Mean free path and cross section

$$\lambda \sim \frac{1}{5n}$$
 with the number density n
and the cross section σ
o Cross section for atoms / molecules (no electrostatic
interactions)
 $\sigma = \sqrt{2} \pi d^2$, with d the diameter of the
atom / molecule
For example water: $\Gamma \approx 1.4 \text{ Å} = \sigma d \approx 2.8 \cdot 10^{5} \text{ cm}$
 $\Rightarrow \sigma \approx 3.5 \cdot 10^{-15} \text{ cm}^{2}$, $S \approx 10^{28} \text{ cm}^{3}$
 $\Rightarrow \lambda \approx \frac{1}{5n} \approx 8.6 \cdot 10^{9} \text{ cm} = 9 \text{ m} \approx 1\frac{8}{5m^{3}}$

• Coulomb scattering cross section (charges):

$$\sigma \simeq 10^{-4} \text{ cm}^2 \left(\frac{T}{K}\right)^{-2}$$

For example: solar cose:
$$T \approx 15.10^6 \text{ K}$$

 $m \approx 150 \text{ g/cm}^3/0.6 \text{ m}_{H} \approx 1.5.10 \text{ cm}^3$
 $= 9 \text{ of } \approx 4.10^9 \text{ cm}^2 = \lambda \approx 10^8 \text{ cm}$

Solar wind: (at a distance of = 1AU) $T \approx 10^5 K$; $n \approx 10 cm^3$ $= 0 \approx 10^{-16} \text{ cm}^2 = 0 \ \lambda = 10^{13} \text{ cm}^3$ (~1Au) j

More examples on slides and in the assignment.