jal:

Compu

rstoph e

errath

'o- : : '
3 C 5 - - I

> 5 - e .
; 2 ¢ B oty '

pf - - .
.
{7 e
3 -t - X
; » r . '. 4 .
. LA 5 3 .
=P “'e . 3
“ 2 v o83 . :
s # Pl e L W Al R
€ o= e
i o . : z
: - - PO 3
B P S S
. - .
> »
3 B »
g e 3 5 -
. v, - 2

it

3 ‘
£ 4 .
e ¢ ¥
i Cigs
‘.
.
.
-
e vy
e
.,
N i
i
.
53
.
]

Image credit: M. S. Povich

https://computing.llnl.gov/tutorials/parallel_comp/

Why parallel computing?

Main reason for Parallel Computing is that we can

SOLVE LARGER and MORE COMPLEX PROBLEMS

Galaxy Formation Planetary Movments Climate Change

Compared to serial computing, parallel computing is much better suited for
modelling, simulating and understanding complex, real-world phenomena

Parallel computing — applications

Use of parallel computing

Science and Engineering Industrial and Commercial

- Atmosphere, Earth, Environment - "Big Data", databases, data mining

- Physics - applied, nuclear, particle, condensed matter, - Web search engines, web-based business services
high pressure, fusion, photonics - Medical imaging and diagnosis

- Bioscience, Biotechnology, Genetics - Advanced graphics and virtual reality

- Chemistry, Molecular Sciences - Networked video and multi-media technologies

- Geology, Seismology - Collaborative work environments

- Mechanical Engineering - from prosthetics to spacecraft
- Electrical Engineering, Circuit Design, Microelectronics
- Computer Science, Mathematics

- Defense, Weapons

Parallel computing —top computers worldwide

Parallel computing is the future

Projected Performance Development

10 EFlop/s ’r
1 EFlopls ',."' Aasaa

100 PFlop/s 'f, aal
10 PFlop/s LN

1 PFlop/s L 4%

100 TFlop/s ..0 2 a

Performance

L
10 TFlop/s '.. i“ e
1TFlopls — ~ ® & a7

Top Australian Supercomputers: "% °¢7"®

- Setonix (#59 in the WOrId) 10 GFlop/s i'..
- Virga (#106 in the world) -
- Gadi (#155 in the world) rerees e

100 MFlop/s
1990 1995 2000 2005 2010 2015 2020 2025

See current Top 500 list: Lists
https://top500.0rqg/lists/top500/list
2025 06 ® Sum A # . #500

https://top500.org/lists/top500/list/2025/06
https://top500.org/lists/top500/list/2025/06

Parallel computing — application areas

Segments System Share

@ Industry

® Research
Academic

@ Government

@ Vendor

® Others

Segments Performance Share

@ Industry
® Research
Academic

@ Government
@® Vendor
® Others

Source: https://www.top500.0rg/

https://www.top500.org/

Parallel computing — basic concepts

Solving a problem in serial (single processor)

instructions

Parallel computing — basic concepts

Parallel version for solving the same problem

problem instructions

i -=
i -=
T
i -=

Parallel computing — basic concepts

Performance/Popularity of programming languages

TIOBE Programming Community Index

Source: www.tiobe.com

! w ANy ‘ M*\
5) . w V"'J‘ %A
A; ‘ M Mv /

/ “*05 N\ /\ “/,
0 T | | | —] |="""'|"’ | | . |

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

== Python e=» C++ @@= (C = Java == C# == JavaScript SQL == Visual Basic Go Fortran

Source: https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

Parallel computing — basic concepts

Performance of Python versus C/C++ programs
Example: summation of numbers

- Write a small python program that sums up all integers from
1 to n and writes the sum to stdout.

- Use the argparse package to take an optional argument '-n’ to
read n from the command line (if —n is not specified, let the
program use n = 1e8 by default).

- Time the part of the code that does the summation. This
means let the code write how much time (in seconds) it took
to execute the summation. Suggest to use the timeit package.

1. First use the numpy function numpy.sum() and time it.
2. Now use a for-loop to sum up the numbers.
3. Finally, try with using the numba.jit decorator.

Parallel computing — basic concepts

Performance of Python versus C/C++ programs

Example: summation of numbers

Now let’s write a small C program that sums up the numbers.

We can use a python wrapper program to do the timing of the
C code (beware of overheads) or time it directly in the C code.

Play with compile optimisation options such as -03.

Parallel computing — basic concepts

4 main computer/architecture/operating classifications

SISD SIMD

Single Instruction stream Single Instruction stream
Single Data stream Multiple Data stream

MISD MIMD

Multiple Instruction stream | Multiple Instruction stream
Single Data stream Multiple Data stream

Parallel computing — basic concepts

SISD

Single Instruction - Single Data (SISD)

Instruction Pool

Data Pool

load A

load B

C=A+B

store C

A=B*2

store A

awi)

Parallel computing — basic concepts

SIMD

Single Instruction — Multiple Data (SIMD)

Instruction Pool

v

v

Data Pool

v

v

prev instruct

PU

load A(1)

PU

load B(1)

C(1)=A(1)*B(1)

PU

store C(1)

prev instruct

prev instruct

load A(2)

load A(n)

load B(2)

load B(n)

C(2)=A(2)*B(2)

C(n)=A(n)*B(n)

store C(2)

store C(n)

PU

next instruct

next instruct

P1

next instruct

P2

Pn

aw)

Parallel computing — basic concepts

MISD

Data Pool

Multiple Instruction - Single Data (MISD)

Instruction Pool

PU|— [PU|«

P2

prev instruct prev instruct prev instruct
load A(1) load A(1) load A(1)
C(1)=A(1)" delta=A(1)"4 mat(n)=A(1)
store C(1) B(i)=psi+8 write(mat(n))
next instruct next instruct next instruct

swn

Parallel computing — basic concepts

MIMD

Multiple Instruction — Multiple Data (MIMD)

Instruction Pool

PU

prev instruct

—|PU

do 10 i=1,N

PU

—|PU

alpha=w**3

Data Pool

PU

zeta=C(i)

—(PU

PU

10 continue

—|PU

next instruct

prev instruct prev instruct
load A(1) call funcD
load B(1) x=y*z
C(1)=A(1)*B(1) sum=x*2
store C(1) call sub1(i,j)
next instruct next instruct
—rm P2

Pn

awiy

Thelong and the
shortofturbulence 5

Mov)es‘ s
http://w

nore info on the (10k)3 simul :
mso.anu.edu.au/~chfeder/pubs/sonic scale/sonlc scale html

-

Estimate the amountk of memory and number of CPUs required

Te nical spemflcatlon&
Resolution: 10,0482 grid cells

50 Million CPU-h (GCS and NCI) \ ‘,
65,536 compute cores .

2PBdata = =

Hybrid preC|S| [(SP + specific promotion ta'DP)

1_4

<
@
§®)

http://www.mso.anu.edu.au/~chfeder/pubs/sonic_scale/sonic_scale.html

Parallel computing — scaling

Amdahl’s Law: 1 P: Parallel fraction of the code
speedup = N: Number of processors/cores
b p P / N -+ S S': Serial fraction of the code
25 Ikl LA L LL) IR B LA L IR LA LL BN R AL
 — P =0.25]
20 F P =0.50 ’
=" —— P=090]
Qq B
T 0
F% 10 —
oy i
P, i
Sr a
0 i

10V 101 102 103 10 10°
Number of processor cores

However: STRONG SCALING versus WEAK SCALING

Relative speed-up factor (per code)

Parallel computing — scaling

Weak scaling of 3 popular astro codes on different physics problems

¢— AREPO CPU (HD+gravity+RT @QRaven

—— AREPO GPU (HD+gravity+RT @QRaven
10! - —o— ATHENA 4.2 (MHD QCray XC50 —
- —— ATHENA't (MHD @Cray XC50 -
| —— FLASH public version (MHD turbulence @SuperMUC-NG)
L —*— FLASH hybrid precision (MHD turbulence @SuperMUC-NG) -
et ——d———h e . |

o — @ L 4
100 MURRRRREEEE o0r—< —0 O Trr— > ———————————— PO PP LPPT LI -
B O 102 o
1 1 llIlIII llllll IIIIII 1 1 IllIIII Ll
101 102 103 10* 10° 106

Number of compute cores

However: STRONG SCALING versus WEAK SCALING

Parallel computing — memory architectures

The two main parallel memory architectures

Shared memory Distributed memory
(e.g., OpenMP) (e.g., MPI)

=Bl o mm

- Pros: Number of processors and size of memory
increase proportionately
Each processor can rapidly access its own

- Pros: User-friendly programming perspective

to memory memory without interference

- Cons: Lack of scalability between memory - Cost effectiveness: can use commodity, off-the-
and CPUs shelf processors (and networking)

- Programmer responsibility for - Cons: Programmer responsible for data
synchronization constructs that ensure communication between processors

"correct" access of global memory - Non-uniform memory access times

Parallel computing — memory architectures

Hybrid schemes (MPI+OpenMP)

network

Parallel computing — OpenMP example

OpenMP parallelisation (shared-memory + threads)

master thread - -
L 2 e el threads T,
threads \ - E - |
. threads .
parallel region parallel region parallel region

Fork - Join Model

Now basic parallel coding example with OpenMP...

Parallel computing — automatic vs. manual parallelisation

Automatic vs. Manual Parallelisation

If you are beginning with an existing serial code and have time or budget
constraints, then automatic parallelisation may be the answer (e.g., OpenMP).

However, there are several important caveats that apply to automatic
parallelisation:

- Wrong results may be produced

- Performance may actually degrade

- Much less flexible than manual parallelisation

- Limited to a subset (mostly loops) of code

- May actually not parallelize code if the compiler analysis suggests
there are inhibitors or the code is too complex

NODE

NODE

NODE

Parallel computing — MPI

NODE

NODE

How to parallelise beyond a single node or single computer?

NODE

memory

memory

memory

memory

memory

memory

core|core

core|core

core (Core

core (Core

core|core

core|core

core|core

core (Core

core (Core

core (Ccore

core|core

NETWORK

Vessage Passing Interface (MPI)

(distributed-memory parallelisation)

core (Core

Parallel computing — MPI

Viessage Passing Interface (MPI)

All parallelism is explicit: the programmer is responsible for correctly identifying
parallelism and implementing parallel algorithms using MPI constructs.

Reasons for using MPI

Standardisation - MPI is the only message passing library that can be
considered a standard. It is supported on virtually all HPC platforms.

Portability - There is little or no need to modify your source code when you
port your application to a different computer.

Performance!l!!

E.g., on Mac OS you can install MPI via macports: port install mpich
(or port install openmpi)

Parallel computing — MPI

Viessage Passing Interface (MPI)

MPI uses objects called communicators and groups to define which
collection of processes may communicate with each other

MPI_COMM_WORLD
© @
@

MPI processes are called “ranks”

Parallel computing — MPI

MPI communicators and groups

MPI_COMM_WORLD

(i

communications @

Parallel computing — MPI example

MPI parallelisation — 2 main communication types

Point-to-point communication Collective communication

Processor 1 Processor 2 e 6 6 6 6 6 6 ﬁ
\\6// \\é/

application SEND — network — application RECV broadcast scatter

NN

gather reduction

Now MPI example code ...

Parallel computing — domain decomposition

MPI parallelisation — domain decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

nguard

nyb

nguard

nguard nxb

In hydro codes: space versus time decomposition

Parallel computing — domain decomposition

MPI parallelisation — domain decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

In hydro codes: space versus time decomposition

Parallel computing — domain decomposition

MPI parallelisation — domain decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

In hydro codes: space versus time decomposition

Kelvin-Helmholtz instability

"."”'., § o
.r: $
N

(clouds)

(Saturn)

Kelvin-Helmholtz instability

1.000

0.800

0.600

0.400

0.200

0.000

Time =0.6

T

0.000

1.000

1.60

1.40

1.20

1.00

0.80

gas density

Kelvin-Helmholtz instability

WUnifermighid Adaptivelyirefinediarid
Time =0.6 Time =0.6
)00]
— 2.00
0.800 T
— 1.80
0.600 — — = —_ 1.60 »
1 1.40 =
0.400
1.20
0.200
1.00
0.000 0.80
0.000 0.200 0.400 0.600 0.800 1.0000 0.200 0.400 0.600 0.800 1.000

Movies available: https://www.mso.anu.edu.au/~chfeder/movies/kh/kh.html

https://www.mso.anu.edu.au/~chfeder/movies/kh/kh.html

%oy N , -

I: NASA Office of €

NASA Officia

L awsT Can

g i ey s -

na::National Aeronauti Administration,

>

ommunicatioris

F L

