Grid-based Hydrodynamics

Christoph Federrath

- Complex fluid dynamics (equations are non-linear, 3D)
- Complex physics: turbulence, gravity, radiation, magnetic fields, etc.
- Large spatial and temporal scales involved

Star Formation

M51: The Whirlpool Galaxy

Optical

Infrared

Infrared: NASA, ESA, M. Regan & B. Whitmore (STScI), & R. Chandar (U. Toledo); Optical: NASA, ESA, S. Beckwith (STScI), & the Hubble Heritage Team (STScI/AURA)

Fundamentals of SPH and grid

Smoothed Particle Hydrodynamics (SPH) (Lucy 1977; Gingold & Monaghan 1977)

$$\rho(\mathbf{r}) = \sum_{b} m_{b} W(\mathbf{r} - \mathbf{r}_{b}, h)$$

$$\nabla A(\mathbf{r}) = \sum_{b} m_{b} \frac{A_{b}}{\rho_{b}} \nabla W(\mathbf{r} - \mathbf{r}_{b}, h)$$

$$W(x,h) = \frac{1}{h\sqrt{\pi}}e^{-(x^2/h^2)}$$

Adaptive Mesh Refinement (AMR) (Berger & Collela 1989)

- Hydro variables are averages in cells
- Compute fluxes through cell faces
- Simple data structure: indexing
- Finite Volume vs. Finite Difference

R. Leveque: "Nonlinear Conservation Laws and Finite Volume Methods for Astrophysical Fluid Flow"

Fundamentals of SPH and grid

Comparison of SPH and grid in supersonic turbulence

TWO REGIMES OF TURBULENT FRAGMENTATION AND THE STELLAR INITIAL MASS FUNCTION FROM PRIMORDIAL TO PRESENT-DAY STAR FORMATION

PAOLO PADOAN,¹ ÅKE NORDLUND,² ALEXEI G. KRITSUK,¹ MICHAEL L. NORMAN,¹ AND PAK SHING LI³ Received 2006 October 16; accepted 2007 February 16

Their conclusion:

"SPH simulations of large scale star formation to date fail in all three fronts: numerical diffusivity, numerical resolution, and presence of magnetic fields. This should cast serious doubts on the value of comparing predictions based on SPH simulations with observational data (see also Agertz et al. 2006). "

Motivation (role of supersonic turbulence for star formation)

- Setup (Phantom and FLASH):
 - 1. Same initial conditions: uniform density, zero velocities
 - 2. Same turbulence forcing!
 - 3. Driven to Mach number 10
 - 4. Resolutions: 128³, 256³ and 512³ (134,217,728) both grid and SPH

Density Probability Distribution Function (PDF):

Velocity spectra, v (VOLUME-weighted)

Velocity spectra, ρ^{1/3}v (DENSITY-weighted)

Grid code less dissipative

SPH code slightly less dissipative

Influence of β -viscosity in SPH on the modelling of strong shocks

β=1

β=4

Particle interpenetration for $\beta < 4$

Conclusion (Price & Federrath 2010, MNRAS 406, 1659)

Convergence of SPH and grid

Computational time pure hydro (no gravity):

FLASH grid about 20 times faster than Phantom SPH

Hydrodynamical Turbulence

World's largest simulations of turbulence using 4096³ grid cells

(Federrath 2013, MNRAS 436, 1245)

The basics of grid-based hydrodynamics

1. Introduction

- 2. Equations of hydrodynamics
- 3. Advection
- 4. Flux conservation and flux limiters
- 5. Conservative grid-based hydrodynamics
- 6. Basics of Riemann problem -> Riemann solvers
- 7. Adaptive-mesh refinement and sink particles

Lecture based on a lecture given by Kees Dullemond, 2009/2010, Heidelberg

Literature: Randall J. LeVeque, "Finite Volume Methods for Hyperbolic Problems" (Cambridge Texts in Applied Mathematics)

The basics of grid-based hydrodynamics

Advection test, IDL code

Flux-conserving grid-based hydrodynamics

Donor-cell advection:

Piecewise linear subgrid model for flux:

Donor-cell is quite diffusive ->
 Use higher-order subgrid model

$$q(x, t = t_n) = q_i^n + \sigma_i^n (x - x_i)$$
(slope)

Choice of slope

"MUSCL (Monotonic Upwind-centered Scheme for Consveration Laws)"

Flux-conserving grid-based hydrodynamics

Piecewise linear subgrid model for flux:

Donor-cell is quite diffusive ->
 Use higher-order subgrid model

$$q(x, t = t_n) = q_i^n + \sigma_i^n (x - x_i)$$

Different slope choices:

Higher-order now, but beware oscillations

"MUSCL (Monotonic Upwind-centered Scheme for Consveration Laws)"

Piecewise linear subgrid model for flux:

- can produce overshoots

Piecewise linear subgrid model for flux:

- can produce overshoots

Flux limiters:

- Normal flux:

$$f_{i+1/2}^{n+1/2} = \begin{cases} u_{i+1/2} \ q_i^n & \text{for } u_{i+1/2} > 0\\ u_{i+1/2} \ q_{i+1}^n & \text{for } u_{i+1/2} < 0 \end{cases}$$

- Flux correction due to limiter Φ_i

$$\frac{1}{2} |u_i| \left(1 - |u_i| \frac{\Delta t}{\Delta x} \right) (q_i - q_{i-1}) \Phi_i$$

Flux limiters:

- Flux correction due to limiter Φ_i : $\frac{1}{2} |u_i| \left(1 - |u_i| \frac{\Delta t}{\Delta x} \right) (q_i - q_{i-1}) \Phi_i$

 $r_{i-1/2}^{n} = \begin{cases} \frac{q_{i-1}^{n} - q_{i-2}^{n}}{q_{i}^{n} - q_{i-1}^{n}} & \text{for } u_{i-1/2} \ge 0\\ \\ \frac{q_{i+1}^{n} - q_{i}^{n}}{q_{i}^{n} - q_{i-1}^{n}} & \text{for } u_{i-1/2} \le 0 \end{cases}$ $\phi(r) = 0$ donor-cell : $\phi(r) = 1$ Lax-Wendroff : $\phi(r) = r$ Beam-Warming : $\phi(r) = \frac{1}{2}(1+r)$ Fromm : linear non-linear $\phi(r) = \text{minmod}(1, r)$ minmod : $\phi(r) = \max(0, \min(1, 2r), \min(2, r))$ superbee : $\phi(r) = \max(0, \min((1+r)/2, 2, 2r))$ MC: van Leer: $\phi(r) = (r + |r|)/(1 + |r|)$

Flux-conserving grid-based hydrodynamics

Flux limiters:

- Flux correction due to limiter Φ_i :

er
$$\Phi_i$$
: $\frac{1}{2} |u_i| \left(1 - |u_i| \frac{\Delta t}{\Delta x} \right) (q_i - q_{i-1}) \Phi_i$

Name	Order	Lin?	Stable?	TVD?	Stencil		
Two-point symmetric	1	lin	-	-	•		0
Upwind / Donor-cell	1	lin	+	+	•	0	0
Lax-Wendroff	2	lin	+	-	o •	•	0
Beam-warming	2	lin	+	-	• •	• •	0
Fromm	2	lin	+	-	• •	•	0
Minmod	2/1	non-lin	+	+	• •	• •	0
Superbee	2/1	non-lin	+	+	• •	•	0
MC	2/1	non-lin	+	+	• •	•	0
van Leer	2/1	non-lin	+	+	• •	••	0

The basics of grid-based hydrodynamics

1. Introduction

- 2. Equations of hydrodynamics
- 3. Advection
- 4. Flux conservation and flux limiters
- 5. Conservative grid-based hydrodynamics
- 6. Basics of Riemann problem -> Riemann solvers
- 7. Adaptive-mesh refinement and sink particles

construction of classic 1D hydro solver

$$\partial_t \rho + \nabla \cdot (\rho \vec{u}) = 0$$

$$\partial_t (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \vec{u}) = -\nabla P$$

$$\partial_t (\rho e_{\text{tot}}) + \nabla \cdot (\rho e_{\text{tot}} \vec{u}) = -\nabla \cdot (P \vec{u})$$

Source terms

HYDRO STEP:

1. Use standard advection scheme to advect ρ , $\rho \vec{u}$, ρe_{tot} with zero source

2. Treat source terms separately (operator splitting)

Advantage of operator splitting: source terms cancel exactly (not inside the advection)

Code for hydro step; test with interacting sound waves

The basics of grid-based hydrodynamics

1. Introduction

- 2. Equations of hydrodynamics
- 3. Advection
- 4. Flux conservation and flux limiters
- 5. Conservative grid-based hydrodynamics
- 6. Basics of Riemann problem -> Riemann solvers
- 7. Adaptive-mesh refinement and sink particles

- Code treats smooth flows fairly well
- But shocks are common in astrophysics (e.g., interstellar medium)
- Flow speed is supersonic, i.e., u > c_s
- Need to solve Riemann problem
- Leads to Riemann solvers (e.g., Piecewise Parabolic Method) Collela & Woodward (1984)

Difference to previous solver: pressure terms are included in the advection

Treating shocks

Sod shocktube test: $\rho_l = 10^5, P_l = 1$ $\rho_r = 1.25 \times 10^4$ and $P_r = 0.1$ (Sod 1978)

Treating shocks

Sod shocktube test: $\rho_l = 10^5$, $P_l = 1$ $\rho_r = 1.25 \times 10^4$ and $P_r = 0.1$ (Sod 1978) rarefaction contact shock

Sod shocktube test in 1D and 2D with AMR

The basics of grid-based hydrodynamics

1. Introduction

- 2. Equations of hydrodynamics
- 3. Advection
- 4. Flux conservation and flux limiters
- 5. Conservative grid-based hydrodynamics
- 6. Basics of Riemann problem -> Riemann solvers
- 7. Adaptive-mesh refinement and sink particles

- Quantify fragmentation and accretion
- Prevent code from stalling

$$t_{\rm ff} = \left(\frac{3\pi}{32G\rho}\right)^{1/2}$$

- Quantify fragmentation and accretion
- Prevent code from stalling

$$t_{\rm ff} = \left(\frac{3\pi}{32G\rho}\right)^{1/2}$$

Resolve fragmentation scale

$$\lambda_{\rm J} = \left(\frac{\pi c_{\rm s}^2}{G\rho}\right)^{1/2} \qquad M_{\rm J}(\rho) = \frac{4\pi}{3} \left(\frac{\lambda_{\rm J}(\rho)}{2}\right)^3 \rho$$

Truelove et al. (1997)

Bate & Burkert (1997)

Cut off runaway collapse

Cut off runaway collapse

Cut off runaway collapse

Sink Particles

Problem:

Spurious sink creation in shocks that DON'T go into free fall collapse

e.g., isothermal shock: (Density~Mach²) Heat up gas

1. Problem: Courant time step $\min_{i,j,k} \left(\frac{\Delta x}{\max(|\mathbf{v}(i, j, k)|, c_s)} \right)$

2. Problem: changes EOS, unless $ho_{\rm res} > 10^{-14} {\rm ~g~cm^{-3}}$

1. Cell exceeds density threshold, $ho >
ho_{
m res}$

1. Cell exceeds density threshold, $ho >
ho_{
m res}$

1. Cell exceeds density threshold, $ho~>~
ho_{
m res}$

- 1. Cell exceeds density threshold, $ho~>~
 ho_{
 m res}$
- 2. Highest level of AMR
- 3. Converging toward the center
- 4. Central minimum in gravitational potential
- **5. Jeans unstable**, $|E_{\text{grav}}| > 2E_{\text{th}}$
- 6. Bound, $E_{\text{grav}} + E_{\text{th}} + E_{\text{kin}} + E_{\text{mag}} < 0$
- 7. Not within the accretion radius of an existing sink particle

Sink particle implementation in FLASH

Movies available: <u>http://www.ita.uni-heidelberg.de/~chfeder/pubs/sinks/sinks.shtml</u>

all checks ON

Sink particle implementation in FLASH

Mass, momentum, angular momentum conservation

Sink particle implementation in FLASH

Mass, momentum, angular momentum conservation

Gravitational interactions

- Gas—Gas (multigrid solver, tree solver)
- Gas—Sinks (interpolation from grid)
- Sinks—Gas (direct summation, all cells)
- Sinks—Sinks (direct N-Body summation)

Strong constraints on timestep

→ Subcycling with Leapfrog required

Subcycling required to capture N-Body dynamics

Subcycling required to capture N-Body dynamics

Grid-based Magnetohydrodynamics with Sink Particles

Turb

Turb+ Mag+ Jets

Sink particles: AMR versus SPH

Sink particles: AMR versus SPH

Movies available: http://www.ita.uni-heidelberg.de/~chfeder/pubs/sinks/sinks.shtml

FLASH (AMR)

SPH

Comparison for SFE~26%

Sink mass functions agree well Number of sinks: FLASH 49, SPH 50

Sink particle conclusions

(Federrath, Banerjee, Clark, Klessen 2010, ApJ 713, 269)

Sink creation checks important to avoid spurious sinks in both SPH and AMR

- Encouraging agreement between FLASH and SPH-NG
- computational cost:

FLASH: 10,300 CPU hours, run on 128 CPUs SPH-NG: 2,400 CPU hours, run on 16 CPUs

(AMR: factor of 30 more resolution elements necessary in FLASH)

→ SPH is faster in collapse calculations

...but what about magnetic fields?

Magnetic fields in SPH and grid

- Problems with magnetic fields in SPH (Price & Federrath 2010)
- Divergence cleaning in SPMHD (ANITA 2012: Tricco & Price 2012, submitted)

(Federrath, Sur, Schleicher, Banerjee, Klessen 2011, ApJ 731, 62)

Strength and Weaknesses of SPH and grid

SPH

+ Automatic refinement on density

- + Typically faster in collapse calculations
- + More robust
- + Intrinsic mass conservation
- More complex data structure
- Problems with magnetic fields

Grid (AMR)

- + Simpler data structure (indexing)
- + Typically faster for pure hydro
- + Refinement on arbitrary quantities
 - (e.g., position, shocks, etc.)
- + Magnetic fields
- Needs more resolution elements for collapse calculations (AMR)
- Sometimes less robust (solver crashes)

Unstructured Grid (e.g. AREPO)

Springel 2010

