Magnetic pressure and fension

The magnetic force is $\vec{F}_{L} = -\frac{1}{8\pi} \nabla \vec{B}^{2} + \frac{1}{4\pi} (\vec{B} \cdot \nabla) \vec{B}$ Rewrite with

$$\vec{B} = B\vec{s},$$

where \vec{s} is a unit vector pointing in the direction of \vec{B} . Then, the Lorentz force becomes

$$= -\frac{1}{8\pi}\nabla_{\mu}B^{2} + \frac{B^{2}}{4\pi}(\vec{S}\cdot\nabla)\vec{s},$$

where $\nabla_{I} = \nabla - \vec{s} (\vec{s} \cdot \nabla)$ is the projection of the gradient operator in the direction perpendicular to \vec{s} , and $\vec{s} (\vec{s} \cdot \nabla) = \nabla_{II}$ is the grad. op. along \vec{s} .

