N-Body Modelling

Computational Astrophysics 2016
F. H. Panther

Overview

Introduction to some technigues in N-body
modelling of collisional systems and direct N-body
codes

Briet summary of GPU acceleration using CUDA/C
++

NOT: advanced algorithms, coding

Based on lectures by Michela Mapelli

What is an N-body
simulation”

 numerical integration of forces acting on N bodies
for atime t

e e.g. astrophysics, fluid dynamics, molecular
dynamics

* In astrophysics? F = GRAVITY

Simple physics!

’.;) 7" N f," .
— | =13
J 71 ¢ J
1687: Newton derives eqns
Written equivalently as 6N coupled differential equations

_— ij

UV, — — g 3 ZC/,;]'
< T

L; — U;

Can the problem be solved analytically?

1710: Bernoulli derives solution for N =2

Simple physics?

* Analytic solutions for N = 2 and restricted cases of
N=3

e Problem demands a numerical solution - What Is
the best way to numerically integrate equations?

ij

D D et}

< T

Solving the N-body problem

Write down the Taylor expansion:

zi(t + At) = 2;(t) + DAL + L2260 A2 4 O(AL)

dt?

Uz(t+At) :’Uz(t) I d’vz(t)At_l_ ld ’Uz(t)AtQ_l_O(At3)

dt?
Predict velocity and Truncation error:
position at t + dt using iInformation about
current information “order” of method

Common numerical integration technigues are based on the
Taylor expansion

culer Integrator

* [he simplest numerical integrator

* "Explicit” - depends only on information we know at
time t

e 2nd order method:

zi(t + At) = z;(t) + ZH AL + O(AL?)
vi(t + At) = vi(t) + L AL + O(A)

Culer integrator

* While the Euler integrator is simple, it sufters from
major limitations - what are they?

* Energy conservation!
* Fun activity: Write a simple 2-body code to simulate

two stars of equal mass orbiting each other,
calculate the KE of the system. s it conserved?

|_eapfrog integrator

* Also second order, but conserves energy far better
than Euler

* Position and velocity evaluation “leapfrog” each
other within timesteps

o Symplectic (has global stability)

|_eapfrog integrator

v(t) -> v(t+dt/2) v(t+dt/2) -> v(t+dt)

/\ /\
v(1), a(t) v(t + dt/2) x(t+dt), v(t+dt), a(t+dt)
& &
[t + dt/2 t + dt
\ /

X(1) -> x(t + dt)

|_eapfrog integrator

v(t) => v(t+dt/2) Vv(t+dl/2) -> v(t+dt)

/\ /\
v(1), a(t) v(t + dt/2) x(t+dt), v(t+dt), a(t+dt)
& &
[t + dt/2 t + dt
\ /

X(1) -> x(t + dt)

ot + %) = v(t) + La(t)

|_eapfrog integrator

v(t) -> v(t+dt/2) v(t+dt/2) -> v(t+dt)

/\ /\
v(1), a(t) v(t + dt/2) x(t+dt), v(t+dt), a(t+dt)
& &
[t + dt/2 t + dt
\ /

x(t) -=> x(t + dt)

r(t+ %) =z(t) + vt + L)dt

|_eapfrog integrator

v(t) -> v(t+dt/2) v(t+dt/2) -> v(t+dt)

/\ /_\
v(1), a(t) v(t + dt/2) x(t+dt), v(t+dt), a(t+dt)
& &
[t + dt/2 t + dt
\ /

X(1) -> x(t + dt)

|_eapfrog integrator

* Putting It all together:

v(t + dt) = v(t) + sa(t)dt + a(t + dt)dt

z(t + dt) = z(t) + v(t)dt + sa(t)dt?

 Fun activity part two: integrate the same 2 body
problem as you did with the Euler integrator and
see what happens

2-poay system

Spoiler alert

EULER

LEAPFROG

x O
[4V)

Complexity

How many calculations do you perform for N particles?
Complexity grows as N2 - quickly

Reducing complexity is not always the best choice: |
am going to talk about collisional systems, in which we
cannot reduce complexity

In collisionless simulations, there are several different
ways to reduce complexity - look up “Barnes-Hut tree
method” and "multipole expansion”. These methods
are used in cosmological simulations

Direct N-body codes

Only consider gravity - no sub-grid physics

T — 1
:_szy - .

174 ‘T’L _T]‘S

Direct N-body codes calculate all of the N2 forces between
particles, rather than ignoring forces between most distant
particles

To do so many calculations is expensive, so why?

Stars mostly mind their own

Stars mind their own business

(except in the NSC) business, but interactions are still
common
Many stars are in binaries, but
varying the binary fraction has no Initial binary fraction can have a
impact on dynamics (you don't signiticant influence on cluster
resolve dynamics on single-star dynamics
level)

boring Interesting

Direct N-body codes

* Direct N-body codes are used to investigate
regions of concentrated high stellar density:
Globular clusters, nuclear star clusters and young
clusters

* |nthese regions, 3 body encounters are common

* Binary systems interact with single stars - energy
iIs exchanged

Close encounters of the 3-body
Kind

Fly-by encounters change the orbits of the
central binary system

Close encounters of the 3-body
Kind

“lonization” destroys the central binary

Close encounters of the 3-body

Kind
)

Particle exchange sees one star kicked out
of the binary and replaced with another

Close encounters of the 3-body
Kind

* Integrating these encounters correctly is a major computational
challenge, and accounts for most of the difficulty in developing

direct N-body codes

* Require small integration steps (~ a few years physical time)
and high order integration schemes with low errors to conserve

energy and angular momentum

* Need to be able to:
‘a{\o“
* Integrate perturbations on <dyna~" s“\\eg,qle (less than
1 orbit) xe GauS

Hermite Gauss Integration

e High-order Hermite-(Gauss integration is ubiquitous
In direct N-body codes

 Most use a 4th order scheme (NBODY6 (Aarseth
+2006) uses 6th order)

* Use the jerk (time derivative of acceleration) and a
poredictor-corrector scheme

j =% = GY My[j - 3t

ji Tji

Hermite Gauss Integration

But wait, there’'s more - add a “softening” term (physical radius

of stars)
A; — GZ (sz.i_;:zfsﬂ
=G M| Vi . 3(Uij7”ij)7"ji]

(,,.32.7;_‘_62)3/2 | (”'32'7:+€2)5/2

Now we're ready to look at the integration scheme

Hermite Gauss Integration

Start off with the Taylor expansion for all the terms we want to

Know
r1 = xg + vo At + %ao A + 630 At + 5290 At* (1)
V1 = Vg T+ Qg At + j() AtQ]0 Atg 24j0 At4 (2)
a1 = ag + jo Al +]0 At + 2 jo At? (3)
J1=Jo+ Jo At + 2]0 At? (4)

4th order accuracy, but only contains 2nd order terms!

1 1
T1 = Xo + 5 (U() + Ul) At | 19 (CLO — al) AtQ -+ O(AtS)

1 1
Ulzvo—l—§(@0—|—&1)At | 19

(jo — j1) At? + O(A°)

Hermite Gauss Integration

Predictor - corrector: These equations contain implicit terms,
SO we need something to predict them. This Is the Predictor
step

We use the 3rd order Taylor expansion to do so

1 1
Lp.1 :$Q+U0At—|—§aoAt2—|—éj0At3

.)
Up,1 = Vo + ag At + 5]6 At

These predictions are used to calculate the predicted
acceleration and jerk from Newton’s formula. This step is
called the Force Evaluation

Hermite Gauss Integration

The predicted values from the force evaluation are substituted
INnto the starting equations

1 1

T1 = Xo + 5 (U() + Up,l) At -+ E (&0 — Cprl) At2
1 L . .
1 V1 = Vo -+ 5 (CL() —+ ap,l) At —+ E (]Q —]p,l) Atz

What order is this in position?
3rd - how do we make this 4th order?

Evaluate this first, and then substitute it into the position
equation (a kind of dirty trick)

Timesteps

* \WWhat sort of timestep would you choose”
 Same for all particles?
* Long”

* Very short?

;
Atz’ — 1) —
Ji

Timesteps

a.
 Calculate the timestep for some particle i using Ati =N —7“

Ji

e Simulation time is set to t = tj + min(dt;)

* All particles with the this timestep are called active particles -
the predictor-corrector steps are done for these active particles

* Positions and velocities predicted for all particles, but
acceleration and jerk are calculated only for the active particles

* positions and velocities are corrected for the active particles

* Everything starts over and repeats

Untortunately, this is expensive and the system will lose
coherence - block time steps can be a good choice

Regularization

e What is it?

* A way to remove the singularity in Newton's equations when
stars come infinitely close together

e But didn't we deal with that with the softening term?

* No - softening adds the physical radius of stars but does not
remove the singularity. Regularisation employs a change in
coordinate systems.

 Common regularizations are KS (Kustaanheimo-Steifel)
regularization (for 3-body and binary encounters) and
Aarseth/Mikkola CHAIN regularization

Acceleration

* N-body calculations require a large number of
floating point operations - the bigger N is, the
bigger this number

o While not “trivially” parallel, direct N-body is
naturally parallelizable:

e Single instruction, multiple data (SIMD)

* (Generating computer graphics for modern
video games works on a similar principle!

Acceleration

Creating modern video-game environments involves mapping
pixel colors and transparencies to individual points - this is a
SIMD process

Acceleration

* The first N-body accelerator used GRAPE (GRAVvity
PipE) - highly specialized hardware (1989-2001)

* [reats pairwise force calculations and accelerates
this process much in the way a graphics card
accelerates graphics processing.

* Hetrogenous: Predictor-corrector step on PC,
acceleration and jerk (gravity step) on GRAPE

Acceleration

« The GRAPE-4 was a 4-cabinet computer that was
the first to reach 1Ttlop

* |In 2004, GRAPE was superseded by modern

GPUs, which were Just as fast as GRAPE for direct
N bOdy 100000 ¢

10000 [

GRAPEGAf ------ o

1000

100 F

| e |
(7))
R
-—

Belleman+2008

10 F

1 F

0.1 g

oot b i b L
100 1000 10000 100000 16406 led
N

Acceleration

* First N-body simulations on GPU by Nyland+2004

* First GPU implementation of Hermite integration
(Portegies-Zwart+2007)

 Now preterred for direct N-body calculations

'l!I.J e

P THIED

] & I,_!_ 3

v YRR AL

=
-

= Qe
Y

§:
GrEl

T
'-l-_. ...rr'

3
- 4 i
]

GPU processor (on top of fan)

see http://www.tomshardware.com/reviews/graphics-beginners,1288-2.html for an excellent overview!

http://www.tomshardware.com/reviews/graphics-beginners,1288-2.html

F—— Thread Execution Control Unit
— |

Host
Memory

/. DMI&

