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(no extensions possible – exam assignment)

1 Validity of the gas/fluid approximation

In the following, calculate and discuss the conditions for approximating a collection
of particles as a gas or fluid. Order-of-magnitude calculations are sufficient.

(a) Calculate the particle mean free path (λ) of air on Earth (typical density of
air near the surface, typical temperature ∼ 300 K, etc.). Write down the size
scales over which air can be treated as a gas and over which it cannot.

(2 points)

(b) What is particle mean free path in the solar corona (density ρ ∼ 10−16 g cm−3)?
Start from this density and make use of the mean particle weight in the solar
corona. Briefly discuss (2–3 sentences) what the main difference is in comput-
ing λ for air and λ in the solar corona.

(2 points)

(c) Calculate the mean free path in a galaxy cluster, i.e., in the intra-cluster
medium (ICM). Compare this mean free path to the typical size of a galaxy
cluster and discuss briefly (again 2–3 sentences) the validity of the fluid/gas
approximation in the ICM.

(2 points)

(d) What is the particle mean free path in a molecular cloud? Compare two cases:
(1) assuming collisions of molecular hydrogen molecules if there are no charges
and/or no magnetic fields present, and (2) for the case where the cross section
for collisions would be primarily determined by electrostatic interactions.

(1 point)

(e) What would you do if you want to describe the dynamics of a system in which
particle collisions are extremely rare events? Only write 1–2 sentences.

(1 point)

2 Rankine-Hugoniot shock jump conditions

(a) Find the compression ratio r ≡ ρ2/ρ1 at a plane shock front in terms of the
upstream Mach number M = v1/c1, where c1 = (γP1/ρ1)

1/2 is the upstream
sound speed (subscripts 1 and 2 refer to the pre-shock and post-shock quanti-
ties, respectively). Assume that the gas flows along the shock normal.
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Hint: Use the hydrodynamic equations in conservation form to identify the
flux of mass, momentum and energy entering and leaving the shock front.

(5 points)

(b) A supernova remnant shock moves at ∼ 5,000 km/s into a part of the in-
terstellar medium with temperature of ∼ 104 K. Estimate the downstream
(post-shock) temperature, assuming the medium consists of ionised hydrogen
in full thermodynamic equilibrium.

(3 points)

(c) What would be the approximate temperature behind a shock front moving at
50,000 km/s, if full thermodynamic equilibrium were established? Why does
this approximation fail?

(2 points)

3 Evolution of a supernova remnant

Assume first the supernova remnant in its adiabatic phase: all the mass of the
remnant is concentrated in a thin shell located at the position of the shock at
radius r = rs(t), where M ≈ (4π/3)r3ρ1, with ρ1 being the density of the ambient
(interstellar) medium. Furthermore, the pressure P (t) interior to the shock can be
considered uniform and the equation of motion for the thin shell is given by

d

dt
(Mṙs) = 4πr2s P, (1)

where ṙs = drs/dt.

(a) Use the jump conditions for a strong shock of an ideal gas with an adiabatic
index γ = 5/3 to estimate the thickness ∆r of the shell in terms of rs (assume
the shell density equals the post-shock density).

(2 points)

(b) Given that in the Sedov phase, the total internal energy of the gas in the
remnant equals 80% of the explosion energy ESN, show that the equations of
motion have a solution of the form

rs = Atα. (2)

Find the constants A and α.

(4 points)

(c) Assume now that the shell cools rapidly. Because the cooling rate of the gas
is proportional to the density squared, there is a phase in the evolution when
the thermal energy of the freshly shocked gas can no longer be shared evenly
throughout the remnant, as it was the case in the energy-driven phase discussed
above. Most of the energy is radiated away and a cool dense shell forms around
the still hot interior. To a good approximation, the interior can be described
as a hot adiabatic gas bubble of constant mass with an equation of state as
before, P ∝ ργ with γ = 5/3. The evolution of the blast wave is now driven by
the adiabatic expansion of the bubble. Show that this pressure-driven ‘snow
plow phase’ admits again a solution of the form

rs ∝ tβ, (3)

Page 2 of 3



and find the index β.

Hint: the equation of motion of the shell, Eq. (1), still applies in this phase.

(4 points)

4 Magnetic breaking of a rotating gas disc

Consider a uniform gaseous disc of density ρcl and half-thickness Z rotating rigidly
with an initial angular velocity Ω0. Furthermore assume the disc is threaded by a
magnetic field B of strength B0, initially uniform and parallel to the rotation axis
of the disc. The magnetic field couples the disc (|z| ≤ Z) with the external medium
(|z| > Z) of density ρext, which is initially at rest. Use cylindrical coordinates
(R, φ, z), assume symmetry around the rotation axis, i.e., ∂φ = 0, and assume ideal
MHD.

(a) For this system, derive the evolution equation for the angular velocity Ω,
where vφ = RΩ, and the evolution equation for the toroidal component of the
magnetic field, Bφ. In your derivations, assume that vR � vφ, vz � vφ, and
BR � B0, allowing you to drop 2nd-order terms in the Euler and induction
equation. The final results should be

∂Ω

∂t
=

B0

4πR ρ

∂Bφ

∂z
, and (4)

∂Bφ

∂t
= B0R

∂Ω

∂z
. (5)

(4 points)

(b) Show that the evolution of the external medium can be expressed by the wave
equation

∂2Ω

∂t2
= v2A,ext

∂2Ω

∂z2
, (6)

with the Alfvén speed vA,ext = B0/(4πρext)
1/2 in the external medium.

(2 points)

(c) Derive the evolution equation of the angular velocity at the surface of the disc
(|z| = Z), using the torque per unit area N = RB0Bφ/(4π) that the magnetic
field exerts on the surface of the disc. The result should be

∂2Ωcl

∂t2
=

1

Z

ρext
ρcl

v2A,ext
∂Ω

∂z

∣∣∣∣
|z|=Z

(7)

Hint: The full torque is I∂Ω/∂t with the moment of inertia I for a cylinder.

(3 points)

(d) Combine Equations (6) and (7) to calculate the spin-down time of the disc.

Hint: Use the solution of Equation (6) at the disc surface and make the ansatz
Ω ∝ exp(−αt+ βz) to determine the constants α and β.

(3 points)

Please submit your solutions via Turnitin by the assignment deadline. Please note
that this is the exam assignment, so absolutely no extensions are possible!
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