Massive Star Formation

Christoph Federrath

Canberra – 08 May 2018

Australian Government Australian Research Council

Australian National University

Visible Light Digitized Sky Survey

Dark regions within the Visible nebula are obscured by dust.

> New Massive Stars Found Hiding in Famous Nebula

Near-Infrared Two-Micron All-Sky Survey

Near-infrared light passes through the dust, revealing more stars.

> New Massive Stars Found Hiding in Famous Nebula

Mid-Infrared Spitzer Space Telescope

The dust clouds themselves glow in mid-infrared light.

> New Massive Stars Found Hiding in Famous Nebula

Visible Light Digitized Sky Survey

Near-Infrared Two-Micron All-Sky Survey

Mid-Infrared Spitzer Space Telescope

> New Massive Stars Found Hiding in Famous Nebula

Turbulence Stars Feedback

Carina Nebula, NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA), and NOAO/AURA/NSF

The Star Formation Paradigm

DIE ENTWICKLUNGSSTUFEN DER STERNENTSTEHUNG

Literature:

- Zinnecker & Yorke (2007, Annual Reviews of Astronomy and Astrophysics)
- Tan et al. (2014, Protostars & Planets VI)

Table 1 Main-sequence massive star definition (logarithmic mass ranges)

Mass	Designation	Sp. type
8–16 M _☉	Early B-type massive stars	B3V to B0V
16−32 M _☉	Late O-type massive stars	O9V to O6V
32–64 M _☉	Early O-type massive stars	O5V to O2V ^a
64–128 M _☉	O/WR-type massive stars	WNL-H ^b

Massive Star Formation

Massive Star Formation

Figure 2

Hubble Space Telescope optical/IR image of the dense massive young cluster R136/30Dor (courtesy of M.J. McCaughrean; FOV \sim 30 arcsec \times 30 arcsec or 7.5 pc \times 7.5 pc). Dozens of massive O stars are found crowded within the half-light radius of 2 pc (Brandl et al. 1996). (a) A VLT image of NGC 3603 (Brandl et al. 1999) and (b) a VLT image of the Trapezium Cluster in Orion (McCaughrean 2001) are shown as these two galactic clusters would be seen if they were located at the distance of R136 in the Large Magellanic Cloud (50 kpc) and imaged with similar angular resolution (see Zinnecker 2002).

Zinnecker & Yorke (2007) Annu. Rev. Astron. Astrophys.

Why care about the virial parameter?

Hennebelle & Chabrier (2011) : "multi-freefall model"

8

Why care about the virial parameter?

Hennebelle & Chabrier (2011) : "multi-freefall model"

Federrath & Klessen (2012)

Why care about the virial parameter?

Statistical Theory for the
Star Formation Rate:
$$p(s) = \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left(-\frac{(s-s_0)^2}{2\sigma_s^2}\right)$$
SFR ~ Mass/timefreefall mass
time fraction $s = \ln(\rho/\rho_0) - t_{\rm ff}(\rho) = \left(\frac{3\pi}{32G\rho}\right)^{1/2}$ SFR_{ff} $= \epsilon \int_{s_{\rm crit}}^{\infty} \frac{t_{\rm ff}(\rho_0)}{t_{\rm ff}(\rho)} \frac{\rho}{\rho_0} p(s) \, ds = \epsilon \int_{s_{\rm crit}}^{\infty} \exp\left(\frac{3}{2}s\right) p(s) \, ds$ $= \frac{\epsilon}{2} \exp\left(\frac{3}{8}\sigma_s^2\right) \left[1 + \exp\left(\frac{\sigma_s^2 - s_{\rm crit}}{\sqrt{2\sigma_s^2}}\right)\right]$ Hennebelle & Chabrier (2011) : "multi-freefall model"SFR_{ff} $SFR_{\rm ff} \left(\frac{\alpha_{\rm vir}, \mathbf{b}}{2E_{\rm kin}/E_{\rm grav}} \int \mathbf{M}\right)$ $\leq FR_{\rm ff} \left(\frac{\alpha_{\rm vir}, \mathbf{b}}{2E_{\rm kin}/E_{\rm grav}} \int \mathbf{M}\right)$ SFR_{ff} $SFR_{\rm ff}(\alpha_{\rm vir}, \mathbf{b}, \mathbf{M})$ $\leq Federrath et al. 2008$ SFR_{ff} $SFR_{\rm ff}(\alpha_{\rm vir}, \mathbf{b}, \mathbf{M})$ $\leq Federrath et al. 2008$ SFR_{ff} $Federrath et al. 2008$

Jet Feedback in Binary Star Formation

Jet structure and power depend on binary separation \rightarrow different star mass \rightarrow Challenge for understanding and modelling the IMF!

The Star Formation Rate – Magnetic fields

 $\begin{array}{ll} {\rm SFR}_{\rm ff} \mbox{ (simulation)} = 0.46 & \times 0.63 & {\rm SFR}_{\rm ff} \mbox{ (simulation)} = 0.29 \\ {\rm SFR}_{\rm ff} \mbox{ (theory)} & = 0.45 & \times 0.40 & {\rm SFR}_{\rm ff} \mbox{ (theory)} & = 0.18 \\ \hline \mbox{ Magnetic field reduces SFR and fragmentation (by factor 2)} \rightarrow \mbox{ IMF, Massive Stars} \\ {\rm Padoan \& Nordlund \mbox{ (2011); Padoan et al. (2012); Federrath \& Klessen \mbox{ (2012)}} \end{array}$

Massive Star Formation – HII regions

Density	Azimuthal Velocity	Vertical Momentum Density
0.632 Myr 20.702 <i>M</i> _☉		0
0.650 Myr 25.584M _☉		
0.666 Myr 26.118 M _☉		
$\begin{array}{c} \log_{10} \rho \text{ in g cm}^{-3} \\ -18.0 - 17.0 - 16.0 - 15.0 - 14.0 \end{array}$	$v_{\varphi} \text{ in } 10^5 \text{cm s}^{-1}$ -5.0 -2.5 0 2.5 5.0	$\rho v_z \text{ in } 10^{-12} \text{g cm}^{-2} \text{ s}^{-1} \\ -1.0 -0.5 0 0.5 1.0$

Peters et al. (2010)

Primordial Star Formation

Christoph Federrath

Canberra – 09 May 2018

Australian Government Australian Research Council

Australian National University

Formation of the First Stars in the Universe

mini haloes

Hirano et al. (2015)

Physical Properties of Primordial Clouds

Similar to massive cores, but warmer (few hundred K)

Susa et al. (2014)

Star Formation – Chemistry / Heating / Cooling

Yoshida et al. (2006)

Star Formation – Chemistry / Heating / Cooling

Chemistry / Heating / Cooling: (Glover+07,10, Micic+12, Clark+12)

Physical Properties of Primordial Clouds

Clark et al. (2011)

Formation of the First Stars: Fragmentation

Formation of the First Stars: Fragmentation

Formation of the First Stars: IMF

Primordial IMF from simulations so far...

Hirano et al. (2015)

Formation of the First Stars: IMF

Susa et al. (2014)

Primordial IMF from simulations so far...

Formation of the First Stars in the Universe

Important physics missing: no magnetic fields, no jet feedback

\rightarrow Our simulation methods allow us to predict the IMF of the First Stars

 \rightarrow Indirect constraints on First Stars IMF: by e.g., Norris et al. (2013)

and near future observations with LSST, JWST, GMT, E-ELT

Dynamo-amplified Magnetic Fields

Movies available: http://www.mso.anu.edu.au/~chfeder/pubs/dynamo_grav/dynamo_grav.html

Federrath et al. (2011)

Jet Feedback Subgrid Model

Federrath et al. 2014, ApJ 790, 128

List of SGS outflow parameters.

SGS Parameter	Symbol	Default	Reference
Outflow Opening Angle	θ_{out}	30°	[1]
Mass Transfer Fraction	$f_{ m m}$	0.3	[2]
Jet Speed Normalization ^a	$ \mathbf{V}_{\mathrm{out}} $	$100{\rm kms^{-1}}$	[3]
Angular Momentum Fraction	f_{a}	0.9	[4]
Outflow Radius	$r_{ m out}$	$16 \Delta x$	Section 4

Notes. ^a The outflow velocities are dynamically computed according to the Kepler speed at the footpoint of the jet, $|\mathbf{V}_{out}| = 100 \,\mathrm{km \, s^{-1}} (M_{sink}/0.5 \, M_{\odot})^{1/2}$ (see Equation 13). References: [1] Blandford & Payne (1982); Appenzeller & Mundt (1989); Camenzind (1990); [2] Hartmann & Calvet (1995); Calvet (1998); Tomisaka (1998); Bacciotti et al. (2002); Tomisaka (2002); Lee et al. (2006); Cabrit et al. (2007); Lee et al. (2007); Hennebelle & Fromang (2008); Duffin & Pudritz (2009); Bacciotti et al. (2011); Price et al. (2012); Seifried et al. (2012); [3] Herbig (1962); Snell et al. (1980); Blandford & Payne (1982); Draine (1983); Uchida & Shibata (1985); Shibata & Uchida (1985, 1986); Pudritz & Norman (1986); Wardle & Königl (1993); Bacciotti et al. (2000); Königl & Pudritz (2000); Bacciotti et al. (2002); Banerjee & Pudritz (2006); Machida et al. (2008); [4] Pelletier & Pudritz (1992); Bacciotti et al. (2002); Banerjee & Pudritz (2006); Hennebelle & Fromang (2008).

Outflow mass: $M_{\text{out}} = f_{\text{m}} M_{\text{acc}} \Delta t$ Outflow velocity: $|\mathbf{V}_{\text{out}}| = \left(\frac{GM_{\text{sink}}}{10 R_{\odot}}\right)^{1/2} = 100 \,\text{km s}^{-1} \left(\frac{M_{\text{sink}}}{0.5 M_{\odot}}\right)^{1/2}$

Outflow angular momentum: $\mathbf{L}_{out} = f_{a} \left(\mathbf{S}'_{sink} - \mathbf{S}_{sink} \right) \cdot \mathbf{S}'_{sink} / |\mathbf{S}'_{sink}|$

Outflow/Jet Feedback

NGC1333 Image credit: Gutermuth & Porras

Star Formation is Inefficient (Federrath 2015, MNRAS 450, 4035)

Turb

Turb+

The role of outflow/jet feedback

Movies available: https://www.mso.anu.edu.au/~chfeder/pubs/outflow_model/outflow_model.html

Federrath et al. 2014, ApJ 790, 128

Implications for the stellar initial mass function (IMF)

Federrath et al. 2014, ApJ 790, 128

Outflow/Jet feedback reduces average star mass by factor ~ $3 \rightarrow IMF!$