
ASTR4004/ASTR8004
Astronomical Computing

Assignment 4 (exam assignment)

Christoph Federrath, Yuan-Sen Ting, Michael Ireland

due Thursday, 9 November 2023, 23:59pm

Important Information

This is the exam assignment. It is due on Thursday, 9 November 2023,
23:59pm. Please submit your solutions via Turnitin. Produce all neces-
sary submission files for each section, name them to clearly indicate the
section (question) number, and make a tarball named <Uni-ID>.tar.gz,
containing all submission files. Upload the single final tarball to Turnitin.
Since this is the exam assignment, we cannot accept late submissions!
Please make sure to submit on time.
As you can see below, there are 6 questions in total. Each of the questions
is worth 10 points. You may choose any 4 of the 6 questions. Thus, the
maximum possible total you can get is 40 points, which would be 100%
for the exam assignment. You may also choose to submit solutions to
more than 4 questions, however, only your best 4 solutions will count
towards your total score, i.e., those 4 solutions with the highest points
in total (in other words, you cannot have points from any more than
4 questions contribute to your final total).

1 Question 1

Please refer to the associated tarball for exam question 1 (directory q123).

(10 points)

2 Question 2

Please refer to the associated tarball for exam question 2 (directory q123).

(10 points)

3 Question 3

Please refer to the associated tarball for exam question 3 (directory q123).

(10 points)

Page 1 of 5



4 Image processing and Fourier transformation

Here you will make a python program that reads a column density map of a molecular
cloud called ’The Brick’ near the Galactic Centre (you can read more about this
cloud in Federrath et al., 2016), apply mirroring and zero-padding to the image,
compute the Fast Fourier Transform (FFT) with numpy or scipy, make a Fourier
image and compute the power spectrum of the column density map.

1. Download the observational column density map from http://www.mso.anu.
edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits. Use
the astropy library to read the data map in the fits file (http://docs.astropy.
org/en/stable/io/fits/) into a numpy array.

2. Make a python function to produce an image of the map with a colour bar
and write the image to a pdf file named ’brick.pdf’. See the left-hand panel of
Figure 1 for an example thumbnail image of how this should look like.

3. Use the numpy functions np.fliplr and np.flipud to produce a mirrored
array and image. Write the image to a pdf file called ’brick mirrored.pdf’ (see
the middle panel of Figure 1 for a thumbnail).

4. Now use the numpy function np.pad to pad zeros symmetrically to the left
and right of the image, such that the total dimensions become (1278, 1278).
Make an image of this called ’brick mirrored zped.pdf’ (see Fig. 1 for how this
should look.)

5. Make a 2D FFT of the mirrored-and-zero-padded column density map. Shift
the k = (0, 0) position to the centre of the Fourier image and write out an
image called ’brick fourier image.pdf’. The result of this should look like the
last panel of Figure 1.

6. Compute the 1D power spectrum P (k) of the mirrored and zero-padded col-

umn density, where k =
√
k2
x + k2

y. Make a log-log plot of the power spectrum,

P (k), and write this out as an image called ’brick power spectrum.pdf’.

Put everything into a single Bash-shell-executable python script that runs the entire
analysis with the input file (the column-density fits file) sitting in the same folder.

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

column density map

22.00

22.25

22.50

22.75

23.00

23.25

23.50

23.75

lo
g 1

0 c
ol

um
n 

de
ns

ity

0 100 200 300 400 500 600 700 800

0

200

400

600

800

1000

1200

mirrored column density map

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

mirrored and zero-padded column density map

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Fourier image of column density map

46

48

50

52

54

56

lo
g 1

0 F
ou

rie
r i

m
ag

e

Figure 1: Left to right: original column density map, mirrored, zero-padded, and
log10 Fourier image. Make sure to reproduce these not so small as in this assignment,
but with readable font sizes; these are just meant as thumbnails to give you some
idea of what the output of your script should look like.

Page 2 of 5

http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits
http://docs.astropy.org/en/stable/io/fits/
http://docs.astropy.org/en/stable/io/fits/


The script should automatically produce the images with the requested filenames
above (original column density image, mirrored, zero-padded, and Fourier image),
as well as the final plot of the 1D column-density power spectrum.

(10 points)

5 Parallel computing and scaling

Here we write an MPI-parallelised python program (using mpi4py), test its parallel
scaling performance, and determine its parallel fraction.

1. Start by setting up MPI: get total number of ranks, each rank’s ID, etc.

2. Let the Master rank (only the master rank!) read the numpy array in file
’q5.npy’ (see associated tarball), using np.load(...). Check its shape.

3. Use cfpack.congrid to interpolate the data to increase the size of the array by a
factor of 4 in each direction. You should end up with a shape of (5112, 5112).
Pretty big!

4. Use comm.Send and comm.Recv to communicate the shape of the array (which
only the Master rank knows at this point) to all ranks. Hint: the program must
work for any number of MPI ranks, so use a loop over all ranks on the Master
rank to send the shape to all other ranks. All ranks (except the Master) need
to receive.

5. Now plan to decompose the total size of the data into equal parts (as best as
possible; take care of the fact that depending on the number of processors, a
perfectly equal division will not always be possible).

6. Let the Master rank send the respective decomposed parts of the data to the
respective rank that needs to receive that part. Use again comm.Send and
comm.Recv to achieve this.

7. Now let each rank sum over their respective part of the data (using a loop
over all the datapoints local to the rank), such that you can compute the total
mean and the total standard deviation of the data, in a parallelised way. You
will need to use comm.Allreduce after the local looping, in the process.

8. Let the Master rank print the mean and standard deviation computed in this
parallelised fashion, to the screen. Compare with the mean and standard
deviation of the original (full, non-decomposed) data (the latter must always
remain on the Master rank only!).

9. What type of parallelisation paradigm did we use here (SISD, MIMD, SIMD,
or MISD)?

10. The entire script needs to be timed, so you can record the run time, from MPI
setup, to printing out the final mean and standard deviation. This will allow
you to measure the runtime when testing the code with different numbers of
total MPI ranks.

Page 3 of 5



11. Now run your code on motley.anu.edu.au, using mpirun. Run it on 1, 2, 4, 8,
16, and 32 cores on motley, and record the runtime for each of those cases.

12. Make a plot of speed-up factor (relative to the runtime of a single rank) versus
number of ranks. The x-axis should be in log scaling.

13. Now fit Amdahl’s law to the data and determine the parallel fraction of your
code.

14. Over-plot the best-fitting Amdahl’s law.

Provide all necessary scripts/code and produce a write-up including the final figure.

(10 points)

6 Markov Chain Monte Carlo

In this assignment you will use emcee (https://emcee.readthedocs.io, or a sim-
ilar Monte Carlo Markov Chain package) in python. You will simulate a data set
with a periodic component and fit a function to it. This could be, for example, a
photometric dataset from Kepler, or a series of radial velocity points. Some skeleton
code (with many gaps!) is available here: http://www.mso.anu.edu.au/~chfeder/
teaching/astr_4004_8004/material/mcmc_assignment_hints.py.

1. Create a function using python and numpy that simulates data originating wth
a physical model:

v = a0 + a1t+ a2 sin(a3t+ a4), (1)

with additive Gaussian noise. You should simulate data at a uniformly dis-
tributed set of times over an interval [t1, t2]. The functions should include the
inputs ai in the form of a 1-dimensional python numpy array, the time inter-
val, the number of points and the standard deviation of the additive Gaussian
noise.

2. Setting a0 = 0, a1 = 0.5, a2 = 1, a3 = 1 and a4 = 0, simulate a data set
with times uniformly distributed from t = 10 to t = 30, containing 100 points
with Gaussian errors with standard deviation 0.4. Plot these simulated data,
together with the original noiseless physical model computed over the interval.

3. Use emcee or a similar package to fit to this simulated dataset. Plot histograms
of the fitted parameters – do the results make sense? Are any of the parameter
fits correlated? Try this again for a simulated dataset with a4 = 3.

4. Show that the following is a re-parameterisation1 of Equation (2):

v = b0 + b1(t− 20) + b2 sin(b3t) + b4 cos(b3t) (2)

1Re-parameterisation means that the b0 through b4 can be written in terms of a0 through a4.

Page 4 of 5

https://emcee.readthedocs.io
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/mcmc_assignment_hints.py
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/mcmc_assignment_hints.py


Why is Equation (2) better than Equation (1) for a reliable Monte-Carlo
Markov chain computation? The second set of parameters above (a0 = 0,
a1 = 0.5, a2 = 1, a3 = 1 and a4 = 3) illustrates the difference well. Does it
reduce any of the parameter correlations, and if so, why?

5. Your colleague has a physical model that is Equation (1), with uniform priors
in all parameters. However, they use Equation (2) in a Monte-Carlo Markov
chain run instead with uniform priors, and then compute the distribution of the
ai parameters from the chains of the bi parameters. This produces an implicit
prior on a2, biasing the posterior and giving an incorrect results. What is this
implicit prior?

Include all python code in your assignment, as well as a write-up.

(10 points)

Maximum Total: 40 points (sum of best 4 solutions)

References

Federrath, C., Rathborne, J. M., Longmore, S. N., et al. 2016, Astrophys. J., 832,
143

Page 5 of 5


	Question 1
	Question 2
	Question 3
	Image processing and Fourier transformation
	Parallel computing and scaling
	Markov Chain Monte Carlo

