
Image credit: M. S. Povich

Parallel Computing

Material: https://computing.llnl.gov/tutorials/parallel_comp/

Christoph Federrath

https://computing.llnl.gov/tutorials/parallel_comp/


Why parallel computing?

Compared to serial computing, parallel computing is much better suited for 
modeling, simulating and understanding complex, real world phenomena

Main reason for Parallel Computing is that we can

SOLVE LARGER and MORE COMPLEX PROBLEMS



Parallel computing – applications

Use of parallel computing

Science and Engineering Industrial and Commercial

- Atmosphere, Earth, Environment
- Physics - applied, nuclear, particle, condensed matter,

high pressure, fusion, photonics
- Bioscience, Biotechnology, Genetics
- Chemistry, Molecular Sciences
- Geology, Seismology
- Mechanical Engineering - from prosthetics to spacecraft
- Electrical Engineering, Circuit Design, Microelectronics
- Computer Science, Mathematics
- Defense, Weapons

- "Big Data", databases, data mining
- Web search engines, web based business services
- Medical imaging and diagnosis
- Advanced graphics and virtual reality
- Networked video and multi-media technologies
- Collaborative work environments



Parallel computing – top computers worldwide

See current Top 500 list:
https://www.top500.org/lists/top500
/list/2021/06/?page=1

Top Australian Supercomputer:
Gadi (#44 in the world)

Parallel computing is the future

https://www.top500.org/lists/top500/list/2021/06/?page=1


Parallel computing – application areas

Source: https://www.top500.org/

https://www.top500.org/


Parallel computing – basic concepts

Solving a problem in serial (single processor)



Parallel version for solving the same problem

Parallel computing – basic concepts



Before diving into the details of parallelization, let’s have a look 
at the performance of Python versus C/C++ programs.

Parallel computing – basic concepts



Before diving into the details of parallelization, let’s have a look 
at the performance of Python versus C/C++ programs.

Example: summation of numbers

- Write a small python program that sums up all integers from 
1 to n and writes the sum to stdout.

- Use the argparse package to take an optional argument ‘-n’ to 
read n from the command line (if –n is not specified, let the 
program use n = 5e6 by default).

- First, use a for-loop to sum up the numbers.

- Time the part of the code that does the summation. This 
means let the code write how much time (in seconds) it took 
to execute the summation. Suggest to use the timeit package.

- Now use the numpy function numpy.sum() and time it again.

Parallel computing – basic concepts



Before diving into the details of parallelization, let’s have a look 
at the performance of Python versus C/C++ programs.

Example: summation of numbers

- Now let’s write a small C program that sums up the numbers.

- …

- We can use a python wrapper program to do the timing of the 
C code (beware of overheads) or time it directly in the C code.

- Play with compile optimization options such as –O3.

Parallel computing – basic concepts



4 main computer/architecture/operating classifications

Parallel computing – basic concepts



Single Instruction – Single Data (SISD)

Parallel computing – basic concepts



Single Instruction – Multiple Data (SIMD)

Parallel computing – basic concepts



Multiple Instruction – Single Data (MISD)

Parallel computing – basic concepts



Multiple Instruction – Multiple Data (MIMD)

Parallel computing – basic concepts



Parallel computing – scaling

Amdahl’s Law:

ASTR4004/ASTR8004
Astronomical Computing

Lecture 08

Christoph Federrath

23 August 2016

Parallel computing

1 Amdahl’s law

speedup =
1

P/N + S
(1)

Page 1 of 1

ASTR4004/ASTR8004
Astronomical Computing

Lecture 08

Christoph Federrath

23 August 2016

Parallel computing

1 Amdahl’s law

speedup =
1

P/N + S
(1)

P : Parallel fraction of the code
N : Number of processors/cores
S: Serial fraction of the code

Page 1 of 1

However: STRONG SCALING versus WEAK SCALING



Parallel computing – scaling

However: STRONG SCALING versus WEAK SCALING

FLASH code scaling for HD and MHD turbulence



Parallel computing – memory architectures

The two main parallel memory architectures

Shared memory
(e.g., OpenMP)

Distributed memory
(e.g., MPI)

- User-friendly programming perspective to 
memory

- Lack of scalability between memory and CPUs
- Programmer responsibility for 

synchronization constructs that ensure 
"correct" access of global memory

- Number of processors and size of memory 
increase proportionately

- Each processor can rapidly access its own 
memory without interference

- Cost effectiveness: can use commodity, off-the-
shelf processors (and networking)

- Programmer responsible for data communication 
between processors

- Non-uniform memory access times



Parallel computing – domain decomposition

Estimate the amount of memory and number of CPUs required

100483 cells



Parallel computing – memory architectures

Hybrid schemes (MPI+OpenMP)



Parallel computing – OpenMP example

Now basic parallel coding example with OpenMP…

OpenMP parallelization (shared-memory + threads)

Fork - Join Model



Parallel computing – automatic vs. manual parallelization

Automatic vs. Manual Parallelization

If you are beginning with an existing serial code and have time or budget 
constraints, then automatic parallelization may be the answer (e.g., OpenMP). 

However, there are several important caveats that apply to automatic 
parallelization:

- Wrong results may be produced
- Performance may actually degrade
- Much less flexible than manual parallelization
- Limited to a subset (mostly loops) of code
- May actually not parallelize code if the compiler analysis suggests 

there are inhibitors or the code is too complex



Message Passing Interface (MPI)

How to parallelize beyond a single node or single computer?

Parallel computing – MPI

(distributed-memory parallelization)



Message Passing Interface (MPI)

Parallel computing – MPI

All parallelism is explicit: the programmer is responsible for correctly identifying 
parallelism and implementing parallel algorithms using MPI constructs.

Reasons for using MPI

Standardization - MPI is the only message passing library that can be 
considered a standard. It is supported on virtually all HPC platforms.

Portability - There is little or no need to modify your source code when you 
port your application to a different computer.

Performance!!!

E.g., on Mac OS you can install MPI via macports: sudo port install mpich



Message Passing Interface (MPI)

Parallel computing – MPI

MPI uses objects called communicators and groups to define which 
collection of processes may communicate with each other

MPI processes are called “ranks”



Parallel computing – MPI

MPI communicators and groups



Parallel computing – MPI example

Now MPI example code …

MPI parallelization – 2 main communication types

Collective communicationPoint-to-point communication



MPI parallelization – domain decomposition

In hydro codes: space versus time decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

Parallel computing – domain decomposition



MPI parallelization – domain decomposition

In hydro codes: space versus time decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

Parallel computing – domain decomposition



MPI parallelization – domain decomposition

In hydro codes: space versus time decomposition

For example in the FLASH hydro-dynamical code: “Blocks”

Parallel computing – domain decomposition


