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Overview
• Introduction to some techniques in N-body 

modelling of collisional systems and direct N-body 
codes 

• Brief summary of GPU acceleration using CUDA/C
++ 

• NOT: advanced algorithms, coding 

• Based on lectures by Michela Mapelli



What is an N-body 
simulation?

• numerical integration of forces acting on N bodies 
for a time t 

• e.g. astrophysics, fluid dynamics, molecular 
dynamics 

• In astrophysics? F = GRAVITY
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1. WHAT IS an N-Body SIMULATION? 

numerical integration of Newton equation

Or the equivalent system of 2xNxndim 1st ord. differential eqs

DOES IT HAVE ANALYTIC SOLUTION?

Written equivalently as 6N coupled differential equations

Can the problem be solved analytically?

Simple physics!

1687: Newton derives eqns

1710: Bernoulli derives solution for N = 2



• Analytic solutions for N = 2 and restricted cases of 
N=3 

• Problem demands a numerical solution - What is 
the best way to numerically integrate equations?

Simple physics?

  

1. WHAT IS an N-Body SIMULATION? 

numerical integration of Newton equation

Or the equivalent system of 2xNxndim 1st ord. differential eqs

DOES IT HAVE ANALYTIC SOLUTION?



Solving the N-body problem
Write down the Taylor expansion:

Predict velocity and 
position at t + dt using 

current information

Truncation error: 
information about 
“order” of method

Common numerical integration techniques are based on the 
Taylor expansion



Euler integrator

• The simplest numerical integrator 

• “Explicit” - depends only on information we know at 
time t 

• 2nd order method: 



• While the Euler integrator is simple, it suffers from 
major limitations - what are they? 

• Energy conservation! 

• Fun activity: Write a simple 2-body code to simulate 
two stars of equal mass orbiting each other, 
calculate the KE of the system. Is it conserved?

Euler integrator



• Also second order, but conserves energy far better 
than Euler 

• Position and velocity evaluation “leapfrog” each 
other within timesteps  

• Symplectic (has global stability)

Leapfrog integrator



x(t), v(t), a(t)

t

v(t + dt/2)

t + dt/2

x(t+dt), v(t+dt), a(t+dt)

t + dt

v(t) -> v(t+dt/2)

x(t) -> x(t + dt)

v(t+dt/2) -> v(t+dt)

Leapfrog integrator



Leapfrog integrator

x(t), v(t), a(t)
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Leapfrog integrator

x(t), v(t), a(t)

t
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x(t+dt), v(t+dt), a(t+dt)

t + dt

v(t) -> v(t+dt/2)

x(t) -> x(t + dt)

v(t+dt/2) -> v(t+dt)



Leapfrog integrator

x(t), v(t), a(t)

t

v(t + dt/2)

t + dt/2

x(t+dt), v(t+dt), a(t+dt)

t + dt

v(t) -> v(t+dt/2)

x(t) -> x(t + dt)

v(t+dt/2) -> v(t+dt)



• Putting it all together:  

• Fun activity part two: integrate the same 2 body 
problem as you did with the Euler integrator and 
see what happens

Leapfrog integrator



2-body system
Spoiler alert

  

1. WHAT IS an N-Body SIMULATION? 

EULER LEAPFROG

EULER VS LEAPFROG METHOD a simple test: 
Both Euler and Leapfrog are 2d order methods, but..

Same initial conditions: integration of a Keplerian binary



Complexity
• How many calculations do you perform for N particles? 

• Complexity grows as N2 - quickly 

• Reducing complexity is not always the best choice: I 
am going to talk about collisional systems, in which we 
cannot reduce complexity 

• In collisionless simulations, there are several different 
ways to reduce complexity - look up “Barnes-Hut tree 
method” and “multipole expansion”. These methods 
are used in cosmological simulations



Direct N-body codes
Only consider gravity - no sub-grid physics

  

1. WHAT IS an N-Body SIMULATION? 

numerical integration of Newton equation

Or the equivalent system of 2xNxndim 1st ord. differential eqs

DOES IT HAVE ANALYTIC SOLUTION?

Direct N-body codes calculate all of the N2 forces between 
particles, rather than ignoring forces between most distant 

particles

To do so many calculations is expensive, so why? 



Fluid - no point resolving single stars



Not a fluid - individual stars interact on less than 
dynamical timescales



Stars mind their own business 
(except in the NSC)

Many stars are in binaries, but 
varying the binary fraction has no 

impact on dynamics (you don’t 
resolve dynamics on single-star 

level)

Stars mostly mind their own 
business, but interactions are still 

common

Initial binary fraction can have a 
significant influence on cluster 

dynamics

boring interesting



• Direct N-body codes are used to investigate 
regions of concentrated high stellar density: 
Globular clusters, nuclear star clusters and young 
clusters 

• In these regions, 3 body encounters are common 

• Binary systems interact with single stars - energy 
is exchanged

Direct N-body codes



Fly-by encounters change the orbits of the 
central binary system 

Close encounters of the 3-body 
kind



Close encounters of the 3-body 
kind

“Ionization” destroys the central binary 



Particle exchange sees one star kicked out 
of the binary and replaced with another 

Close encounters of the 3-body 
kind



• Integrating these encounters correctly is a major computational 
challenge, and accounts for most of the difficulty in developing 
direct N-body codes 

• Require small integration steps (~ a few years physical time) 
and high order integration schemes with low errors to conserve 
energy and angular momentum 

• Need to be able to: 

• integrate perturbations on <dynamical timescale (less than 
1 orbit) 

• Conserve energy and angular momentum well

Close encounters of the 3-body 
kind

Use 4th order Hermite Gauss integration



Hermite Gauss Integration
• High-order Hermite-Gauss integration is ubiquitous 

in direct N-body codes 

• Most use a 4th order scheme (NBODY6 (Aarseth
+2006) uses 6th order) 

• Use the jerk (time derivative of acceleration) and a 
predictor-corrector scheme



Hermite Gauss Integration
But wait, there’s more - add a “softening” term (physical radius 

of stars)

Now we’re ready to look at the integration scheme



Hermite Gauss Integration

  

Let us start from 4th order derivative of Taylor expansion:

We use equations (3) and (4) to eliminate the 1st and 2nd derivative of jerk 
in equations (1) and (2). We obtain

WHICH ARE 4th order accuracy:

ALL TERMS in  dj/dt (snap) and d2j/dt2 (crackle) disappear: it is 4th order 

accuracy with only 2nd order terms!!! 

But IMPLICIT for a1, v1 and j1 → we need something to predict them

(5)

(6)

3.1 INTEGRATION SCHEME
Start off with the Taylor expansion for all the terms we want to 

know

becomes

  

Let us start from 4th order derivative of Taylor expansion:

We use equations (3) and (4) to eliminate the 1st and 2nd derivative of jerk 
in equations (1) and (2). We obtain

WHICH ARE 4th order accuracy:

ALL TERMS in  dj/dt (snap) and d2j/dt2 (crackle) disappear: it is 4th order 

accuracy with only 2nd order terms!!! 

But IMPLICIT for a1, v1 and j1 → we need something to predict them

(5)

(6)

3.1 INTEGRATION SCHEME

4th order accuracy, but only contains 2nd order terms!



Hermite Gauss Integration
Predictor - corrector: These equations contain implicit terms, 
so we need something to predict them. This is the Predictor 

step

  

                                                DOUBLE TRICK!

1) PREDICTION: we use the 3rd order Taylor expansion to PREDICT x1 and v1

2) FORCE EVALUATION: 
we use these PREDICTIONS to evaluate PREDICTED         
acceleration and jerk (ap,1 and jp,1), from Newton's formula.

3) CORRECTION:
 we then substitute ap,1 and jp,1 into equations (5) and (6):

   This result is only 3rd order in positions! But there is a dirty trick to 
    make it 4th order: we calculate v1 first and then use the result into x1

3.1 INTEGRATION SCHEMEWe use the 3rd order Taylor expansion to do so

  

                                                DOUBLE TRICK!

1) PREDICTION: we use the 3rd order Taylor expansion to PREDICT x1 and v1

2) FORCE EVALUATION: 
we use these PREDICTIONS to evaluate PREDICTED         
acceleration and jerk (ap,1 and jp,1), from Newton's formula.

3) CORRECTION:
 we then substitute ap,1 and jp,1 into equations (5) and (6):

   This result is only 3rd order in positions! But there is a dirty trick to 

    make it 4th order: we calculate v1 first and then use the result into x1

3.1 INTEGRATION SCHEME

These predictions are used to calculate the predicted 
acceleration and jerk from Newton’s formula. This step is 

called the Force Evaluation



Hermite Gauss Integration

  

                                                DOUBLE TRICK!

1) PREDICTION: we use the 3rd order Taylor expansion to PREDICT x1 and v1

2) FORCE EVALUATION: 
we use these PREDICTIONS to evaluate PREDICTED         
acceleration and jerk (ap,1 and jp,1), from Newton's formula.

3) CORRECTION:
 we then substitute ap,1 and jp,1 into equations (5) and (6):

   This result is only 3rd order in positions! But there is a dirty trick to 
    make it 4th order: we calculate v1 first and then use the result into x1

3.1 INTEGRATION SCHEME

The predicted values from the force evaluation are substituted 
into the starting equations

What order is this in position?
3rd - how do we make this 4th order? 

1

Evaluate this first, and then substitute it into the position 
equation (a kind of dirty trick)



Timesteps

• What sort of timestep would you choose?  

• Same for all particles? 

• Long? 

• Very short?

  

                                                                    IDEAL CHOICE of TIMESTEP

1. Initial time-step calculated as
for a particle i

η = 0.01 – 0.02 is good choice

2. system  time is set as t := ti + min (∆ti)

All particles with time-step = min (∆ti) are called 

ACTIVE PARTICLES
At time t the predictor-corrector is done only for active particles

3. Positions and velocities are PREDICTED for ALL PARTICLES

4. Acceleration and jerk are calculated ONLY for ACTIVE PARTICLES

5. Positions and velocities are CORRECTED ONLY for active particles
(for the other particles predicted values are fine)

 After force calculation, new timesteps evaluated as 1. and everything 
is repeated

BUT a different ti for each particles is VERY EXPENSIVE and system

loses coherence

3.2 TIME STEP:



• Calculate the timestep for some particle i using  

• Simulation time is set to t = ti + min(dti) 

• All particles with the this timestep are called active particles - 
the predictor-corrector steps are done for these active particles 

• Positions and velocities predicted for all particles, but 
acceleration and jerk are calculated only for the active particles 

• positions and velocities are corrected for the active particles 

• Everything starts over and repeats
  

                                                                    IDEAL CHOICE of TIMESTEP

1. Initial time-step calculated as
for a particle i

η = 0.01 – 0.02 is good choice

2. system  time is set as t := ti + min (∆ti)

All particles with time-step = min (∆ti) are called 

ACTIVE PARTICLES
At time t the predictor-corrector is done only for active particles

3. Positions and velocities are PREDICTED for ALL PARTICLES

4. Acceleration and jerk are calculated ONLY for ACTIVE PARTICLES

5. Positions and velocities are CORRECTED ONLY for active particles
(for the other particles predicted values are fine)

 After force calculation, new timesteps evaluated as 1. and everything 
is repeated

BUT a different ti for each particles is VERY EXPENSIVE and system

loses coherence

3.2 TIME STEP:

Timesteps

Unfortunately, this is expensive and the system will lose 
coherence - block time steps can be a good choice



Regularization
• What is it? 

• A way to remove the singularity in Newton’s equations when 
stars come infinitely close together 

• But didn’t we deal with that with the softening term? 

• No - softening adds the physical radius of stars but does not 
remove the singularity. Regularisation employs a change in 
coordinate systems. 

• Common regularizations are KS (Kustaanheimo-Steifel) 
regularization (for 3-body and binary encounters) and 
Aarseth/Mikkola CHAIN regularization



Acceleration
• N-body calculations require a large number of 

floating point operations - the bigger N is, the 
bigger this number 

• While not “trivially” parallel, direct N-body is 
naturally parallelizable:  

• Single instruction, multiple data (SIMD) 

• Generating computer graphics for modern 
video games works on a similar principle!



Acceleration

  

      4.2 GRAPHICS PROCESSING UNITS (GPUs)

Wikipedia's definition: specialized electronic circuit designed to rapidly 
manipulate and alter memory to accelerate the creation of images in a frame 
buffer intended for output to a display

Mostly graphics accelerator of the VIDEO CARD, but in some PC are in the 
MOTHERBOARD

Born for applications that need FAST and HEAVY GRAPHICS: VIDEO GAMES

BEFORE GPU AFTER GPU

Creating modern video-game environments involves mapping 
pixel colors and transparencies to individual points - this is a 

SIMD process 



Acceleration

• The first N-body accelerator used GRAPE (GRAvity 
PipE) - highly specialized hardware (1989-2001) 

• Treats pairwise force calculations and accelerates 
this process much in the way a graphics card 
accelerates graphics processing.  

• Hetrogenous: Predictor-corrector step on PC, 
acceleration and jerk (gravity step) on GRAPE



• The GRAPE-4 was a 4-cabinet computer that was 
the first to reach 1Tflop  

• In 2004, GRAPE was superseded by modern 
GPUs, which were just as fast as GRAPE for direct 
N-body

Acceleration

  

      4.2 GRAPHICS PROCESSING UNITS (GPUs)

In 2004-2008, researchers found that GPUs are at least as fast as 
GRAPES for direct N-body codes (Portegies Zwart et al. 2007; Belleman 
et al. 2008; Gaburov et al. 2009)

GRAPE

GPU

CPU

Belleman+2008



• First N-body simulations on GPU by Nyland+2004 

• First GPU implementation of Hermite integration 
(Portegies-Zwart+2007) 

• Now preferred for direct N-body calculations

Acceleration





  

      4.2 GRAPHICS PROCESSING UNITS (GPUs)

COMPONENTS of a VIDEO CARD

From http://www.tomshardware.com/reviews/graphics-beginners,1288.html 
By Don Woligroski

GPU processor (on top of fan)

see http://www.tomshardware.com/reviews/graphics-beginners,1288-2.html for an excellent overview! 

http://www.tomshardware.com/reviews/graphics-beginners,1288-2.html


  

GPUs were born single precision. In some recent GPUs (eg 
TESLA) each MP has a 'special function unit' to mimic double 
precision → important for science calculation

1. inside the GPU  – Host := CPU, Device := GPU – EXAMPLE: Tesla C1060


