ASTR4004/ASTRS004

Astronomical Computing
Lecture 05

Christoph Federrath

12 August 2016

Plotting, Movies, IDL

Plotting data with gnuplot

Simple plots of data from ASCII text files

. Lets make some simple plots first. Change into your $HOME/astro_comp/ on the MSO

server. Now look into the file EXTREME_hdf5_plt_cnt_0050_dens.pdf_ln_data with
more or less or cat (the file should still be there from the previous lecture or you can
download it again). You will see that there is a header in the file with 10 lines (showing
the mean, standard deviation and other statistical moments of the distribution function),
followed by an empty line and then 4 columns with data in them.

Now go back to the shell and start gnuplot. First, plot column 1 against column 3 in the
data file. Use this command:

gnuplot> plot "EXTREME_hdf5_plt_cnt_0050_dens.pdf_ln_data" using 1:3

Note that you can also use auto-completion of the file name in gnuplot by hitting the tab
key, just the same as in the shell. Ok, so this should show the density PDF in that file,
which should look pretty close to a Gaussian.

Now replace "plot” with "p” and "using” with "u”. This should do exactly the same as
before, but is a bit more compact, i.e., no need to write out each gnuplot command, you
can simply use the first letter in most cases and it will do the job.

Now plot the y-axis logarithmically. Do this with

gnuplot> set log y

and next enter the plot command from before again. Note that you can bring up the
most recent last commands again, simply by using the up-arrow key; this should bring up
the last few commands used. The same works in the Bash shell, which is very useful in
case you made a mistake when typing the command, you can bring up the previous one
instantly and correct only the bits of the command that didn’t work or that you want to
change—for example if you wanted to keep everything the same, but instead plot data
from one of the other files in the directory.

Now plot on top of the previous plot, the respective data columns from file with number
*0060*. Do this simply by adding to the end of the previous gnuplot command:

Page 1 of 4



1.2

1.3

"EXTREME_hdf5_plt_cnt_0060_dens.pdf_1n_data" using 1:3
This should now display two curves (or set of points) plotted on top of one another. You
can add more lines/curves simply by appending more to the plot command. For example,
if we wanted to plot now also a constant line at y = 1073, we’d simply add ’, 1e-3’ to
the end of the previous gnuplot command line and we should see the horizontal line at
y=1073.

You can change the x and y axis labels with:

gnuplot> set xlabel "log-density contrast"
gnuplot> set ylabel "PDF"

...then plot again and see if the axis labels have changed.

Ok, so this is all fine, but it usually doesn’t look very nice. Gnuplot is really good for
making a quick plot of some data, but making it pretty needs a bit more tweaking. Now
lets see what can be done to make nicer figures, generate gnuplot scripts and automatically
write postscript figures to a file.

Making scripts for gnuplot and generating postscript figures

. Download the gnuplot script template gnuplot.p from http://www.mso.anu.edu.au/

~chfeder/teaching/astr_4004_8004/04/gnuplot.p (or via the link on the course web
page).

Look into the file and go through each line step-by-step and see if you can make sense of
the commands. Similar to Bash scripts, gnuplot just goes through the script line-by-line
and executes the commands as if you entered them one-by-one in the interactive gnuplot
mode. The advantage of the script is obvious: you don’t have to write it all to the gnuplot
prompt and you can very quickly regenerate the same plot and/or make little changes
easily. So it’s usually a good idea to script a plot that you make, in order to come back
to it any time later, in order to reproduce the same plot. Running the script is then
achieved simply by loading the script in gnuplot:

gnuplot> load "gnuplot.p"

which executes all the commands in the script line-by-line.

In this particular script, we have already switched to a different output type (or terminal);
in this case to 'postscript’ (set term post eps), which generates .eps figures. Such
figure files may contain vector graphics (much preferred, because scalable), but can also
contain pixel graphics (for example maps). Note that the graphics editor inkscape is
very useful, because it can handle vector graphics and can be used to modify figures,
keeping the advantages of vector graphics. In contrast, the popular gimp graphics editor
can only handle pixel graphics. So while you can load an image containing vector graphics
in gimp, it will be automatically converted to a pixel graphics image and thus loses all
the advantages of scalable vector graphics.

3D plots with gnuplot

. Lets make a simple 3D plot of the previous figure in gnuplot. Use:

splot "EXTREME_hdfb_plt_cnt_0050_dens.pdf_1n_data" u 1:2:3
This shows the same density PDF as before, but now as a 3D plot. Note that you can
turn the plot around by dragging it with your mouse.

Page 2 of 4


http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/04/gnuplot.p
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/04/gnuplot.p

. Note that the 2nd column in the data file does not contain any useful data (it’s all zeros),
so it does not contain any information in the 2nd axis of the plot. Lets replace the 2nd
column with the 4th column of the data file (which contains the cumulative distribution
function):

splot "EXTREME_hdf5_plt_cnt_0050_dens.pdf_1ln_data" u 1:4:3

This will now show a true 3D plot; i.e., the data in the 4th column of the file is now
plotting along the 2nd axis of the 3D plot.

. One can do more advanced things, for example changing the point types and adding a
colour bar, e.g., by appending to the end of the previous line:
splot ... u 1:4:3 with points palette pointsize 1 pointtype 6

Making movies from a time series of plots/images

. First we have to write a gnuplot script that writes out .png figures for each of the PDF
data files (the time sequence of the PDF) in the tarball from last the lecture.

. We can use the basic gnuplot script from before, but in order to make png figures, lets
change the gnuplot term to png:
set term png size 800,480 enhanced font "Helvetica,14"

. Then after some other formatting definitions and setting (e.g., line types, log, key position,
and axes labels; see script template from earlier) we make a gnuplot loop like this:
do for [i=20:90] {
infile = sprintf (’EXTREME_hdf5_plt_cnt_%04d_dens.pdf_ln_data’,i)
outfile = sprintf(’frame_%04d.png’,i-20)
set output outfile
p [-10:10] [1e-5:1] infile u 1:3 w 1lp 1s 3 t sprintf(’time=%04.0f’,1i)
print outfile." created"

}

. When you run the script, it should generate a list of figures frame_0000.png, frame_0001.png,
..., frame_0070.png and print to the screen that those files were created.

. Now that we have the still frames, we can make a movie. The simplest ffmpeg command
to make a movie from a bunch of still frames is:

> ffmpeg -i frame_%04d.png movie.mpeg

where you have files frame 0000.png, frame 0001.png, etc. previously generated with
gnuplot.

. You can play the movie file with ffplay. However, it won’t play well over the network,
so I recommend to copy it to your local computer (scp) and play it directly on your
computer rather than in a window over the network.

. So this is ok, but looks a bit pixelated. For a nicer movie, we have to increase the bit
rate by adding the option -b:v 5000k to ffmpeg. This will greatly increase the bit rate
and thus the quality of the movie output.

. There are lots more advanced options in ffmpeg, for example cropping or extracting
frames from movies and changing the encoder. It is one of the most powerful movie
conversion /processing tools.

Page 3 of 4



3.1

The Interactive Data Language (IDL)

Getting started

. Login to misfit and make a new directory IDL/ in your home dir:

> mkdir IDL

Download the IDL startup package prepared for you: http://www.mso.anu.edu.au/
~chfeder/teaching/astr_4004_8004/material/IDL_startup_package.tar.gz
and copy it to misfit into the new IDL/ directory.

Unpack the tarball. This will create subdirectories ASTROLIB/, MPFIT/, and textoidl/,
as well as three files: idlstartup, setcolors.pro, constants.pro.

. ASTROLIB is a useful astronomy IDL library, MPFIT is an IDL non-linear fitting package,

and textoidl is a Latex-to-IDL string conversion library that lets you use Latex syntax
in IDL to make Greek letters, sub- and super-scripts and special symbols like you are
used to in Latex.

The idlstartup file is important to control the way IDL starts up. In our case, it defines
paths and automatically runs the script constants.pro, which defines useful constants.

Add this line to your .bashrc:
export IDL_STARTUP=${HOME}/IDL/idlstartup
This will make sure that idlstartup is executed everytime you start IDL.

Simple IDL tasks

. Now that we have set up the IDL environment, we can start IDL:

> idl
As for gnuplot, this will lead you to the IDL command line from which IDL is controlled.

First, lets make a simple calculation and print the result to the screen:
idl> print, 1+1

We can also directly define variables, modify them and print their content:
idl> a = 1+1

idl> a = ax*3

idl> print, a

Finally, lets do some astro calculation involving units. Now that the constants.pro
script is already loaded every time you start up IDL, we can use the constants defined in
there. For example, if we wanted to print the mass of the sun in CGS units or Newton’s
gravitational constant, we’'d simply type:

idl> print, m_sol

idl> print, g_n

Those can then be combined to say calculate the freefall time (tg) of a typical star-forming
core with a density of p = 4 x 1079 gem™ (which corresponds to a gas number density
of about 10° particles per cubic centimetre):

idl> rho = 44-19

idl> t_ff = sqrt ( 3.0%!pi/(32.*g_n*rho) )

idl> print, t_ff / (1d5*year)

Page 4 of 4


http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/IDL_startup_package.tar.gz
http://www.mso.anu.edu.au/~chfeder/teaching/astr_4004_8004/material/IDL_startup_package.tar.gz

	Plotting data with gnuplot
	Simple plots of data from ASCII text files
	Making scripts for gnuplot and generating postscript figures
	3D plots with gnuplot

	Making movies from a time series of plots/images
	The Interactive Data Language (IDL)
	Getting started
	Simple IDL tasks


