. Parallel Comput
Jilinl.govitutorials/parallel-compl 5 &

Image credit: M. S. Povich

https://computing.llnl.gov/tutorials/parallel_comp/

Why parallel computing?

Main reason for Parallel Computing is that we can

SOLVE LARGER and MORE COMPLEX PROBLEMS

Galaxy Formation Planetary Movments Climate Change

Compared to serial computing, parallel computing is much better suited for
modeling, simulating and understanding complex, real world phenomena

Parallel computing — applications

Use of parallel computing

Science and Engineering Industrial and Commercial

- Atmosphere, Earth, Environment - "Big Data", databases, data mining

- Physics - applied, nuclear, particle, condensed matter, - Web search engines, web based business services
high pressure, fusion, photonics - Medical imaging and diagnosis

- Bioscience, Biotechnology, Genetics - Advanced graphics and virtual reality

- Chemistry, Molecular Sciences - Networked video and multi-media technologies

- Geology, Seismology - Collaborative work environments

- Mechanical Engineering - from prosthetics to spacecraft
- Electrical Engineering, Circuit Design, Microelectronics
- Computer Science, Mathematics

- Defense, Weapons

Parallel computing —top computers worldwide

Parallel computing is the future

See current Top 500 list:

Performance

10 EFlop/s

1 EFlop/s

100 PFlop/s

10 PFlop/s

1 PFlop/s

100 TFlop/s

10 TFlop/s

1 TFlop/s

100 GFlop/s

10 GFlop/s

1 GFlop/s

100 MFlop/s

https://www.top500.0rg/lists/top500

/list/2021/06/?page=1

Performance Development

1990

1995 2000 2005 2010 2015 2020
Lists
= #500

® Sum A

Top Australian Supercomputer:
Gadi (#44 in the world)

2025

https://www.top500.org/lists/top500/list/2021/06/?page=1

Parallel computing — application areas

Segments System Share

Segments Performance Share

Source:

@ Industry

@ Research
Academic

@ Government

@ Vendor

@ Others

Application Area System Share

https://www.top500.0rg/

@ Industry

@ Research
Academic

@ Government

@ Vendor

@ Others

Application Area Performance Share

@ Research

@ Weather and Climate
Research

Energy
@ Benchmarking
@ Aerospace
@ Information Service

@ Semiconductor

@ Research

@ Weather and Climate
Research

Energy
@ Benchmarking
@ Aerospace
@ Information Service

@ Semiconductor

https://www.top500.org/

Parallel computing — basic concepts

Solving a problem in serial (single processor)

instructions

Parallel computing — basic concepts

Parallel version for solving the same problem

problem instructions

-l 1 -=
~ il | 1-=
-~ 1 -E
-l 1 -=

Parallel computing — basic concepts

Before diving into the details of parallelization, let’'s have a look
at the performance of Python versus C/C++ programs.
TIOBE Programming Community Index

Source: www.tiobe.com
30

25
20

15

10 N\j‘\’
- “ 'Jﬁl\
R A : : ' Oy v ‘ A
5 | h oot AN \‘,i,. /M

!E I\l\m y - S— ~

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Ratings (%)

C == Python Java C++ == C# == Visual Basic JavaScript == PHP == Assembly language SQL

Parallel computing — basic concepts

Before diving into the details of parallelization, let's have a look
at the performance of Python versus C/C++ programs.

Example: summation of numbers

- Write a small python program that sums up all integers from
1 to n and writes the sum to stdout.

- Use the argparse package to take an optional argument '-n’ to
read n from the command line (if —n is not specified, let the
program use n = 5e6 by default).

- First, use a for-loop to sum up the numbers.

- Time the part of the code that does the summation. This
means let the code write how much time (in seconds) it took
to execute the summation. Suggest to use the timeit package.

- Now use the numpy function numpy.sum() and time it again.

Parallel computing — basic concepts

Before diving into the details of parallelization, let's have a look
at the performance of Python versus C/C++ programs.

Example: summation of numbers

Now let’s write a small C program that sums up the numbers.

We can use a python wrapper program to do the timing of the
C code (beware of overheads) or time it directly in the C code.

Play with compile optimization options such as -03.

Parallel computing — basic concepts

4 main computer/architecture/operating classifications

SISD SIMD

Single Instruction stream Single Instruction stream
Single Data stream Multiple Data stream

MISD MIMD

Multiple Instruction stream | Multiple Instruction stream
Single Data stream Multiple Data stream

Parallel computing — basic concepts

SISD

Single Instruction — Single Data (SISD)

Instruction Pool

Data Pool

load A

load B

C=A+B

store C

A=B*2

store A

awi)

Parallel computing — basic concepts

SIMD

Single Instruction — Multiple Data (SIMD)

Instruction Pool

v

v

Data Pool

v

v

prev instruct

PU

load A(1)

PU

load B(1)

C(1)=A(1)*B(1)

PU

store C(1)

prev instruct

prev instruct

load A(2)

load A(n)

load B(2)

load B(n)

C(2)=A(2)*B(2)

C(n)=A(n)*B(n)

store C(2)

store C(n)

PU

next instruct

next instruct

P1

next instruct

P2

Pn

aw)

Parallel computing — basic concepts

MISD

Data Pool

Multiple Instruction - Single Data (MISD)

Instruction Pool

PU|— [PU|«

prev instruct prev instruct prev instruct I
load A(1) load A(1) load A(1) I
C(1)=A(1)*1 delta=A(1)"4 mat(n)=A(1)| §
store C(1) B(i)=psi+8 write(mat(n)) I
next instruct next instruct next instruct I v
ToP2 Pn

Parallel computing — basic concepts

Multiple Instruction — Multiple Data (MIMD)

prev instruct

do 10 i=1,N

alpha=w**3

zeta=C(i)

MIMD Instruction Pool
—|PU| Ls|PU
g|—[pul— {PU
s
Al—|pul4 |pu
—(pu|- L|PU

10 continue

next instruct

prev instruct prev instruct
load A(1) call funcD
load B(1) X=y*z
C(1)=A(1)*B(1) sum=x*2
store C(1) call sub1(i,j)
next instruct next instruct
P1 P2

Pn

dwi)

Parallel computing — scaling

Amdahl’s Law: . 1 P: Parallloel fr?ction of the/ code
speedup = N: Number of processors/cores
P / N -+ S S: Serial fraction of the code
25 7 I 1]] }
Parallel Portion
25%
50% —
20 + 90%

95%

Speedup

o
o
I
=

16354
32768
65536

However: STRONG SCALING versus WEAK SCALING

Parallel computing — scaling

FLASH code scaling for HD and MHD turbulence

Number of compute cells

108 10 1o‘° 10” 10'2

14 Snma e
FLASH (v4 Federrcl’rh mods) on SuperMUC NG

12

MHD turbulence (double—precision, public version)

10

Time /cell /step [micro sec]
o

T T II | T 1 T | T T | T 1 | T T |
I
1 1 II | | |I 1 | L1 1 | L1 1 | L1 1 |

4
2 HD turbulence (hybrld precision, optimized)
— — 0 O0—> O OO V- V- — — O —
O 1 ool 1 A | I ool 1 ool
10 100 10° 10* 10° 10°

Number of compute cores

However: STRONG SCALING versus WEAK SCALING

Parallel computing — memory architectures

The two main parallel memory architectures

Shared memory
(e.g., OpenMP)

- User-friendly programming perspective to
memory

- Lack of scalability between memory and CPUs

- Programmer responsibility for
synchronization constructs that ensure
"correct" access of global memory

-

Distributed memory
(e.g., MPI)

Number of processors and size of memory
increase proportionately

Each processor can rapidly access its own
memory without interference

Cost effectiveness: can use commodity, off-the-
shelf processors (and networking)

Programmer responsible for data communication
between processors

Non-uniform memory access times

Parallel computing — domain decomposition

Estimate the amount of memory and number of CPUs required

Parallel computing — memory architectures

Hybrid schemes (MPI+OpenMP)

Parallel computing — OpenMP example

OpenMP parallelization (shared-memory + threads)

T - -
: <P T o threads
threads - ‘
.. threads .
parallel region parallel region parallel region

Fork - Join Model

Now basic parallel coding example with OpenMP...

Parallel computing — automatic vs. manual parallelization

Automatic vs. Manual Parallelization

If you are beginning with an existing serial code and have time or budget
constraints, then automatic parallelization may be the answer (e.g., OpenMP).

However, there are several important caveats that apply to automatic
parallelization:

- Wrong results may be produced

- Performance may actually degrade

- Much less flexible than manual parallelization

- Limited to a subset (mostly loops) of code

- May actually not parallelize code if the compiler analysis suggests
there are inhibitors or the code is too complex

NODE

NODE

NODE

Parallel computing — MPI

NODE

NODE

How to parallelize beyond a single node or single computer?

NODE

memory

memory

memory

memory

memory

memory

core|core

core|core

core (Ccore

core (Core

core|core

core|core

core|core

core (Core

core (Core

core (Core

core|core

core (Core

NETWORK

Vessage Passing Interface (MPI)

(distributed-memory parallelization)

Parallel computing — MPI

Viessage Passing Interface (MPI)

All parallelism is explicit: the programmer is responsible for correctly identifying
parallelism and implementing parallel algorithms using MPI constructs.

Reasons for using MPI

Standardization - MPI is the only message passing library that can be
considered a standard. It is supported on virtually all HPC platforms.

Portability - There is little or no need to modify your source code when you
port your application to a different computer.

Performance!l!!

E.g., on Mac OS you can install MPI via macports: sudo port install mpich

Parallel computing — MPI

Viessage Passing Interface (MPI)

MPI uses objects called communicators and groups to define which
collection of processes may communicate with each other

MPI_COMM_WORLD
© @
@

MPI processes are called “ranks”

Parallel computing — MPI

MPI communicators and groups

MPI_COMM_WORLD

(i

communications @

Parallel computing — MPI example

MPI parallelization - 2 main communication types

Point-to-point communication Collective communication

Processor 1 Processor 2 e 6 6 6 6 6 6 6
\\.J/ \\é/

application SEND e sntercnes o application RECV broadcast scatter

NN

gather reduction

Now MPI example code ...

Parallel computing — domain decomposition

MPI parallelization — domain decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

nguard

nyb

nguard

nguard nxb

In hydro codes: space versus time decomposition

Parallel computing — domain decomposition

MPI parallelization — domain decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

In hydro codes: space versus time decomposition

Parallel computing — domain decomposition

MPI parallelization — domain decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

In hydro codes: space versus time decomposition

