
ASTR4004/ASTR8004
Astronomical Computing

Assignment 4 (exam assignment)

Christoph Federrath, Michael Ireland, Mark Krumholz

due Friday, November 01, 2019

1 Python project 1 – Fourier transforms and par-

allel computing (multi-threaded FFT)

Here you will make a python program that reads a column density map of a molecular
cloud called ’The Brick’ near the Galactic Centre (you can read more about this
cloud in Federrath et al., 2016), apply mirroring and zero-padding to the image,
compute the Fast Fourier Transform (FFT) with the pyFFTW library (https://
pypi.python.org/pypi/pyFFTW), make a Fourier image and compute the power
spectrum of the column density map.

1. Download the observational column density map from http://www.mso.anu.

edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits. Use
the astropy lib to read the data map in the fits file (http://docs.astropy.
org/en/stable/io/fits/) into a numpy array.

2. Make a python function to produce an image of the map with a colour bar
and write the image to a pdf file named ’brick.pdf’. See the left-hand panel of
Figure 1 for an example thumbnail image of how this should look like.

3. Use the numpy functions np.fliplr and np.flipud to produce a mirrored
array and image. Write the image to a pdf file called ’brick mirrored.pdf’ (see
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Figure 1: Left to right: original column density map, mirrored, zero-padded, and
log10 Fourier image. Make sure to reproduce these not so small as in this assignment,
but with readable font sizes; these are just meant as thumbnails to give you some
idea of what the output of your script should look like.

Page 1 of 4

https://pypi.python.org/pypi/pyFFTW
https://pypi.python.org/pypi/pyFFTW
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits
http://docs.astropy.org/en/stable/io/fits/
http://docs.astropy.org/en/stable/io/fits/


the middle panel of Figure 1 for a thumbnail).

4. Now use the numpy function np.pad to pad zeros symmetrically to the left
and right of the image, such that the total dimensions become (1278, 1278).
Make an image of this called ’brick mirrored zped.pdf’ (see Fig. 1 for how this
should look.)

5. Install pyfftw. Make a 2D threaded FFTW (use 1, 2 or 4 threads) of the
mirrored-and-zero-padded column density map. Shift the k = (0, 0) position to
the centre of the Fourier image and write out an image called ’brick fourier image.pdf’.
The result of this should look like the last panel of Figure 1.

6. Compute the 1D power spectrum P (k) of the mirrored and zero-padded col-

umn density, where k =
√
k2
x + k2

y. Make a log-log plot of the power spectrum,

P (k), and write this out as an image called ’brick power spectrum.pdf’.

7. (Optional) scaling test: replicate the mirrored and zero-padded image N× in
the x and y direction. Try N = 10 to produce a very big array with (12780,
12780) points. Test the multi-threaded FFTW with 1, 2, 4, and 8 threads for
the parallelised FFT and produce a plot of speedup versus number of threads
for the FFTW part of your script.

Put everything into a single Bash-shell-executable python script that runs the
entire analysis with the input file (the column-density fits file) sitting in the same
folder. The script should automatically produce the images with the requested
filenames above (original column density image, mirrored, zero-padded, and Fourier
image), as well as the final plot of the column-density power spectrum.

(10 points)

2 Python project 2 – Markov Chain Monte Carlo

In this assignment you will use emcee in python (http://dfm.io/emcee/current/)
or on github. You will simulate a periodic data set and fit a function to it. This could
be, e.g., a photometric dataset from Kepler, or a series of radial velocity points. Some
skeleton code (with many gaps!) is available here: http://www.mso.anu.edu.au/

~chfeder/teaching/astr_4004_8004/material/mcmc_assignment_hints.py.

1. Create a function using python and numpy that simulates data that take a
periodic function with a form:

v = a0 + a1t + a2 sin(a3t + a4) (1)

You should simulate data at a number of random times over an interval, and
include Gaussian errors for the data. The inputs ai should take the form of a
1-dimensional python array.
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2. Setting a0 = 0, a1 = 1, a2 = 1, a3 = 1 and a4 = 0, simulate a data set
from times t = 10 to t = 30, containing 100 points with Gaussian errors with
uncertainty 0.3.

3. Use emcee to fit to this dataset. Plot histograms of the fitted parameters –
do the results make sense? Are any of the parameter fits correlated? Try this
again for a4 = 3.

4. Show that the following is a re-parameterisation1 of Equation (2):

v = b0 + b1(t− 20) + b2 sin(b3t) + b4 cos(b3t) (2)

Which is better – Equation (2) or Equation (1) for a reliable run of emcee,
and why? The second set of parameters above (a0 = 0, a1 = 1, a2 = 1, a3 = 1
and a4 = 3) illustrates the difference well.

5. If Equation (1) is your model with uniform priors in all parameters but Equa-
tion (2) is used in emcee instead with uniform priors, this produces an implicit
prior on a2. What is it?

Include all python code in your assignment, as well as a write-up.

(10 points)

3 Python project 3 – numerical solution of differ-

ential equations

Consider a simple harmonic oscillator: a spring with spring constant k is attached
to a mass m, and the displacement of the mass from its rest position is x. The mass
experiences a restoring force,

F = −kx. (3)

At time t = 0, the mass is released at rest at the initial position x(0), and is allowed
to oscillate.

3.1 Part 1

Write a python function that takes as inputs the value of the spring constant k, the
mass m, the initial displacement x(0), the amount of time for which to integrate T ,
and the number of times N at which the position should be recorded, and returns
the position and velocity of the mass at times 0, T/(N − 1), 2T/(N − 1), . . . , T .
Verify that your code matches the analytic solution for x(0) = 0.1 m, k = 50 N/m,
and m = 1 kg.

1Re-parameterisation means that the b0 through b4 can be written in terms of a0 through a4.
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3.2 Part 2

Modify your routine to that it works for a nonlinear spring; one with a restoring
force

F = −k1x− k2x
3. (4)

Make a plot comparing the solution for a simple harmonic oscillator with the pa-
rameters given in Section 3.1 and the solution for a non-linear oscillator with the
same values of x(0), k1, and m, and a nonlinear coefficient k2 = 103 N/m3.

(10 points)

(Total 30 points)
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