ASTR4004/ASTR8004

Astronomical Computing
Assignment 4

Christoph Federrath, Michael Ireland, Mark Krumholz

due Tuesday, October 18, 2016, 09:15am

1 Python project 1 — Fourier transforms and par-
allel computing (multi-threaded FFT)

Here you will make a python program that reads a column density map of a molecular
cloud near the Galactic Centre, apply mirroring and zero-padding to the image,
compute the Fast Fourier Transform (FFT) with the pyFFTW library (https://
pypi.python.org/pypi/pyFFTW), make a Fourier image and compute the power
spectrum of the column density map.

1. Download the observational column density map from http://www.mso.anu.
edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits. Use
astro-py lib to read the data map in the fits file (http://docs.astropy.
org/en/stable/io/fits/) into a numpy array.

2. Make a python function to produce an image of the map with a colour bar
and write the image to a pdf file named "brick.pdf’. See the left-hand panel of
Figure 1 for an example of how this should look like.

3. Use the numpy functions np.fliplr and np.flipud to produce a mirrored
array and image. Write the image to a pdf file called "brick_mirrored.pdf’ (see
the middle panel of Figure 1 for a thumbnail).

Figure 1: Left to right: original column density map, mirrored, zero-padded, and
log,, Fourier image.

Page 1 of 4

https://pypi.python.org/pypi/pyFFTW
https://pypi.python.org/pypi/pyFFTW
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits
http://docs.astropy.org/en/stable/io/fits/
http://docs.astropy.org/en/stable/io/fits/

4. Now use the numpy function np.lib.pad to pad zeros symmetrically to the
left and right of the image, such that the total dimensions become equal (1278,
1278). Make an image of this called 'brick_mirrored_zped.pdf’ (see Fig. 1 for
how this should look.)

5. Install pyfftw, e.g., via sudo port install py-pyfftw. Make a 2D threaded
FFTW (use 1, 2 or 4 threads) of the mirrored-and-zero-padded column density
map. Shift the k = (0,0) position to the centre of the Fourier image and write
out an image called 'brick fourier_image.pdf’. The result of this should look
like the last panel of Figure 1.

6. Bin the Fourier-transformed mirrored-and-zero-padded column density array
a in wavenumber k = \/k? + k3, to obtain the power spectrum P(k),

P(k) dk = 27r/&(k) i (k) k dk, (1)

where a* is the complex conjugate of a. Do this by defining concentric shells
in wavenumber space around the centre of the Fourier-transformed image with
dk equal to one cell size in the Fourier image. Use the following construction
to get the length of the k& vector in each pixel of the image (with max_dim=1278
based on the size of Fourier image):

do the k-binning
first define a linear k array
(same in x and y, because it’s a square with max_dim~2 cells)
kxy = np.linspace(-max_dim/2, max_dim/2-1, num=max_dim)
k1l = np.zeros((max_dim,max_dim))
k2 = np.zeros((max_dim,max_dim))
for n in range(0,max_dim):
ki[n,:] = kxy
k2[:,n] = kxy
define abs of k vector in each image pixel
k_image = np.sqrt(kl*kl + k2xk2)

This gives you a 2D array k_image with the absolute values of the k vectors
in each cell of the Fourier image.

Now use a loop over all k values and search for the indices that fall into each
shell from k to k + dk. Sum up all the values in the Fourier image with the
indices just selected. Do this for each k. Here are two useful constructions to
achieve this:

define power spectrum and loop over all k to fill it up
Pk = np.zeros(max_dim/2+1)

k = np.linspace(0, max_dim/2, num=max_dim/2+1)

start loop

indices_in_k_shell =
np.where((k_image >= ik) & (k_image < ik+1))

..., where the loop goes over ik.

Page 2 of 4

1059

1058 |

1056 |

1055 L L
10° 10! 102 103
k

Figure 2: Power spectrum.

7. Make a log-log plot of the power spectrum, P(k), and write this out as an image
called ’brick_power_spectrum.pdf’. The result should look like in Figure 2.

8. Bonus assignment; scaling test: replicate the mirrored and zero-padded image
Nx in the z and y direction. Try N = 10 to produce a very big array with
(12780, 12780) points. Test the multi-threaded FFTW with 1, 2, 4, and 8
threads for the parallelised FFT and produce a plot of speedup versus number
of threads for the FFTW part of your script.

Put everything into an executable python script that runs the entire analysis with
the input file (the column density map fits file) sitting in the same folder. The script
should automatically produce the images (original column density image, mirrored,
zero-padded, and Fourier image), as well as the final plot of the column density
power spectrum.

2 Python project 2 — Markov Chain Monte Carlo

In this assignment you will use emcee in python. You will simulate a periodic
data set and fit a function to it. This could be e.g. a photometric dataset from
Kepler, or a series of radial velocity points. Some skeleton code (with many gaps!)
is included here: http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_
8004/material/assignment_hints.py.

1. Create a function using python and numpy that simulates data that take a
periodic function with a form:

v = ap + ait + agsin (27 (ast + ay)) (2)

Page 3 of 4

http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/assignment_hints.py
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/assignment_hints.py

You should simulate data at a number of random times over an interval, and
include Gaussian errors for the data. The inputs a; should take the form of a
1-dimensional python array.

2. Setting ag = 0, a1 = 1, a3 = 1, a3 = 1 and a4 = 0, simulate a data set
from times ¢t = 0 to ¢t = 1.5, containing 100 points with Gaussian errors with
uncertainty 0.5.

3. Use emcee to fit to this dataset. Plot histograms of the fitted parameters - do
the results make sense? Are any of the parameter fits correlated?

4. a4 ends up being very “wrong” due to a 27 phase ambiguity. How could you
fix this?

Include all python code in your assignment.

3 Python project 3 — numerical solution of differ-
ential equations

Consider a simple harmonic oscillator: a spring with spring constant k is attached
to a mass m, and the displacement of the mass from its rest position is z. The mass
experiences a restoring force,

F = —ka. (3)

At time t = 0, the mass is released at rest at the initial position z(0), and is allowed
to oscillate.

3.1 Part1l

Write a python function that takes as inputs the value of the spring constant £, the
mass m, the initial displacement x(0), the amount of time for which to integrate T,
and the number of times N at which the position should be recorded, and returns
the position and velocity of the mass at times 0, T'/(N — 1), 2T'/(N — 1), ..., T.
Verify that your code matches the analytic solution for z(0) = 0.1m, k¥ = 50 N/m,
and m = 1kg.

3.2 Part 2

Modify your routine to that it works for a nonlinear spring; one with a restoring
force

F = —]{Jll‘ —]{?21’3. (4)
Make a plot comparing the solution for a simple harmonic oscillator with the pa-
rameters given in Section 3.1 and the solution for a non-linear oscillator with the
same values of z(0), k;, and m, and a nonlinear coefficient k; = 103 N/m?3.

Please send your scripts/responses/produced figures for these projects to mailto:
christoph. federrath@anu. edu. au by the assignment deadline.

Page 4 of 4

mailto:christoph.federrath@anu.edu.au
mailto:christoph.federrath@anu.edu.au

	Python project 1 – Fourier transforms and parallel computing (multi-threaded FFT)
	Python project 2 – Markov Chain Monte Carlo
	Python project 3 – numerical solution of differential equations
	Part 1
	Part 2

