ASTR4004/ASTR8004

Astronomical Computing
Assignment 4 — Practice Draft

Christoph Federrath

due Tuesday, October 18, 2016, 09:15am

1 Python project 1 — Fourier transforms and par-
allel computing (multi-threaded FFT)

Here you will make a python program that reads a column density map of a molecular
cloud near the Galactic Centre, apply mirroring and zero-padding to the image,
compute the Fast Fourier Transform (FFT) with the pyFFIW library (https://
pypi.python.org/pypi/pyFFTW), make a Fourier image and compute the power
spectrum of the column density map.

1. Download the observational column density map from http://www.mso.anu.
edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits. Use
astro-py lib to read the data map in the fits file (http://docs.astropy.
org/en/stable/io/fits/) into a numpy array.

2. Make a python function to produce an image of the map with a colour bar
and write the image to a pdf file named "brick.pdf’. See the left-hand panel of
Figure 1 for an example of how this should look like.

mirrored column density map mirrored and zero-padded column density map

column density map

1000

1

1200 1200

0 0

0 100 200 300 400 0 100 200 300 400 500 600 700 800 0 200 400 600 800 1000 1200

Figure 1: Left to right: original column density map, mirrored, and zero-padded.

Page 1 of 4


https://pypi.python.org/pypi/pyFFTW
https://pypi.python.org/pypi/pyFFTW
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/brick.fits
http://docs.astropy.org/en/stable/io/fits/
http://docs.astropy.org/en/stable/io/fits/

. Use the numpy functions np.fliplr and npflipud to produce a mirrored
array and image. Write the image to a pdf file called "brick_mirrored.pdf’ (see
the middle panel of Figure 1 for a thumbnail).

. Now use the numpy function np.lib.pad to pad zeros symmetrically to the
left and right of the image, such that the total dimensions become equal (1278,
1278). Make an image of this called 'brick_mirrored_zped.pdf’ (see Fig. 1 for
how this should look.)

. Install pyfftw, e.g., via sudo port install py-pyfftw. Make a 2D threaded
FFTW (use 1, 2 or 4 threads) of the mirrored-and-zero-padded column density
map. Shift the k = (0,0) position to the centre of the Fourier image and write
out an image called ’brick_fourier_image.pdf’.

. Bin the Fourier-transformed mirrored-and-zero-padded column density array
a in wavenumber k = \/k? + k2, to obtain the power spectrum,

P(k) = 27r/d(k) a* (k) k dk, (1)

where a* is the complex conjugate of a. Do this by defining concentric shells
in wavenumber space around the centre of the Fourier-transformed image with
dk equal to one cell size in the Fourier image.

. Make a log-log plot of the power spectrum, P(k), and write this out as an
image called "brick_power_spectrum.pdf’.

. Scaling test: replicate the mirrored and zero-padded image N x in the x and y
direction. Try N = 10 to produce a very big array with (12780, 12780) points.
Test the multi-threaded FFTW with 1, 2, 4, and 8 threads for the parallelised
FFT and produce a plot of speedup versus number of threads for the FF'TW
part of your script.

Put everything into an executable python script that runs the entire analysis with

the input file (the column density map fits file) sitting in the same folder. The script

should automatically produce the images (original column density image, mirrored,

zero-padded, and Fourier image), as well as the final plot of the column density

power spectrum.

2 Python project 2 — Markov Chain Monte Carlo

In this assignment you will use emcee in python. You will simulate a periodic data

set and fit a function to it. Although this is written as if you are fitting to velocities

(e.g. searching for exoplanets), the same approach works in fitting to many other

Page 2 of 4



1. Create a function using python and numpy that simulates data that take a
periodic function with a form:

v = ag+ ait + agsin (27 (ast + ay)) (2)

You should simulate data at a number of random times over an interval, and
include Gaussian errors for the data.

2. Setting ag = 0, a1 = 1, as = 1, a3 = 1 and a4 = 0, simulate a data set
from times ¢t = 0 to ¢t = 1.5, containing 100 points with Gaussian errors with
uncertainty 1.0.

3. Use emcee to fit to this dataset. [report correlation coefficient, etc...]

4. Change the time interval from ¢ = 0 to t = 0.75. How does the result change?

3 Python project 3 — numerical solution of differ-
ential equations

Consider a simple harmonic oscillator: a spring with spring constant k is attached
to a mass m, and the displacement of the mass from its rest position is z. The mass
experiences a restoring force,

F = —kx. (3)

At time t = 0, the mass is released at rest at the initial position z(0), and is allowed
to oscillate.

3.1 Part1l

Write a python function that takes as inputs the value of the spring constant k, the
mass m, the initial displacement z(0), the amount of time for which to integrate T,
and the number of times N at which the position should be recorded, and returns
the position and velocity of the mass at times 0, T/(N — 1), 2T/(N — 1), ..., T.
Verify that your code matches the analytic solution for z(0) = 0.1m, & = 50 N/m,
and m = 1kg.

3.2 Part 2

Modify your routine to that it works for a nonlinear spring; one with a restoring
force
F = —]{?17) — ]{?25133. (4)

Make a plot comparing the solution for a simple harmonic oscillator with the pa-
rameters given in Section 3.1 and the solution for a non-linear oscillator with the
same values of z(0), k1, and m, and a nonlinear coefficient ky = 103 N/m?3,

Page 3 of 4



Please send your scripts/responses/produced figures for these projects to mailto:
christoph. federrath@anu. edu. au by the assignment deadline.

Page 4 of 4


mailto:christoph.federrath@anu.edu.au
mailto:christoph.federrath@anu.edu.au

	Python project 1 – Fourier transforms and parallel computing (multi-threaded FFT)
	Python project 2 – Markov Chain Monte Carlo
	Python project 3 – numerical solution of differential equations
	Part 1
	Part 2


