction

process A process B

Now MPI example code ...

Parallel computing — domain decomposition

MPI parallelisation — domain decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

nguard

ooooooo

nyb

nguard

nguard nxb nguard

In hydro codes: space versus time decomposition

Parallel computing — domain decomposition

MPI parallelisation — domain decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

..............

In hydro codes: space versus time decomposition

Parallel computing — domain decomposition

MPI parallelisation — domain decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

..............

In hydro codes: space versus time decomposition

Kelvin-Helmholtz instability

(Saturn)

1.000

0.800

0.600 —

0.400

0.200

0.000
0.000 0.200 0.400 0.600 0.800

Kelvin-Helmholtz instability

Time =0.6

2.00

1.80

| 1 1 1 I | | 1 I 1

1.60

1
I 1 | 1
-
=~
O

gas density

1.20

1.00

0.80

1.000

Kelvin-Helmholtz instability

WiifQinliid IcaptiveENdiefinedfeiid
Time =0.6 Time =0.6
1.000]
— 2.00
0.800 7
— 1.80
0.600 — . _ — 1.60 ._
1.40
i’:O
0.400
1.20
0.200
1.00
0.000 0.80
0.000 0.200 0.400 0.600 0.800 1.0000 0.200 0.400 0.600 0.800 1.000

Movies available: https://www.mso.anu.edu.au/~chfeder/movies/kh/kh.htm]

https://www.mso.anu.edu.au/~chfeder/movies/kh/kh.html

- e’ N : “ .

(éfina:‘.thional ‘Aeronautics and Sp‘atﬁe-Ad rri'ihistr,éiio'n, NASA Of_f_i(:ial:

oo L SRy ¥

L IWST. NASA Office of Communicatiofis
i * . o 2 L:" - O Tl 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

