
ASTR4004/ASTR8004
Astronomical Computing

Lecture 04

Christoph Federrath

05 August 2019

Bash, Remote Computing

1 Advanced methods for remote computing

1.1 Setting up an ssh tunnel

1. If you are connected to the VPN (see notes from last lecture), you can directly connect to
malice.anu.edu.au. However, if you are outside the ANU network and you cannot use
the VPN client for some reason, there is still another possibility to connect to the MSO
servers. This requires you to first connect to a specific server at MSO that is accessible
from the outside world. This server is called ’msossh1.anu.edu.au’.

2. In order to connect to malice.anu.edu.au, we simply connect to msossh1.anu.edu.au

first and then ssh from msossh1.anu.edu.au to malice.anu.edu.au. But in order to
make our life easier, especially when copying files between remote computers, we can set
up an ssh tunnel. Do this by adding/modifying the following lines in your .ssh/config:
Host malice

Hostname malice.anu.edu.au

ProxyCommand ssh -q -a -Y [your_mso_username]@msossh1.anu.edu.au nc %h %p

User [your_mso_username]

Save and close .ssh/config.

3. Now you should be able to connect to malice.anu.edu.au by using > ssh -Y malice

directly from your local computer. It will probably ask for your password twice; the first
time when it connects to msossh1.anu.edu.au and the second time when it connects
from there to malice.anu.edu.au. So what this effectively does is that we tunnel through
msossh1 to malice.

4. As earlier, add a ’malice’ alias to your .alias file as a shortcut for ssh -Y malice.

1.2 Copying files/data across remote computers

1. With the changes to .ssh/config that we made earlier, it is now also very simple to
copy files between your computer and the remote host. Lets copy the density PDF data
file from assignment 1 into your home directory on malice. First, download the data file
to your local computer (if you don’t have it already) from http://www.mso.anu.edu.au/

Page 1 of 4

http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/mM4_10048_pdfs/EXTREME_hdf5_plt_cnt_0050_dens.pdf_ln_data
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/mM4_10048_pdfs/EXTREME_hdf5_plt_cnt_0050_dens.pdf_ln_data

~chfeder/teaching/astr_4004_8004/material/mM4_10048_pdfs/EXTREME_hdf5_plt_

cnt_0050_dens.pdf_ln_data

2. Now copy the data file to malice using scp (’secure copy’):
> scp EXTREME_hdf5_plt_cnt_0050_dens.pdf_ln_data malice:

Note that you can use the tab key to auto-complete the rest of the awkward filename.
If you just provided the initial few letters ’EX’ and hit the tab key, the shell should
automatically complete the rest of the filename. Note also that when you start > scp and
then hit the tab key twice, you will be given a list of possible options for files in this
directory. This is a very useful auto-completion function of the shell. Once you executed
the scp command, you should see the file being transferred to malice. Note that the
colon behind ’malice’ refers to your home directory on malice. If you want to copy the
file somewhere else, you just have to expand the path to the destination folder on malice
after the colon.

2 Mounting remote file systems

1. If you are frequently accessing files on a remote host and would like to use them on your
computer, you can use sshfs to mount a remote file system on your computer. This
means you don’t have to explicitly copy files every time, but they will simply be present
in on of your local directories on your laptop and only if needed, will the files in there be
copied via the network

2. For example, if we want to mount your $HOME from the MSO network on your laptop,
we can first create a directory in your local (on your laptop) computer, called ’mso home’:
> mkdir ~/mso_home

3. Now we mount your home dir at MSO into this folder: > sshfs malice: ~/mso_home/

4. Be very careful when move files in or out of this directory ~/mso_home, because any
modification of it locally on your laptop will be exactly reflected on your home dir in the
MSO system. Moreover, the transfer of data goes via the network, so if you do this at your
home it can take bandwidth from your internet connection, depending on the operations
that you are doing in this directory; e.g., copying a 1 GB file in or out of ~/mso_home will
take time depending on your internet connection and will of course transfer that amount
of data.

5. You can un-mount the directory (on Mac OS) via: > diskutil unmount ~/mso_home/’

2.1 Using rsync to create backups and to copy large data sets; use
of tarballs

1. Download the tarball (a set of files bundled together in one compressed file) from http://

www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/mM4_10048_pdfs/

EXTREME_pdfs.tar.gz

2. Create a new directory on your local computer called ’astro comp’ in your home directory:
> mkdir astro_comp

3. Now move EXTREME pdfs.tar.gz into this new directory:
> mv EXTREME_pdfs.tar.gz astro_comp/

...and change into astro comp/

Page 2 of 4

http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/mM4_10048_pdfs/EXTREME_hdf5_plt_cnt_0050_dens.pdf_ln_data
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/mM4_10048_pdfs/EXTREME_hdf5_plt_cnt_0050_dens.pdf_ln_data
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/mM4_10048_pdfs/EXTREME_hdf5_plt_cnt_0050_dens.pdf_ln_data
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/mM4_10048_pdfs/EXTREME_pdfs.tar.gz
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/mM4_10048_pdfs/EXTREME_pdfs.tar.gz
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/mM4_10048_pdfs/EXTREME_pdfs.tar.gz

4. Decompress and un-tar the tarball, using:
> tar -zxvf EXTREME_pdfs.tar.gz

This should generate 71 files. Do you remember how to check the total number of files in
astro comp/?

5. Now lets make a complete backup of the directory astro comp/ and all the files in it
by sending a copy to malice. First change back into your home directory on your local
machine. Then do:
> rsync -av --stats astro_comp/ malice:astro_comp/

This generates a complete 1:1 copy of your local directory astro comp/ in your malice’s
home directory with the same directory name there. Please have a look at the status
summary output when rsync returns from doing its job. Actually, rsync can be used
to backup data without having to transfer/copy all the files every time, but instead it
only transfers changes. For instance, if you now run the same rsync command from above
again, you will see that no files will be transferred (because nothing changed in your
local copy). If, however, you were to modify one or more of the files in astro comp/ and
you do the rsync again, only the modified files will be transferred. This is really useful
also if you have many many big files to transfer to/from a computer or between different
hosts, because if some of the files can’t be transferred within a day or so and/or the ssh
connection closes for some reason, at least rsync will continue from the same point where
it stopped to synchronise the folders and files, instead of starting the copy process from
scratch. BTW: an important part of astronomical computing is to make regular backups
of your files :)

2.2 Use of nohup and nice

1. Make a Bash script called nohup script.sh that prints the current time every second
for the next hour. Use a bash loop and date to print the current date and time. Let the
code pause for 1 second within each loop increment, by using sleep 1.

2. Start the script to see if it works. It should print the date and time to the screen every
second. Note that you can stop the script by pressing Ctrl-C.

3. Now start the script, but redirect the stdout and stderr to a file shell.out. While the
script is running in one shell, open another shell and look into the file. You should see
that every second a new line is appended with the current date and time to the end of
the file.

4. Start the same script, but this time with nohup. Simply place nohup in front of the
command that starts the script and & after the command. nohup is a wrapper for any
command that you want to start such that it does not hang up (nohup means ’no hang
up’) when you log out. The final & at the end of a command line is used to start that
process in the background, which means that you get the shell back when you hit enter,
but the program keeps running in the background.

5. Use tail -f shell.out to show the end of the output file. It also follows any changes
to the file (the -f option). You should see how the file grows and how every second, the
date and time is appended as a new line to the file.

6. Now log out of the MSO server. Since we have started the script with nohup, it should
not hang up after we logged out, but instead will keep running on the server even though

Page 3 of 4

we are logged out. So, lets login again and see if the script kept on writing the time to
the file while we were away.

7. Caution: if you start something with nohup, it will keep running unless it’s killed by the
user or an admin. We made the script so it would stop after one hour, but lets simply kill
the script by hand right now. To achieve that, we use the ps command, which shows all
running processes on the host. Lets first add a customised version of ps to our .alias

file to make it an easy task to show all our own processes (there is a whole bunch of other
processes that are also running simultaneously on the server, but that we don’t want to
be listed). Add the following alias to your aliases:
alias myps=’ps -elf |grep $USER’

and log out and log back in for this change to take effect or simply source .alias in
your home directory.

8. Now do > myps in the shell. This should list your current active processes (see the pipe
to grep $USER). Find the process ID that belongs to the running script that we started
with nohup and kill the job using:
> kill -9 [PID]

where you have to replace ’[PID]’ with the process ID of the job to be killed. Alternatively,
you can use
> killall ’bash’

which kills jobs based on their name. This will kill all your running bash scripts.

9. Note: You’d normally want to use nohup for jobs/scripts that take very long to run, for
example over night or even longer and you don’t want to keep an active shell open to the
remote host while the script is running. This is when nohup is really useful. However, we
should consider that other users might be running jobs or that a user could be physically
sitting at that computer/host at the same time and trying to do some work. So a nice
thing in this case is to use nice, which means that your job will only use CPU time (or
compute power) when it is available. So in case the machine is under heavy load and
running many processes at the same time, if you started your script with nohup nice

./script.sh &, then your job won’t block the jobs of other users so much, because it
waits for times when the machine is not under heavy work load.

Page 4 of 4

	Advanced methods for remote computing
	Setting up an cobaltssh tunnel
	Copying files/data across remote computers

	Mounting remote file systems
	Using rsync to create backups and to copy large data sets; use of tarballs
	Use of cobaltnohup and cobaltnice

