Srid-Lused hydrodynamics

• Time derivative

Forward Fuller method (simplest): $\partial_t q \longrightarrow \frac{q^{m+1} - q^m}{n+1}$ with $\Delta t = t^{n+1} - t^n$ • Think of single ODE : $\dot{q} = \partial_t q = f(q, t)$ $\implies \frac{q^{n+1}-q^n}{\lambda \neq} = f(q^n, \xi^n)$ (explicit method) (1st-order method) · becomes instable if at is chosen too big · could be made higher-order (Ringe-Kutta, Adams) · Spahial derivative $\partial_{x} q = \lim_{\Delta x \to 0} \frac{q(x + \Delta x) - q(x)}{\Delta x}$ · in discretised form : i - 1 i i + 1 $\partial_x q \rightarrow \frac{q_{i+1} - q_{i-1}}{2Ax}$ (2nd order accurate) (Centred Difference)

Advection

- Start with simpler form of hydro eq., where u = const.=> $\partial_t q + u \partial_x q = 0$
- · Insert time- und space-derivatives :

Justead upwind scheme:

$$q_{i}^{n+1} = q_{i}^{n} - \frac{\Delta t}{\Delta x} u \left(q_{i-1}^{n} - q_{i}^{n}\right) (u > 0)$$

(Upwind Difference Scheme) = stable

• uprind schene stable, but diffusive
$$\longrightarrow$$

numerical
diffusion.
• Diffusion eq. : $\frac{\partial}{\partial t}q - D = \frac{\partial^2}{\partial x^2}q = D$

discretised version:

$$\frac{q_{i}-q_{i-1}}{\Delta x} = \frac{q_{i+1}-q_{i-1}}{2\Delta x} - \Delta x \frac{q_{i+1}-2q_{i}+q_{i-1}}{2\Delta x^{2}}$$
centred diff.
= Uprind scheme is
the centred difference
Scheme with diffusion.

$$\frac{q_{i+1}-2q_{i}+q_{i-1}}{2\Delta x^{2}}$$
with a diffusion

$$\frac{q_{i+1}-2q_{i}+q_{i-1}}{2\Delta x^{2}}$$
diffusion

$$\frac{q_{i+1}-2q_{i}+q_{i-1}}{2\Delta x^{2}}$$