
ASTR4004/ASTR8004
Astronomical Computing

Assignment 4 (exam assignment)

Christoph Federrath, Mark Krumholz, Philip Taylor, Trevor Mendel

due Friday, 29 October 2021
(no extensions possible – exam assignment)

1 Project 1 – Fourier transforms and parallel com-
puting (multi-threaded FFT)

Here you will make a python program that reads a column density map of a molecular
cloud called ’The Brick’ near the Galactic Centre (you can read more about this
cloud in Federrath et al., 2016), apply mirroring and zero-padding to the image,
compute the Fast Fourier Transform (FFT) with the pyFFTW library (https://
pypi.python.org/pypi/pyFFTW), make a Fourier image and compute the power
spectrum of the column density map.

1. Download the observational column density map from http://www.mso.anu.
edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits. Use
the astropy lib to read the data map in the fits file (http://docs.astropy.
org/en/stable/io/fits/) into a numpy array.

2. Make a python function to produce an image of the map with a colour bar
and write the image to a pdf file named ’brick.pdf’. See the left-hand panel of
Figure 1 for an example thumbnail image of how this should look like.

3. Use the numpy functions np.fliplr and np.flipud to produce a mirrored
array and image. Write the image to a pdf file called ’brick mirrored.pdf’ (see
the middle panel of Figure 1 for a thumbnail).

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

column density map

0

1

2

3

4

5

6

7

8
1e23

0 100 200 300 400 500 600 700 800

0

200

400

600

800

1000

1200

mirrored column density map

0

1

2

3

4

5

6

7

8
1e23

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

mirrored and zero-padded column density map

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Fourier image of column density map

15

20

25

30

35

40

45

50

55

Figure 1: Left to right: original column density map, mirrored, zero-padded, and
log10 Fourier image. Make sure to reproduce these not so small as in this assignment,
but with readable font sizes; these are just meant as thumbnails to give you some
idea of what the output of your script should look like.

Page 1 of 4

https://pypi.python.org/pypi/pyFFTW
https://pypi.python.org/pypi/pyFFTW
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits
http://docs.astropy.org/en/stable/io/fits/
http://docs.astropy.org/en/stable/io/fits/


4. Now use the numpy function np.pad to pad zeros symmetrically to the left
and right of the image, such that the total dimensions become (1278, 1278).
Make an image of this called ’brick mirrored zped.pdf’ (see Fig. 1 for how this
should look.)

5. Install pyfftw. Make a 2D threaded FFTW (use 1, 2 or 4 threads) of the
mirrored-and-zero-padded column density map. Shift the k = (0, 0) position to
the centre of the Fourier image and write out an image called ’brick fourier image.pdf’.
The result of this should look like the last panel of Figure 1.

6. Compute the 1D power spectrum P (k) of the mirrored and zero-padded col-

umn density, where k =
√
k2
x + k2

y. Make a log-log plot of the power spectrum,

P (k), and write this out as an image called ’brick power spectrum.pdf’.

7. (Optional) scaling test: replicate the mirrored and zero-padded image N× in
the x and y direction. Try N = 10 to produce a very big array with (12780,
12780) points. Test the multi-threaded FFTW with 1, 2, 4, and 8 threads for
the parallelised FFT and produce a plot of speedup versus number of threads
for the FFTW part of your script.

Put everything into a single Bash-shell-executable python script that runs the entire
analysis with the input file (the column-density fits file) sitting in the same folder.
The script should automatically produce the images with the requested filenames
above (original column density image, mirrored, zero-padded, and Fourier image),
as well as the final plot of the column-density power spectrum.

(10 points)

2 Project 2 – numerical solution of ordinary dif-
ferential equations

Consider a simple harmonic oscillator: a spring with spring constant k is attached
to a mass m, and the displacement of the mass from its rest position is x. The mass
experiences a restoring force,

F = −kx. (1)

At time t = 0, the mass is released at rest at the initial position x(0), and is allowed
to oscillate.

2.1 Part 1

Write a python function that takes as inputs the value of the spring constant k, the
mass m, the initial displacement x(0), the amount of time for which to integrate T ,
and the number of times N at which the position should be recorded, and returns
the position and velocity of the mass at times 0, T/(N − 1), 2T/(N − 1), . . . , T .
Verify that your code matches the analytic solution for x(0) = 0.1 m, k = 50 N/m,
and m = 1 kg.

Page 2 of 4



2.2 Part 2

Modify your routine to that it works for a nonlinear spring; one with a restoring
force

F = −k1x− k2x
3. (2)

Make a plot comparing the solution for a simple harmonic oscillator with the pa-
rameters given in Section 2.1 and the solution for a non-linear oscillator with the
same values of x(0), k1, and m, and a nonlinear coefficient k2 = 103 N/m3.

(5 points)

3 Project 3 – Friends of Friends Program

In this question you will write a serial Friends of Friends program and use it to
analyse data from a cosmological simulation. The outline of such a code is provided
on Wattle (fof.c) along with a file containing the data (cosmo.txt). You should
submit two files for this question: a PDF with your responses & figures for each
part of the question; and the .c file containing your code.

1. Examine cosmo.txt. You’ll see that the first line contains an integer (number
of particles) and a float (simulation box size), and subsequent lines contain
data for each particle of the form [x, y, z, mass, type]. The positions have
units of kpc, and masses are in solar masses. Write a function that reads the
data from cosmo.txt and populates an array of structures in C. What is the
total number of particles?

2. The ‘type’ of each particle tells you if it is a gas (type=0), dark matter (1), star
(4), or black hole (5) particle. Define a linking length of 5 kpc and compare
the separation of all pairs of dark matter particles to this value; add any pair
closer than this distance to the same group. How many particles of each type
are there?

3. For each baryonic particle (i.e., the gas, stars, and black holes), find the closest
dark matter particle to it, and add it to that dark matter particle’s group. How
many groups (of any size) have you found?

4. Find the total mass as well as the gas, dark matter, stellar, and black hole
masses of each group. For groups with a stellar mass greater than 109 M�,
write these quantities to a file. How many of these massive groups are there?

5. Compile and run your program.

6. In a programming language of your choice (python, IDL, etc.) read in the
group mass data from the file you just produced. Plot histograms of logMDM

and logM∗, and scatter plots of logMgas and logMBH against logM∗. Write a
few sentences interpreting these plots physically.

(10 points)

Page 3 of 4



4 Project 4 - model selection

Here you will explore fitting multiple functional forms to observational data of the
blackhole mass, stellar velocity dispersion, and bulge mass.

1. Download the MBHdata.cat file from Wattle and examine its contents. A de-
scription of the individual columns is provided at the start of the file. Use
python to read in the file and store information on the black hole mass,
black hole mass uncertainty, and stellar velocity dispersion into three sepa-
rate numpy arrays.

2. Use the scipy.optimize.minimize routine to fit a simple linear model to
these data of the form

y = a1x + a2 (3)

where y = log(black hole mass) and x = log(stellar velocity dispersion). Note
that the quantities in MBHdata.txt are already in log! Your fit should incor-
porate the uncertainties on black hole mass.

3. Re-run your fit, but this time using a higher-order model of the form

y = a1 + a2x + a3x
2 + a4x

4. (4)

Make a plot showing the input data, with the best-fit curves from Equations
3 and 4 overlayed.

4. Use leave-one-out cross validation to report the average mean-squared error
for each model. Based on this, which model should you adopt? Note that you
should write your own code to run the cross validation, rather than using the
methods included as part of, for example, scikit-learn.

(5 points)

(Total 30 points)

Please submit your solutions via Turnitin by the assignment deadline. To upload the
files for each section, please name them to indicte the section number, and make a
tarball named <Uni-ID>.tar.gz, containing all submission files. Please note that
this is the exam assignment, so absolutely no extensions are possible!

References

Federrath, C., Rathborne, J. M., Longmore, S. N., et al. 2016, Astrophys. J., 832,
143

Page 4 of 4


	Project 1 – Fourier transforms and parallel computing (multi-threaded FFT)
	Project 2 – numerical solution of ordinary differential equations
	Part 1
	Part 2

	Project 3 – Friends of Friends Program
	Project 4 - model selection

