
ASTR4004/ASTR8004
Astronomical Computing

Lecture 06

Christoph Federrath

12 August 2019

Extracting Data from Plots, Version control,
Interactive Data Language (IDL)

1 Extracting data from existing plots/graphs

1. Previously, we learned about plotting data from text files and/or functions in gnuplot.
Here we now learn how to grab data from existing plots to digitize them in order to make
our own plot of some published data from a graph. This can be very useful, because you
might be working on a research project where you produce data that you want to directly
compare with other existing data from the literature in the same plot frame. Instead of
having to read the data from the plot by hand/eye and making a table by hand, there
are nice tools that can make this process of extracting data from an existing plot much
easier for you. Here we will focus on WebPlotDigitizer, which is such a tool.

2. First go to https://automeris.io/WebPlotDigitizer/ and launch the App.

3. Go through the tutorial, which already has an example image of a plot loaded by default.
You can extract data points manually or automatically (selected by colour and masks).

4. The first step is to calibrate the axes of the plot and then you are ready to extract data
points.

5. Finally, the extracted data can be formatted as you wish and the extracted data pairs can
be copied into a text file, which you can then use for further processing, e.g., for plotting
with your own style and together with other data (e.g., from your own work), e.g., in
gnuplot or IDL or python, etc.

6. Try it by uploading an image of a different plot/graph, calibrate the axes and see how
you can extract data in manual and automatic mode. For example, you can upload the
density PDF plot produced earlier, with a fitted Gaussian line drawn in a different colour.
See if you can extract some data points of the fitted line and the underlying PDF data
itself. Format them and copy them to a text file, which you can then read in gnuplot, so
you can directly compare the original data and the extracted data.

Page 1 of 4

https://automeris.io/WebPlotDigitizer/

2 Version control

2.1 Basics of version control

1. Imagine you work on a code development project or you write a paper and you’d like to
keep track of changes and earlier versions of your code/paper. A neat way to achieve this
is to use version control software/tools.

2. Popular version control frontends (partially free or commercial, if you want repositories
to be private or shared by a large number of developers) are provided by services such as
http://www.bitbucket.org or http://www.github.com. These are primarily webpages
that allow you to share your code with others, browse the source code and keep track
of changes. For bigger projects, you can also establish teams that work on the different
pieces/modules of the same code.

3. A key element of these version control systems is that they keep their own files inside the
directory(ies) of your code, in order to store and update changes – basically to keep an
entire history of what’s been going on with the code; who made changes, what changes,
and when. They also allow you to revert to previous versions in case some bugs slipped
into the code or something broke at some stage.

4. In order to start a versioned code, you will need to install a version control system or
version control software. Some of the first bigger ones were Concurrent Versions System
(cvs) and Subversion (svn). Nowadays Mercurial (hg) and Git (git) are popular version
control systems. Here we will focus on git with some examples.

2.2 Starting a git repository

1. To get started with git, you have to install it on your computer. Then we pick a directory
with source code or any files that we want to keep under version-control and change into
it.

2. This is how we start a Git repository in that directory (for example in mycode/):
> cd mycode/

> git init .

3. Then type > git add [file1] [file2] [...] to add all of the relevant files that you
want to keep under version control.

4. Now we can check the status of the files by typing > git status. This brings up a list
of changes and a list of files that are in the directory (and subdirectories), but that are
not under version control. You can create a hidden file called .gitignore and add all
of the files that you want git to ignore, so they don’t annoy you every time you type
> git status.

5. Finally, once you are happy with the changes (say you added all files or if they were added
earlier you may have modified them when you develop your code further), you type
> git commit -m ’message describing change(s)’ [file_to_be_commited].

6. This last command commits the change to the file and creates a new version in the system,
which you can revert to later. Or when you make further changes to the same file, you
can compare it to the previously committed version by typing:
> git diff [file_to_check_changes_since_previous_commit]

Page 2 of 4

http://www.bitbucket.org
http://www.github.com

2.3 Uploading/Communicating repository to server

1. Up to this point, the version-controlled code just lives on your own computer, but we also
want to upload the code to a safe location on a server, in case something happens to your
own computer, but also in case we want to share the code with specific people or with
the entire public.

2. To do this, we can create an account on bitbucket.org and start a new repository or
import the existing repository from the previous steps. Note that if you sign up with your
ANU email address, your bitbucket account will automatically be an academic account,
which means that you can add an unlimited number of users to private repositories and
won’t have to pay for it – otherwise it costs something like USD $2 per user when exceeding
5 users :-(...so better take advantage of being part of the Uni!

3. Once configured correctly, i.e., providing the correct URL and paths, such that your
computer knows that it should upload changes in the local repository to the bitbucket or
github server, you can simply type
> git push

to push all the changes in the local copy to the server. This will then allow you to browse
the code online, to share it and to view changes to the version-controlled code in an
internet browser (basically, it’s just a nicer view of what you can get with > git status

and > git diff on your local working copy). You can also upload your public key (see
lecture 03) in your bitbucket account, so you don’t have to type your bitbucket password
to do commits, pulls, pushs, etc.

4. However, having the code on the server will also allow you to share it with others. There
are different options to do this, for example, cloning a repository, or forking or branching
a repository. We won’t go into details of that, but essentially, this allows one to get a
copy of the repository and continue working on it within their own local copy, such that
the global source repository is not damaged. However, changes by another user that are
deemed useful for the global copy of the repository can be merged in by issuing a so-called
pull-request.

5. In summary, when you develop code, it is a good idea to use a version control system.
What seems awkward at first is actually extremely useful once you get into trouble with
keeping track of changes based on your own strategies (e.g., keeping many earlier copies
of the same file/code). Version control software provides a standardised way of keeping
different versions of a code or simply a bunch of files that undergo regular changes.

3 The Interactive Data Language (IDL)

IDL was primarily developed by astronomers. Lots of code used in particular in the astro
community is still IDL code, hence we’re having a look at how its basics work. It is very similar
to python, which is now getting more popular, but IDL was probably one of the first more
widely used ’interpreted’ (as opposed to ’compiled’) programming languages.

3.1 Getting started

1. Login to malice and make a new directory IDL/ in your home dir:
> mkdir IDL

Page 3 of 4

bitbucket.org

2. Download the IDL startup package prepared for you: http://www.mso.anu.edu.au/

~chfeder/teaching/astr_4004_8004/material/IDL_startup_package.tar.gz

and copy it to malice into the new IDL/ directory.

3. Unpack the tarball. This will create subdirectories ASTROLIB/, MPFIT/, and textoidl/,
as well as three files: idlstartup, setcolors.pro, constants.pro.

4. ASTROLIB is a useful astronomy IDL library, MPFIT is an IDL non-linear fitting package,
and textoidl is a Latex-to-IDL string conversion library that lets you use Latex syntax
in IDL to make Greek letters, sub- and super-scripts and special symbols like you are
used to in Latex.

5. The idlstartup file is useful, because it controls the way IDL starts up (similar to how
.bashrc is run every time you start a new Bash session, idlstartup is run every time you
start IDL). In our case, it defines paths and automatically runs the script constants.pro,
which defines useful physical constants (the use of which, we will see below).

6. In order for IDL to know where to look for idlstartup, add this line to your .bashrc:
export IDL_STARTUP=${HOME}/IDL/idlstartup

This will make sure that idlstartup is executed everytime you start IDL.

3.2 Simple IDL tasks

1. Now that we have set up the IDL environment, we can start IDL:
> idl

As for gnuplot, this will lead you to the IDL command line from which IDL is controlled.

2. First, let’s make a simple calculation and print the result to the screen:
idl> print, 1+1

3. We can also directly define variables, modify them and print their content:
idl> a = 1+1

idl> a = a*3

idl> print, a

4. Finally, let’s do some astro calculation involving units. Now that the constants.pro

script is already loaded every time you start up IDL, we can use the constants defined in
there. For example, if we wanted to print the mass of the sun in CGS units or Newton’s
gravitational constant, we’d simply type:
idl> print, m_sol

idl> print, g_n

5. Those can then be combined to say calculate the freefall time (tff) of a typical star-forming
cloud with a density of ρ = 4× 10−19 g cm−3 (which corresponds to a gas number density
of about 105 particles per cubic centimetre; how/why?):
idl> rho = 4d-19

idl> t_ff = sqrt (3.0*!pi / (32.*g_n*rho))

idl> print, t_ff / (1d5*year)

Page 4 of 4

http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/IDL_startup_package.tar.gz
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/IDL_startup_package.tar.gz

	Extracting data from existing plots/graphs
	Version control
	Basics of version control
	Starting a cobaltgit repository
	Uploading/Communicating repository to server

	The Interactive Data Language (IDL)
	Getting started
	Simple IDL tasks

