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ABSTRACT

The role of turbulence and magnetic fields is studied for star formation in molecular clouds. We
derive and compare six theoretical models for the star formation rate (SFR)—the Krumholz & McKee
(KM), Padoan & Nordlund (PN), and Hennebelle & Chabrier (HC) models, and three multi-freefall
versions of these, suggested by HC—all based on integrals over the log-normal distribution of turbulent
gas. We extend all theories to include magnetic fields, and show that the SFR depends on four basic
parameters: (1) virial parameter αvir; (2) sonic Mach number M; (3) turbulent forcing parameter
b, which is a measure for the fraction of energy driven in compressive modes; and (4) plasma β =
2M2

A/M2 with the Alfvén Mach number MA. We compare all six theories with MHD simulations,
covering cloud masses of 300 to 4 × 106M� and Mach numbers M = 3–50 and MA = 1–∞, with
solenoidal (b = 1/3), mixed (b = 0.4) and compressive turbulent (b = 1) forcings. We find that the
SFR increases by a factor of four betweenM = 5 and 50 for compressive turbulent forcing and αvir ∼ 1.
Comparing forcing parameters, we see that the SFR is more than 10× higher with compressive than
solenoidal forcing for M = 10 simulations. The SFR and fragmentation are both reduced by a factor
of two in strongly magnetized, trans-Alfvénic turbulence compared to hydrodynamic turbulence. All
simulations are fit simultaneously by the multi-freefall KM and multi-freefall PN theories within a
factor of two over two orders of magnitude in SFR. The simulated SFRs cover the range and correlation
of SFR column density with gas column density observed in Galactic clouds, and agree well for star
formation efficiencies SFE = 1%–10% and local efficiencies ε = 0.3–0.7 due to feedback. We conclude
that the SFR is primarily controlled by interstellar turbulence, with a secondary effect coming from
magnetic fields.
Subject headings: ISM: clouds – ISM: kinematics and dynamics – ISM: structure – Magnetohydrody-

namics (MHD) – Stars: formation – Turbulence

1. INTRODUCTION

Stars form in turbulent, magnetized molecular clouds,
as observed in the Milky Way and in other galaxies. Yet,
the basic physical processes controlling star formation
are still poorly understood. Observations of star-forming
clouds show that the star formation rate (SFR) column
density ΣSFR varies over four orders of magnitude and
exhibits a positive correlation with the gas surface den-
sity Σgas (Heiderman et al. 2010), suggesting that denser
gas forms stars at a higher rate. This engenders the
central question of how the gas is locally compressed
in the interstellar medium, such that dense cores can
form and eventually become unstable under their own
gravitational attraction to form stars. Gas compression
in shocks, induced by large-scale supersonic turbulence
might be a key—if not the key process—setting the ini-
tial conditions for star formation (see, e.g., the reviews
by Mac Low & Klessen 2004; McKee & Ostriker 2007).

Based on molecular cloud masses in the range
Mc = 100 to 107M� and temperatures T . 20 K, the
clouds should be highly Jeans-unstable and would thus
collapse globally. However, molecular clouds do not
show systematic, global collapse motions. If they
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did, the average Galactic SFR in the Milky Way,
SFRMW ≈ 1–2M� yr−1 (Robitaille & Whitney 2010;
Chomiuk & Povich 2011) would be about two orders of
magnitude higher than the observed value (Zuckerman
& Palmer 1974; Zuckerman & Evans 1974). However,
this stability analysis only takes thermal pressure into
account. In reality, clouds are magnetized and subject
to strong turbulent motions (Scalo & Elmegreen 2004;
Elmegreen & Scalo 2004).

Originally, it has been thought that primarily magnetic
fields would provide stability against fast global collapse,
and that only after the neutral species have slowly dif-
fused through the charged particles, star formation would
occur in the central regions of magnetized clouds (Mestel
& Spitzer 1956; Mouschovias 1976; Shu 1983). In this so-
called ambipolar-diffusion process, magnetic flux is left
behind in the envelope, while the mass increases in the
cloud core. Thus, star formation regulated by ambipo-
lar diffusion predicts a higher mass-to-flux ratio in the
cores than in the envelopes of the clouds, which is —
however — typically not observed (Crutcher et al. 2009;
Mouschovias & Tassis 2009; Lunttila et al. 2009; Santos-
Lima et al. 2010; Lazarian et al. 2012; Bertram et al.
2012).

An alternative scenario is that the observed supersonic
random motions (Zuckerman & Palmer 1974; Zuckerman
& Evans 1974; Larson 1981; Solomon et al. 1987; Falgar-
one et al. 1992; Ossenkopf & Mac Low 2002; Heyer &
Brunt 2004; Schneider et al. 2011; Roman-Duval et al.
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2011) regulate star formation. In this picture, turbulent
energy stabilizes the clouds on large scales, but at the
same time, supersonic turbulence induces local compres-
sions, producing filaments and cores, which are the pro-
genitors of stars. Eventually, both turbulence and mag-
netic fields play their parts; the only question is: which
one is the dominant controlling factor of star formation?

The aim of this paper is to advance our understanding
of the relevant physical processes and their parameters
controlling the conversion of dense gas into stars, and to
explain the observed variations of the SFR column den-
sity. We develop and compare six predictive theories —
the original Krumholz & McKee (KM), Padoan & Nord-
lund (PN), and Hennebelle & Chabrier (HC) theories,
and multi-freefall versions of theses three —, which are
all based on integrals over the turbulent density proba-
bility distribution function (PDF), explained in detail in
the next section. We extend the KM and HC theories, as
well as all the multi-freefall theories to include magnetic
fields. We evaluate the relative importance of turbulence,
its forcing characteristics, and magnetic fields in control-
ling the SFR and show that the SFR depends on the
following four basic parameters:

1. virial parameter αvir = 2Ekin/|Egrav|,

2. sonic Mach number M = σV /cs,

3. turbulent forcing parameter b, with purely
solenoidal (divergence-free) forcing parameterized
by b = 1/3, mixed forcing by b = 0.4 and purely
compressive (curl-free) forcing by b = 1, and

4. the ratio of thermal to magnetic pressure β =
2M2

A/M2 with the Alfvén Mach number MA.

We test all six theories with numerical simulations of
supersonic, magnetized turbulence including self-gravity
and sink particles to capture dense, collapsing, star-
forming gas. We find that the multi-freefall KM and PN
models including magnetic fields provide the best fits to
our numerical simulations with typical uncertainties of
less than a factor of two. This is an encouraging agree-
ment, given that the SFR varies by two orders of mag-
nitude in the simulations, depending on the four basic
cloud parameters listed above.

Comparing our numerical experiments with SFRs mea-
sured in Galactic star-forming regions, we find that for
typical star formation efficiencies of SFE = 1%–10%, the
best-fit local efficiencies due to radiative and mechanical
feedback from jets, winds, expanding shells or outflows
driven by young stellar objects are ε = 0.3–0.7 with a
best-fit value of ε ≈ 0.5 for SFE = 3%. This suggests
that a fraction ε ≈ 0.3–0.7 of all the infalling gas onto
a typical protostellar core is accreted by the protostar,
while a fraction (1− ε) ≈ 0.3–0.7 is re-injected into the
interstellar medium by jets, winds, and outflows. We
find good agreement between the numerical simulations
and Galactic observations, suggesting that the observed
variations in ΣSFR with Σgas are a result of different com-
binations of the four basic parameters controlling the
SFR: αvir, M, b, and β, as listed above. Since molec-
ular clouds are often characterized by virial parameters
of order unity, we conclude that the degree of compres-
sion induced by the turbulent forcing and sonic Mach

number have the strongest influence on the SFR, caus-
ing variations by more than an order of magnitude, while
magnetic fields can account for reductions of the SFR by
a factor of two.

In Section 2, we introduce and discuss the six ana-
lytic theories for the SFR, based on the turbulent density
PDF, derive and discuss their dependencies, add mag-
netic fields to the theories that did not include magnetic-
field effects in previous derivations, and compare them
with each other in detail. We then test the analytic
theories with numerical simulations of supersonic, mag-
netized turbulence by varying the sonic Mach number
(M = 3–50), the forcing of the turbulence (solenoidal,
mixed, compressive), and the magnetic-field strength
(yielding Alfvén Mach numbers MA = 1.3–∞) to cover
a comprehensive range of cloud parameters. The simu-
lation methods and setups are explained in Section 3.
A detailed time-evolution analysis of column density,
magnetic-field morphology, and fragmentation proper-
ties is presented in Section 4. In Section 5, we com-
pare the SFRs measured in the magnetohydrodynamic
(MHD) simulations with the six theoretical models, and
determine the best-fit theory parameters that are uni-
versally applicable and fit all our simulations simultane-
ously. Section 6 presents a comparison of SFR column
densities in the simulations with observations of Galac-
tic clouds. We discuss limitations of the theoretical and
numerical models, as well as limitations in the compar-
ison with observations in Section 7. Finally, we list our
conclusions and summarize the most important results
in Section 8. Here, we study the SFR in detail, while in
Paper II (Federrath & Klessen 2012), we concentrate on
the star formation efficiency (SFE).

2. THE SFR FROM THE STATISTICS OF SUPERSONIC
MAGNETIZED TURBULENCE

2.1. The Density PDF

The probability density function (PDF) of the gas den-
sity in a turbulent medium—such as a molecular cloud—
is the key ingredient for analytic models of star forma-
tion. A log-normal density PDF has been used to ex-
plain the mass distribution of cores and stars, the core
mass function (CMF) and the stellar initial mass function
(IMF) (Padoan & Nordlund 2002; Hennebelle & Chabrier
2008, 2009; Elmegreen 2011; Veltchev et al. 2011; Donkov
et al. 2012; Parravano et al. 2012; Hopkins 2012), the
Kennicutt-Schmidt relation (Krumholz & McKee 2005;
Tassis 2007), the SFE (Elmegreen 2008), and the SFR
(Krumholz & McKee 2005; Padoan & Nordlund 2011;
Hennebelle & Chabrier 2011). Here we concentrate on
the SFR and derive its basic dependencies.

The log-normal PDF of the gas density is defined as,

ps(s) =
1√

2πσ2
s

exp

(
− (s− s0)2

2σ2
s

)
, (1)

expressed in terms of the logarithmic density,

s ≡ ln (ρ/ρ0) . (2)

The PDF is a normal (Gaussian) distribution in s, mean-
ing it is a log-normal distribution in ρ. The quantities
ρ0 and s0 denote the mean density and mean logarith-
mic density, the latter of which is related to the standard
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deviation σs by

s0 = −1

2
σ2
s (3)

due to the normalization and mass-conservation con-
straints of the PDF (Vázquez-Semadeni 1994; Federrath
et al. 2008b). The reason to use s instead of ρ in the
context of the density PDF, is that s is dimensionless,
and that the PDF of s is Gaussian unlike the PDF of ρ.
This is because the distribution of ρ is generated by a
multiplicative process in which shocks are amplified by
other shocks as they collide and interact in isothermal
supersonic turbulence, with the local Mach number be-
ing independent of the local density (Vázquez-Semadeni
1994; Passot & Vázquez-Semadeni 1998; Kritsuk et al.
2007; Federrath et al. 2010b). Since s ∝ ln(ρ) as defined
in Equation (2), this multiplicative process in ρ turns into
an additive process in s. Following the central limit the-
orem, a large sum of random variables produces a Gaus-
sian distribution, and thus only ps is Gaussian, while pρ
is not. However, ps can be easily transformed into pρ be-
cause ps ds = pρ dρ, and thus pρ = ps/ρ (Li et al. 2003).
We will omit the index s in ps in the following and simply
use p(s) for the PDF given by Equation (1).

As soon as significant collapse sets in, the density PDF
develops a power-law tail at high densities (e.g., Klessen
2000; Kainulainen et al. 2009), which is discussed in more
detail in Section 7.1.1 below, and in Paper II (Federrath
& Klessen 2012).

2.2. The Standard Deviation of Density Fluctuations in
Supersonic, Magnetized Turbulence

The standard deviation σs in Equation (1), which is
a measure of how much the density varies in a turbu-
lent medium, depends on (1) the amount of compres-
sion induced by the turbulent forcing mechanism, (2)
the Mach number, and (3) the degree of magnetization.
First, the turbulent energy injection mechanism deter-
mines the amount of compression induced directly by
driving turbulence in the interstellar medium (ISM). Var-
ious turbulent driving mechanisms have been discussed
and compared in Mac Low & Klessen (2004). For in-
stance, expanding supernova shells (Balsara et al. 2004;
de Avillez & Breitschwerdt 2005; Tamburro et al. 2009)
or growing Hii regions around massive stars and clusters
of stars (McKee 1989; Krumholz et al. 2006; Gritschneder
et al. 2009; Peters et al. 2010; Goldbaum et al. 2011) as
well as compression of ISM gas in galactic spiral shocks
(Elmegreen 2009) and gravitational contraction (Hoyle
1953; Vazquez-Semadeni et al. 1998; Klessen & Hen-
nebelle 2010; Elmegreen & Burkert 2010; Federrath et al.
2011c) are likely exciting a considerable amount of com-
pressible modes that will directly lead to compression,
and thus to higher density contrasts on molecular cloud
scales in the ISM, while galactic rotation and magnetoro-
tational instabilities (e.g., Piontek & Ostriker 2004, 2007)
are likely producing more solenoidal modes. Second,
higher Mach numbers M lead to stronger shocks and
thus to higher density contrasts. For instance, the den-
sity jump in a non-magnetized, isothermal shock is pro-
portional toM2. Finally, higher magnetization dampens
density fluctuations as magnetic fields act like a cushion
due to the additional magnetic pressure (Ostriker et al.
2001; Price et al. 2011).

The actual dependence of turbulent density fluctua-
tions σs on the three parameters above (forcing, Mach
number, and magnetic field) can be derived from the
shock jump conditions of an individual MHD shock, and
then averaged over a whole ensemble of such shocks
(Padoan & Nordlund 2011). Molina et al. (2012) pro-
vide a rigorous derivation of σs for different correlations
of the magnetic field with density. They distinguish three
cases, B ∝ ρ0, B ∝ ρ1/2, and B ∝ ρ1. For the interme-
diate case, Molina et al. (2012) derive

σ2
s = ln

(
1 + b2M2 β

β + 1

)
, (4)

which is similar to the relation derived in Padoan &
Nordlund (2011), except for the factor b2, explained be-
low, and except for the definition of β, for which Padoan
& Nordlund (2011) only take post-shock gas into account
(see the more extended discussion on this issue in Sec-
tion 2.4.2). The case B ∝ ρ1 is similar to the interme-
diate case, but is a rather extreme MHD case because
magnetic-field lines are assumed to be oriented only per-
pendicular to the flow direction. So is the other extreme
case in which the magnetic field is assumed to be par-
allel to the flow, yielding B ∝ ρ0. In the more realis-
tic case of turbulent flows, field lines become tangled,
and the B–ρ correlation is a combination of compres-
sion of field lines and turbulent dynamo amplification
(Schleicher et al. 2010; Sur et al. 2010; Federrath et al.
2011c; Turk et al. 2012; Schober et al. 2012). In a three-
dimensional system with a random distribution of flow
velocities and magnetic-field orientations, B ∝ ρ1/2 pro-
vides a reasonable intermediate dependence. We will
thus only consider B ∝ ρ1/2 here, which is favored by
simulations (Padoan & Nordlund 1999; Collins et al.
2011; Molina et al. 2012), and also close to what is sug-
gested from observations of magnetic fields in molecular
clouds (Crutcher et al. 2010)3.

In the case of B ∝ ρ0, i.e., for no density correla-
tion of the magnetic field, Equation (4) reduces to the
well-known and frequently used hydrodynamic (HD) ex-
pression, σ2

s = ln
(
1 + b2M2

)
with β →∞ (e.g., Padoan

et al. 1997; Passot & Vázquez-Semadeni 1998; Ostriker
et al. 2001; Lemaster & Stone 2008; Federrath et al.
2008b; Price et al. 2011) as a necessary condition in the
purely HD limit. The parameters b, M, and β in Equa-
tion (4) are the turbulent forcing parameter, the rms
sonic Mach number, and the ratio of thermal to magnetic
pressure, plasma β = Pth/Pmag. Using the definitions of
the thermal pressure for an isothermal equation of state
Pth = ρc2s , magnetic pressure Pmag = B2/(8π), Alfvén
velocity v2

A = B2/(4πρ), sonic and Alfvén Mach num-
bers, M = σV /cs and MA = σV /vA, the plasma beta
can be expressed as β = 2c2s/v

2
A = 2M2

A/M2. These
are all dimensionless numbers, rendering them particu-
larly useful because they determine the basic properties
of turbulent plasmas and can thus be compared directly
for any such system. Equation (4) can thus also be writ-

3 The observationally determined exponent of the B–ρ corre-
lation is quite uncertain. Crutcher (1999) find B ∝ ρ0.47, while
Crutcher et al. (2010) find B ∝ ρ0 below gas densities of 300 cm−3,
and B ∝ ρ0.65 above. For simplicity, we adopt Equation (4), de-

rived for the intermediate case, B ∝ ρ1/2.
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ten as

σ2
s = ln

(
1 + b2M2 2M2

A

M2 + 2M2
A

)
. (5)

The forcing parameter b was shown to vary smoothly
between b ≈ 1/3 for purely solenoidal (divergence-free)
forcing, and b ≈ 1 for purely compressive (curly-free)
forcing of the turbulence (Federrath et al. 2008b; Schmidt
et al. 2009; Federrath et al. 2010b; Seifried et al. 2011b;
Micic et al. 2012; Konstandin et al. 2012a). A stochas-
tic mixture of forcing modes in three-dimensional space
leads to b ≈ 0.4 (see Figure 8 in Federrath et al. 2010b).

Using numerical simulations, Molina et al. (2012)
found that Equations (4) and (5) work well in the regime
MA & 2, while for MA . 2, the assumption of isotropy
entering the analytic derivation of Equations (4) and (5)
breaks down, so we only apply them in the super-Alfvénic
regime in all the following.

2.3. Basics of the SFR Derivation

Here we present an analytic derivation of the SFR from
the statistics of supersonic, isothermal, magnetized tur-
bulence. The main ingredient for this analytic deriva-
tion is an integral over the density PDF, Equation (1),
in order to estimate the gas mass above a given density
threshold, contributing to star formation. We will com-
pare different ways of estimating the density threshold,
which is the main difference between the three most suc-
cessful, existing analytic models for the SFR (Krumholz
& McKee 2005; Padoan & Nordlund 2011; Hennebelle &
Chabrier 2011). We will express all quantities in terms of
dimensionless numbers, in order to simplify the deriva-
tion and to make it more general. We follow the stan-
dard terminology and use the Star Formation Rate per
Freefall Time (SFRff), as coined by Krumholz & McKee
(2005), which is the mass fraction going into stars per
time, where the time is expressed in units of the mean
freefall time.

The SFR in units of M� yr−1 can be computed by
scaling SFRff with the real cloud mass Mc and the actual
freefall time evaluated at the mean density of the cloud,
tff(ρ0):

SFR ≡ Mc

tff(ρ0)
SFRff . (6)

Note that this definition of SFRff is different from the
definition used in Krumholz & Tan (2007) and Krumholz
et al. (2012), who use freefall times estimated at differ-
ent densities and/or use a definition based on column
densities, such that the values of SFRff quoted in those
studies and the ones computed here cannot be directly
compared. For instance, given an SFR for fixed Mc, the
dimensionless value of SFRff would be much smaller, if
the freefall time at a high-density tracer was used rather
than the freefall time at the mean density of the cloud
because tff(ρ > ρ0) is shorter than tff(ρ0).

The basic idea for an analytic model of SFRff is to
integrate the log-normal density PDF, Equation (1),
weighted by ρ/ρ0 to get the mass fraction of gas with
density above a critical density scrit (to be determined
below in Section 2.4), and weighted by a freefall-time
factor to construct a dimensionless mass rate:

SFRff =
ε

φt

∫ ∞
scrit

tff(ρ0)

tff(ρ)

ρ

ρ0
p(s) ds . (7)

Note that the factor tff(ρ0)/tff(ρ) appears inside the in-
tegral because gas with different densities has different
freefall times,

tff(ρ) ≡
(

3π

32Gρ

)1/2

, (8)

which should be taken into account in the most general
case (see Hennebelle & Chabrier 2011). Previous esti-
mates for SFRff either used a factor tff(ρ0)/tff(ρ0) = 1
(Krumholz & McKee 2005), or a factor tff(ρ0)/tff(ρcrit)
with ρcrit = ρ0 exp (scrit) (Padoan & Nordlund 2011),
both of which are independent of density and were thus
pulled out of the integral. We will show, however, that
it is crucial to take the multi-freefall nature of gas with
different densities into account to obtain better models
for SFRff .

The constant factor ε in Equation (7) accounts for the
fact that only a certain fraction of the gas above scrit

might actually go into stars. Since individual stars form
in accretion disks from which powerful jets, winds, and
outflows are launched during the process of stellar birth,
it is likely that a certain fraction of the accreted material
is re-injected into the ISM, thus leading to ε < 1. The-
oretical upper limits are in the range ε ≈ 0.25–0.7 (e.g.,
Matzner & McKee 2000). The observed displacement of
the characteristic mass in the IMF (e.g., Kroupa 2001;
Chabrier 2003) with respect to the CMF (e.g., Johnstone
et al. 2000) has been taken to argue that ε might be
around 0.3–0.5 (Alves et al. 2007; André et al. 2010); see
however Ward et al. (2012).

The factor 1/φt in Equation (7) is also of order unity
and accounts for the uncertainty in the timescale factor
tff(ρ0)/tff(ρ), originally introduced in Krumholz & Mc-
Kee (2005). We will determine the best-fit values of ε and
1/φt in Sections 4 and 6, when we compare the theories
with simulations and observations.

2.4. Six Models for the SFR

In the following, we will solve Equation (7), using dif-
ferent density thresholds scrit, according to the previ-
ous analytic studies of the SFR by Krumholz & Mc-
Kee (2005, KM), Padoan & Nordlund (2011, PN), and
Hennebelle & Chabrier (2011, HC)4. We distinguish six
cases, named ‘KM’, ‘PN’, ‘HC’, and ‘multi-ff KM’, ‘multi-
ff PN’, ‘multi-ff HC’ as distinguished in Hennebelle &
Chabrier (2011). The first three represent the origi-
nal analytic derivations by Krumholz & McKee (2005),
Padoan & Nordlund (2011), and Hennebelle & Chabrier
(2011), while the last set of three are all based on the
multi-freefall expression of the integral (7). The dif-
ference for this last set of three is only the model for
the critical density, i.e., the lower limit of the integral.
We note that the ideas inherent in each of the original
theories contributes to our present understanding of the
turbulence-regulated SFR. Krumholz & McKee (2005)
developed the basic model, Padoan & Nordlund (2011)
extended it to include magnetic fields, and Hennebelle
& Chabrier (2011) improved all models by introducing

4 Note that the critical densities derived in the following may
or may not be related to density or column density thresholds for
star formation introduced in observational studies (e.g., Heiderman
et al. 2010; Lada et al. 2010). Studying such potential relations,
however, deserves further consideration in the near future.
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multi-freefall versions of the aforementioned theories, yet
without considering magnetic fields. We build on all
these approaches and extend the non-magnetic multi-
freefall models to include magnetic fields. We then deter-
mine the best combination of the aforementioned theo-
retical ideas to come up with a more universal theoretical
model for the SFR. Table 1 summarizes all six theoreti-
cal models, which are discussed and derived in detail in
the following.

2.4.1. The KM Model

In the KM model by Krumholz & McKee (2005), the
freefall-time factor tff(ρ0)/tff(ρ) in Equation (7) is simply
set to unity. Moreover, Krumholz & McKee (2005) define
the critical density scrit in the lower limit of the SFRff

integral by comparing the Jeans (1902) length

λJ(ρ) =

(
πc2s
Gρ

)1/2

, (9)

evaluated at the mean density with the sonic scale λs

(defined in Equation 13 below),

scrit = 2 ln

(
φx
λJ(ρ0)

λs

)
. (10)

This choice is motivated by the expectation that the col-
lapse sets in roughly at the sonic scale, where the tur-
bulent fluctuations are of the order of the thermal sound
speed, i.e., the local Mach number has dropped to about
unity at the sonic scale (Vázquez-Semadeni et al. 2003;
Federrath et al. 2010b). The global turbulent supersonic
support is expected to become insignificant at the sonic
scale, such that collapse can proceed below that scale
(e.g., Mac Low & Klessen 2004). The leading factor 2
in Equation (10) stems from the density dependence of
the Jeans length, λJ(ρ) ∝ ρ−1/2, and the numerical fac-
tor φx allows for slight variations in the actual scale on
which the collapse sets in. Krumholz & McKee (2005)
find φx = 1.12 for the simulations by Vázquez-Semadeni
et al. (2003). In real molecular clouds, the sonic scale is
expected to be of order 0.1 pc within factors of a few (e.g.,
Falgarone et al. 1992; Goodman et al. 1998; Stahler &
Palla 2004; Schnee et al. 2007; McKee & Ostriker 2007).

To make Equation (10) more useful, we express all de-
pendent variables for scrit in terms of dimensionless num-
bers. This can be achieved by rewriting the Jeans length
as

λJ(ρ0) =

(
πc2s
Gρ0

)1/2

= πcs

(
L3

6GMc

)1/2

, (11)

where we have assumed a spherical cloud with diameter
L, mass Mc, and isothermal sound speed cs. Since the
velocity fluctuations in a turbulent medium depend on
the length scale ` as

σv(`) = σV (`/L)p , (12)

where σV ≈ 1 km s−1 is the three-dimensional, non-
thermal velocity dispersion on the scale L ≈ 1 pc, and
p ≈ 0.5 from observations in Galactic clouds (Larson
1981; Solomon et al. 1987; Ossenkopf & Mac Low 2002;
Heyer & Brunt 2004; Heyer et al. 2009; Roman-Duval
et al. 2011), the Galactic Central Molecular Zone (Jones

et al. 2012; Shetty et al. 2012), and from numerical sim-
ulations (Kritsuk et al. 2007; Schmidt et al. 2009; Feder-
rath et al. 2010b), the sonic scale can be written as

λs = L (cs/σV )
1/p

. (13)

Substituting Equations (11) and (13) into Equation (10),
we find

scrit,KM = ln

[
φ2
xπ

2

5

5σ2
V L

6GMc

(
σV
cs

)2(1−p)/p
]

= ln
[
(π2/5)φ2

x αvirM2
]
, (14)

where we have identified the virial parameter for a spheri-
cal, uniform-density cloud with velocity dispersion σV on
the diameter scale L,

αvir,◦ = 5σ2
V L/(6GMc) , (15)

and the rms Mach number,M = σV /cs, and used p = 0.5
in the second step. This derivation is essentially identical
to the one presented in Krumholz & McKee (2005), with
the exception that we use the more general expression
for the virial parameter here,

αvir = 2Ekin/ |Egrav| , (16)

the ratio of twice the kinetic energy to the gravita-
tional energy. This general form reduces to αvir,◦ given
by Equation (15) with Ekin = Mcσ

2
V /2 and Egrav =

−3GM2
c /(5R) for a spherical, homogeneous cloud with

radius R = L/2. We emphasize that the definition of
αvir,◦ is based on global parameters, assuming a spheri-
cal cloud with uniform density. This is far from realistic,
given that clouds are in fact highly inhomogeneous and
non-spherical. In the analytic derivations, however, this
simplification given by Equation (15) is necessary to en-
able a mathematical analysis of the problem. In the sim-
ulations discussed in Section 3 below, however, we will
directly compute the virial parameter from the gravita-
tional potential of the actual, three-dimensional, inhomo-
geneous spatial gas distribution, providing a more gen-
eral and accurate measure of the virial parameter given
by the general form, Equation (16). This is discussed fur-
ther below when we compare the theories to numerical
simulations and in Section 7.1.3.

The original model by Krumholz & McKee (2005) ne-
glects magnetic fields. Here, magnetic-field effects are
partially added automatically by using Equation (4) for
σs, such that σs decreases with increasing magnetic en-
ergy, as derived in Molina et al. (2012). This however
only changes σs, while a modification of scrit is also nec-
essary to fully account for magnetic-pressure effects on
SFRff .

Here we provide and apply a simple rule to include
magnetic-field effects in the expression for the critical
density scrit. The key idea is to replace the thermal pres-
sure by the sum of the thermal and magnetic pressures:

Pth→Pth + Pmag

⇐⇒ ρc2s→ρc2s + (1/2)ρv2
A , (17)

where the second line implies isothermal gas. Using v2
A =

2c2sβ
−1 with the definition of plasma β = Pth/Pmag in

Section 2.2, we can thus simply replace the sound speed
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TABLE 1
Six Analytic Models for the Star Formation Rate per Freefall Time.

Analytic
Model

Freefall-time
Factor

Critical Density ρcrit/ρ0 = exp(scrit) SFRff

KM 1 (π2/5)φ2
x ×αvirM2

(
1 + β−1

)−1
ε/(2φt)

{
1 + erf

[
(σ2

s − 2scrit)/(8σ
2
s)1/2

]}
PN tff(ρ0)/tff(ρcrit) (0.067) θ−2×αvirM2f(β) ε/(2φt)

{
1 + erf

[
(σ2

s − 2scrit)/(8σ
2
s)1/2

]}
exp [(1/2)scrit]

HC tff(ρ0)/tff(ρ) (π2/5) y−2
cut×αvirM−2

(
1 + β−1

)
+ ρ̃crit,turb ε/(2φt)

{
1 + erf

[
(σ2

s − scrit)/(2σ
2
s)1/2

]}
exp

[
(3/8)σ2

s

]
multi-ff KM tff(ρ0)/tff(ρ) (π2/5)φ2

x ×αvirM2
(
1 + β−1

)−1
ε/(2φt)

{
1 + erf

[
(σ2

s − scrit)/(2σ
2
s)1/2

]}
exp

[
(3/8)σ2

s

]
multi-ff PN tff(ρ0)/tff(ρ) (0.067) θ−2×αvirM2f(β) ε/(2φt)

{
1 + erf

[
(σ2

s − scrit)/(2σ
2
s)1/2

]}
exp

[
(3/8)σ2

s

]
multi-ff HC tff(ρ0)/tff(ρ) (π2/5) y−2

cut×αvirM−2
(
1 + β−1

)
ε/(2φt)

{
1 + erf

[
(σ2

s − scrit)/(2σ
2
s)1/2

]}
exp

[
(3/8)σ2

s

]
Notes. The function f(β), entering the critical density in the PN and multi-ff PN models is given by Equation (31). The added
turbulent contribution ρ̃crit,turb in the critical density of the HC model is given by Equation (39).

by an effective sound speed,

cs → cs
(
1 + β−1

)1/2
. (18)

Since M = σV /cs, we can also replace the sonic Mach
number by an effective Mach number to take magnetic
pressure into account:

M→M
(
1 + β−1

)−1/2
. (19)

Doing this for scrit,KM in Equation (14) yields the mag-
netic version of the critical density,

scrit,KM = ln
[
(π2/5)φ2

x αvirM2
(
1 + β−1

)−1
]
. (20)

Even though we simply replaced the thermal sound speed
by an effective, magnetic sound speed to derive this ex-
pression, it has a deeper physical meaning. What we
physically do in the derivation of scrit is to replace the
thermal Jeans length in the numerator of Equation (10)
with the magnetothermal Jeans length,

λJ,mag =

(
πc2s

(
1 + β−1

)
Gρ

)1/2

, (21)

and the sonic scale in the denominator with the magne-
tosonic scale,

λms = L
[
cs
(
1 + β−1

)1/2
/σV

]1/p
. (22)

We note that the magnetic modifications given by Equa-
tions (17) only account for magnetic pressure, i.e.,
isotropic pressure induced by the small-scale magnetic
field. It does not account for mean magnetic-field effects,
and as such will only be a valid extension to MHD as long
as the turbulence remains trans- to super-Alfvénic be-
cause sub-Alfvénic turbulence with a strong mean mag-
netic field component is anisotropic, which is discussed
at more detail below.

Finally, solving the general SFRff -integral (Equation 7)
with scrit = scrit,KM from Equation (20) and unity for the
freefall-time factor (see Table 1 for a summary), the SFR
per freefall time in the KM model is

SFRff ,KM =
ε

φt

∫ ∞
scrit,KM

exp(s) p(s) ds

=
ε

2φt

[
1 + erf

(
σ2
s − 2scrit,KM√

8σ2
s

)]
. (23)

This derivation is identical to the one in Krumholz & Mc-
Kee (2005), except for the extension to include magnetic
fields in the theory based on the plasma β terms in σs,
Equation (4), and in the critical density, Equation (20).

2.4.2. The PN Model

Padoan & Nordlund (2011) use tff(ρ0)/tff(ρcrit) as the
freefall-time factor tff(ρ0)/tff(ρ) in Equation (7), such
that the freefall time of the critical density is used for
all densities above the critical density to estimate SFRff .
Unlike Krumholz & McKee (2005) who relate the criti-
cal density scrit to the Jeans length and the sonic scale,
Padoan & Nordlund (2011) related the critical density to
the magnetic shock jump conditions and to the magnetic
critical mass for collapse. Starting with their assumed
balance of thermal plus magnetic pressure by turbulent
ram pressure on the cloud scale,

ρMHD

(
c2s +

1

2
v2

A

)
= ρ0

(σV
2

)2

, (24)

and using the definitions for M and β from Section 2.2,
Padoan & Nordlund (2011) arrive at an expression for
the density jump

ρMHD = ρ0
M2

4

β

β + 1
. (25)

This leads to the post-shock thickness

λMHD = θL
4

M2

β + 1

β
, (26)

since ρMHD/ρ0 = θL/λMHD with the numerical param-
eter θ . 1, the fraction of the cloud size forming the
largest shocks. Thus, θL can be interpreted as the turbu-
lent injection or forcing scale. In numerical simulations,
most of the kinetic, turbulent energy is usually injected
at a wavenumber k = 2 in units of 2π/L, corresponding
to half of the total cloud size (e.g., Kritsuk et al. 2007;
Schmidt et al. 2009; Federrath et al. 2010b), as in the sim-
ulations discussed below in Section 3. Thus, θ ≈ 1/2, but
there might be some corrections to that particular scale
(Wang & George 2002). Padoan & Nordlund (2011) take
θ ≈ 0.35. Here, we will simply interpret θ as a numerical
factor of order unity, accounting for any uncertainty in
the post-shock thickness with respect to the total cloud
scale L in Equation (26).

In order to derive a critical density for star formation,
Padoan & Nordlund (2011) compare the mass of a sphere
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with radius λMHD/2 to the critical mass for collapse. Mc-
Kee (1989) define the critical mass for collapse of a mag-
netized gas sphere as

Mcrit ≈MBE +MΦ , (27)

where
MBE = 1.182c3sG

−3/2ρ−1/2 (28)

is the Bonnor-Ebert mass (Ebert 1955; Bonnor 1956) and

MΦ = mΦ
πR2B

G1/2
= m3

Φ

9π5/2

2G3/2
ρ−1/2v3

A (29)

is the magnetic critical mass for a sphere with radius R,
threaded by a magnetic field B, where we have used the
Alfvén velocity vA = B/(4πρ)1/2 in the second step. The
numerical factormΦ in Equation (29) can vary depending
on the geometry and model taken, e.g., Padoan & Nord-
lund (2011) take mΦ = 0.17 with a reference to Tomisaka
et al. (1988), while McKee (1989) use mΦ = 0.12, and
Strittmatter (1966) derive mΦ = (12π2/5)−1/2 ≈ 0.21 for
a non-rotating cloud and mΦ = (9π4/10)−1/2 ≈ 0.11 for
an oblate spheroidal cloud with eccentricity approaching
unity (see Nakano & Nakamura 1978).

Finally, inserting Equations (28) and (29) into Equa-
tion (27) and setting the critical mass Mcrit(ρcrit) =
(4π/3)(λMHD/2)3ρcrit with the post-shock thickness
given by Equation (26), yields the critical density,

scrit,PN = ln
[
0.067θ−2αvirM2f(β)

]
(30)

with

f(β) ≡
(
1 + 0.925β−3/2

)2/3
(1 + β−1)

2 . (31)

Note that scrit,PN has the same dependence on αvir and
M as scrit,KM in Equation (20).

Padoan & Nordlund (2011) use a rather special defini-
tion of β, which is the average post-shock β. From a semi-
analytical comparison of the mean magnetic field with
the rms magnetic field, they derive a criterion for β based
on the average Alfvén Mach number, which Padoan &
Nordlund (2011) simply use as a switch between MHD
and purely HD turbulence. However, it is not straightfor-
ward to derive a post-shock value of β because it involves
a density-threshold dependence (see discussion in Padoan
& Nordlund 2011). Moreover, the switch discussed by
Padoan & Nordlund (2011) is a semi-analytical criterion
derived from their simulations. We therefore decide to
ignore this special definition of β for simplicity and apply
Equation (30) with our definition of β (see Section 2.2),
which includes all, and not just the post-shock gas. This
is consistent with the definition of all other dynamical
quantities of interest, e.g., αvir, M, MA, ρ0, etc.

Using tff(ρ0)/tff(ρcrit,PN) and inserting scrit,PN into the
general Equation (7) for SFRff yields

SFRff ,PN =
ε

φt
exp

(
1

2
scrit,PN

)∫ ∞
scrit,PN

exp(s) p(s) ds

=
ε

2φt
exp

(
1

2
scrit,PN

)[
1 + erf

(
σ2
s − 2scrit,PN√

8σ2
s

)]
(32)

for the PN model.

2.4.3. The HC Model

Hennebelle & Chabrier (2011) were the first to argue
that the freefall-time factor tff(ρ0)/tff(ρ) must be used in
Equation (7), such that different densities contribute to
SFRff with their individual freefall time (see Equation 8).
The full HC model for SFRff is based on the mass spec-
trum of gravitationally bound structures, as derived in
Hennebelle & Chabrier (2008, 2009):

N (M) =
d(N/V )

dM
∝ − 1

M

ds

dM
exp(s) p(s) , (33)

which is essentially Equation (6) in Hennebelle &
Chabrier (2011), except for the freefall time factor. The
SFR in the HC model is then given by the integral over
the mass spectrum, weighted by the mass and the freefall
time factor:

SFRff = − ε

φt

∫ Mcut

0

M dM

M

ds

dM

tff(ρ0)

tff(ρ)
exp(s) p(s)

=
ε

φt

∫ ∞
scrit

tff(ρ0)

tff(ρ)

ρ

ρ0
p(s) ds . (34)

Note that the first equality is the same as Equation (7)
in Hennebelle & Chabrier (2011)5. It can be simplified
to the second line in Equation (34), by transforming the
mass variable into the logarithmic density variable s and
changing the limits of the integral accordingly. We em-
phasize that the second equality in Equation (34) is ex-
actly the same as the general model for SFRff given by
Equation (7) above.

In the HC model, the critical density scrit,HC is de-
fined by requiring that the turbulent Jeans length λJ,turb

at the critical density is a fraction ycut of the cloud
scale L. Hennebelle & Chabrier (2011) do not pro-
vide an explicit physical interpretation of this choice,
but a follow-up study is in preparation (P. Hennebelle
& G. Chabrier 2012, private communication). The tur-
bulent Jeans length is obtained by adding an effective
turbulent pressure (see Chandrasekhar 1951a,b; Bonaz-
zola et al. 1987)6 to the sound speed in the purely thermal
Jeans length, Equation (9):

λJ,turb ≡
(
πc2s + (π/3)σ2

v(λJ,turb)

Gρ

)1/2

=

(
πc2s + πλJ,turbσ

2
V /(3L)

Gρ

)1/2

, (35)

in which the turbulent velocity dispersion, Equation (12),
must be evaluated on the scale ` = λJ,turb, such that

5 Equation (7) in Hennebelle & Chabrier (2011) contains an er-
ror in that the factor dM/M in their integral must instead read
dM (P. Hennebelle & G. Chabrier 2012, private communication),
which simplifies the equation significantly because the mass and
radius dependencies drop entirely and the integral can be com-
pletely rewritten in terms of s and solved analytically (see our
Equation 34).

6 The concept of turbulent pressure is also used to derive ac-
cretion rates and luminosities during high-mass star formation in
massive turbulent cores (McKee & Tan 2002, 2003).
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the turbulent Jeans length is implicitly defined by Equa-
tion (35). Rewriting yields a quadratic equation with
two solutions:

λJ,turb(ρ) =
πσ2

V ±
√

36πc2sGL
2ρ+ π2σ4

V

6GLρ
(36)

for which only the positive root is physical because the
Jeans length must become larger when adding a stabi-
lizing pressure—in this case a turbulent pressure. Natu-
rally, this expression reduces to the thermal Jeans length
for σV → 0. Now, setting the turbulent Jeans length
equal to ycutL as defined in Hennebelle & Chabrier
(2011), and identifying the virial parameter, Equa-
tion (15), and the Mach number M = σV /cs, finally
yields the critical density threshold in the HC model:

scrit,HC = ln [ρ̃crit,th + ρ̃crit,turb] , (37)

where the (magneto)thermal contribution is

ρ̃crit,th ≡ (π2/5)y−2
cutαvirM−2(1 + β−1) , (38)

and the turbulent contribution is

ρ̃crit,turb ≡ (π2/15) y−1
cut αvir . (39)

Note that the dependence of the thermal contribution
to scrit,HC on αvir is the same as in the KM and PN
models, while the dependence on the Mach number is
M−2, which is the opposite of the dependence in the
KM and PN models, for both of which ρcrit ∝M+2 (see
Table 1 for a summary of all analytic models).

The original HC model does not take magnetic fields
into account, but we have extended the HC theory to
MHD here by replacing the sonic Mach number in Equa-
tion (38) with the magnetic version in the same way as
done for the KM model via Equation (19). The mag-
netic correction factor (1 +β−1) in Equation (38) simply
becomes unity in the hydrodynamical limit (β →∞).

The SFR in the HC model is thus given by integrating
Equation (34) or equivalently Equation (7) with scrit,HC,
which yields

SFRff ,HC =
ε

φt

∫ ∞
scrit,HC

exp

(
3

2
s

)
p(s) ds

=
ε

2φt
exp

(
3

8
σ2
s

)[
1 + erf

(
σ2
s − scrit,HC√

2σ2
s

)]
.

(40)

2.4.4. The Multi-freefall KM Model

Following Hennebelle & Chabrier (2011), we define all
three multi-freefall versions of the KM, PN, and HC
models by solving the generalized, multi-freefall integral,
Equation (7). The analytic solution of that equation for
an arbitrary threshold scrit is

SFRff =
ε

2φt
exp

(
3

8
σ2
s

)[
1 + erf

(
σ2
s − scrit√

2σ2
s

)]
, (41)

which is identical to Equation (8) in Hennebelle &
Chabrier (2011), and identical to the HC model, Equa-
tion (40), except that the critical density is defined ac-
cording to either the KM, PN, or HC models. Thus, the

multi-ff KM model is defined by using the threshold den-
sity scrit = scrit,KM from Equation (20) in the generalized
solution of the multi-freefall SFRff , Equation (41).

2.4.5. The Multi-freefall PN Model

The multi-ff PN model is defined by using the threshold
density scrit = scrit,PN from Equation (30) in the gener-
alized solution of the multi-freefall SFRff , Equation (41).

2.4.6. The Multi-freefall HC Model

The multi-ff HC model is defined by taking the thresh-
old density scrit = scrit,HC from Equation (37), but only
with the thermal contribution ρ̃crit,th from Equation (38),
while setting the turbulent contribution ρ̃crit,turb = 0,
and using that threshold density in the generalized so-
lution of the multi-freefall SFRff , Equation (41). We do
this to be consistent with the definition in Hennebelle &
Chabrier (2011). Note that the thermal density thresh-
old is derived by requiring that the thermal Jeans length
at that density, λJ is equal to ycutL, while the full HC
model includes the turbulent contribution, which is ob-
tained by setting λJ,turb = ycutL (see the derivation of
the HC model above).

2.5. Dependencies of the Analytically Derived SFRff

After the detailed derivation of the six different SFRff

models, we can now start to compare them. Figure 1
shows all six SFRff models: KM, PN, HC (left panels),
and multi-ff KM, PN, HC (right panels) for a turbulent
forcing parameter b = 0.4, corresponding to a statistical
mixture of solenoidal and compressive modes in the tur-
bulent forcing (Federrath et al. 2010b, Figure 8). When
looking at the derivations above, it becomes clear that
SFRff is a function of αvir, M, b, and β. The depen-
dencies enter through the definition of the critical den-
sities in the different models, and through the variance
of turbulent density fluctuations, Equation (4). We plot
the analytically derived SFRff as a function of the virial
parameter αvir and the sonic Mach number M in each
panel. Note that all these models are plotted for β →∞,
i.e., without taking magnetic fields into account yet. As
shown in Table 1, each model has two fudge factors of
order unity. The first one is 1/φt for all models (where
the local efficiency was set to ε = 1 for simplicity in
all models, to facilitate the comparison), while the sec-
ond one is φx, θ, and ycut for the (multi-freefall) KM,
PN, and HC models, respectively. We plot all curves
for ε/φt = 1 to enable direct comparisons, and used the
favored values of the fudge factors by the different au-
thors, φx = 1.12 (Krumholz & McKee 2005), θ = 0.35
(Padoan & Nordlund 2011), and ycut = 0.1 (Hennebelle
& Chabrier 2011).

Dependence on αvir — Let us first concentrate on the de-
pendence of SFRff on the virial parameter. Since the
virial parameter, Equations (15) and (16), is defined here
as the ratio of twice the kinetic to the gravitational en-
ergy, it essentially measures how strongly the system is
bound, and whether it is contracting (αvir . 1) or ex-
panding (αvir & 1). Thus, we generally expect that the
SFR should decrease with increasing αvir because the
cloud then becomes less bound and less likely to form
stars. Indeed, the analytic SFR generally decreases with
increasing αvir in all models with the exception of the
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Fig. 1.— Comparison of the six analytic models for the star formation rate per freefall time, SFRff : KM, PN, HC (left panels) and
multi-freefall KM, PN, HC (right panels). See Table 1 and the derivations in Section 2.3 for details of the different analytic models and
functions plotted (ε/φt = 1 in each panel). The dependence of SFRff on the virial parameter αvir, and the sonic Mach number M are
shown in each panel for a turbulent forcing parameter b = 0.4, corresponding to a statistical mixture of solenoidal and compressive modes
in the turbulent forcing. All models are plotted without taking magnetic fields into account, i.e., plasma β →∞.
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original PN model, for which SFRff first increases for
αvir . 1 and then decreases for αvir & 1. The increase
comes from the freefall-time factor tff(ρ0)/tff(ρcrit) in
the PN model, which leads to the factor exp(scrit,PN/2)
in Equation (32), and with the critical density from
Equation (30) to SFRff ∝ αvir for small αvir. As ex-
pected though, this direct proportionality disappears in
the multi-freefall PN model, as in the other two multi-
freefall models (multi-ff KM and multi-ff HC).

Dependence on M— The expected dependence of SFRff

on the sonic Mach number is that SFRff should increase
with increasing M because higher Mach number means
stronger and denser local compression, leading to higher
SFRs. Indeed, the Mach number dependence is gener-
ally similar in all models, i.e., SFRff increases with M,
with the exception of the original KM model, which has
the weakest dependence onM. For large αvir, SFRff ,KM

increases, but only slowly, while for small αvir, it stays
constant or even decreases with increasingM. Both the
HC and multi-freefall HC models have the strongest pos-
itive correlation with the Mach number, such that for
M & 10, SFRff ,HC hardly depends on αvir anymore (see
also, Hennebelle & Chabrier 2011, Figure 1)7. The strong
increase of SFRff withM in the two HC cases comes from
the Mach number dependence of the thermal contribu-
tion to scrit,HC, which is ρ̃crit,th ∝ M−2, leading to a
decreasing threshold density in the HC models, and thus
to a higher SFR. This is the opposite compared to the
KM and PN models, for both of which the critical den-
sity increases with the square of the Mach number (see
Equations 20 and 30, respectively, or Table 1).

We also note the local minima of SFRff aroundM≈ 2
in all models, except the HC and multi-freefall HC mod-
els. Those minima are spurious because they occur close
toM = 1, for which the basic approach of shock-induced
star formation must eventually break down as the system
becomes transonic. Shocks requireM > 1, by definition,
but for rms Mach 1–2, a significant fraction of the sys-
tem is transonic to subsonic. We thus conclude that all
six models break down for the low Mach number regime,
M . 2. The rms sonic Mach numbers in real molecular
clouds usually exceed unity by far (Larson 1981; Falgar-
one et al. 1992; Roman-Duval et al. 2011; Schneider et al.
2012), such that our analytic models are generally appli-
cable to typical molecular clouds with M > 2.

Dependence on b— While the dependence on Mach num-
ber enters SFRff both through scrit and σ2

s , the forcing
dependence only enters through the forcing parameter b
in σ2

s , Equation (4). Figure 2 shows SFRff as a function
of the forcing parameter b for all models and three differ-
ent Mach numbers (M = 5, 10, and 20). All curves are
plotted for αvir = 1, β →∞, ε/φt = 1, and the standard
fudge factors φx = 1.12, θ = 0.35, and ycut = 0.1, respec-
tively. We see that SFRff increases monotonically with
b, from b = 1/3 (solenoidal forcing), over b = 0.4 (mixed
forcing), to b = 1 (compressive forcing) in all models.
This is expected because the density variance becomes
larger for more compressive forcing, pushing a significant

7 Note that the three different sonic Mach numbers shown in
Figure 1 of Hennebelle & Chabrier (2011) are actually M = 4.5,
9, and 18, and not 4, 9, and 16 as indicated in their figure caption
(P. Hennebelle & G. Chabrier 2012, private communication).

Fig. 2.— SFRff as a function of the forcing parameter b in Equa-
tion (4) for sonic Mach numbers M = 5 (top), M = 10 (mid-
dle), and M = 20 (bottom). All curves are plotted for αvir = 1,
ε/φt = 1, and the favored fudge factors by Krumholz & McKee
(2005), Padoan & Nordlund (2011), and Hennebelle & Chabrier
(2011): φx = 1.12, θ = 0.35, and ycut = 0.1, respectively. Only
purely hydrodynamic cases are shown (β → ∞). The star forma-
tion rate increases monotonically from b = 1/3 (solenoidal turbu-
lent forcing), over b = 0.4 (mixed forcing), to b = 1 (compressive
forcing).

fraction of the gas to higher densities (Federrath et al.
2008b, 2010b; Konstandin et al. 2012a). Similar to the
behavior with increasing Mach number, increasing the
amount of direct compression induced by the turbulent
forcing leads to higher local densities, and thus to higher
SFRs with a typical increase of about an order of mag-
nitude for compressive forcing compared to solenoidal
forcing.

Dependence on β— We expect that by adding magnetic
energy to the system, the SFR should decrease because
magnetic energy adds a stabilizing pressure to the sys-
tem, counteracting gravitational collapse. Figure 3 shows
the dependence of SFRff on plasma β in the six analytic
models. We emphasize that only the original PN model
had a magnetic-field dependence, coming from the de-
pendence of scrit,PN on β in Equation (30), and from the
dependence of σs on β in Equation (4). However, we have
extended all other analytic models (KM, HC, and multi-
ff KM, PN, HC) to MHD, simply by applying the MHD
version of σs, Equation (4) in all models, and replacing
the sonic Mach number in the expressions for the criti-
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Fig. 3.— Same as Figure 2, but SFRff is shown as a function
of plasma β, the ratio of thermal to magnetic pressure (bottom
abscissa) or as a function of the Alfvén Mach number, MA =

M
√
β/2 (top abscissa) for mixed forcing (b = 0.4). Since the

sonic Mach number is M = 5, 10, and 20 (top to bottom panels),
the MA-axis varies between the three panels. The solid, vertical
line separates MA < 2 from MA > 2. Analytic predictions below
MA . 2 are inaccurate (Molina et al. 2012) and only shown in
gray.

cal density by the magnetic versionM→M/
√

1 + 1/β,
introduced in Equation (19).

As found in a detailed comparison of the analytically-
derived σs with numerical simulations of MHD turbu-
lence in Molina et al. (2012), the standard deviation–
Mach number relation, Equation (4), breaks down for
MA . 2 because strongly sub-Alfvénic flows become
highly anisotropic (e.g., Mac Low 1999; Cho & Vish-
niac 2000; Cho & Lazarian 2003; Beresnyak et al. 2005;
Brunt et al. 2010; Esquivel & Lazarian 2011). Since the
magnetic-field dependence of SFRff was introduced as
an isotropic magnetic-pressure extension, the behavior of

the analytic models for MA . 2 is likely invalid. Thus,
we only consider the trans- to super-Alfvénic regime with
MA & 2. In this regime, SFRff decreases with increasing
magnetic energy, i.e., decreasing β or MA in all models,
as expected when adding a stabilizing magnetic pressure.

3. TESTING THE ANALYTIC THEORIES FOR THE SFR
WITH NUMERICAL SIMULATIONS

In order to test the analytic predictions of the star for-
mation rate (SFR) models in Section 2, we perform a
series of numerical simulations of driven, supersonic tur-
bulence, including magnetic fields, gravity, and a model
for collapse and accretion of star-forming regions to mea-
sure the SFR. Ideally, we would like to sample as much
of the parameter space as possible with the simulations.
Since the analytic SFR depends on αvir,M, b, and β (see
Section 2.5), we have to restrict ourselves to testing only
a subset of those because the simulations are computa-
tionally too expensive to scan through the entire parame-
ter range. We thus concentrate here on the Mach number
and forcing dependence, as well as the dependence on the
magnetic field, but only consider models with an initial
virial parameter of around unity. However, as the tur-
bulence produces strong spatial density variations, the
virial parameter can change by an order of magnitude
from its initial value given by Equation (15) when the
turbulence is fully established because the mass is re-
arranged into complex filamentary and sheet-like struc-
tures. To take this into account, we always compute
instantaneous values of αvir, based on the spatial distri-
bution of the gas (Equation 16), as for all other param-
eters, and then average them over space and time. The
time interval for averaging is chosen such that it cov-
ers the whole star formation sequence in the simulations,
from the time when the turbulence is fully established,
as explained in more detail in Section 3.4 below. First
however, we explain our numerical scheme in Section 3.1,
the forcing of the turbulence in Section 3.2, and the sink
particles introduced to model core and star formation in
Section 3.3.

3.1. Numerical Methods

We use the adaptive mesh refinement (AMR, Berger &
Colella 1989) code FLASH8 (Fryxell et al. 2000; Dubey
et al. 2008) in version 2.5 to integrate the ideal, three-
dimensional, MHD equations, including self-gravity,

∂ρ

∂t
+∇ · (ρv) = 0 ,

ρ

(
∂

∂t
+ v · ∇

)
v =

(B · ∇)B

4π
−∇P? + ρ (g + Fstir) ,

∂E

∂t
+∇ ·

[
(E + P?)v −

(B · v)B

4π

]
= ρv · (g + Fstir) ,

∂B

∂t
= ∇× (v ×B) , ∇ ·B = 0 , (42)

where the gravitational acceleration of the gas g, is the
sum of the self-gravity of the gas and the contribution of
sink particles (a subgrid model for collapse and accretion
of star-forming regions in the simulations, explained in

8 http://flash.uchicago.edu/site/flashcode/
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Section 3.3 below):

g = −∇Φgas + gsinks ,

∇2Φgas = 4πGρ . (43)

In the ideal MHD Equations (42), ρ, v, P? = Pth +

1/(8π) |B|2, B, and E = ρεint + (ρ/2) |v|2 + 1/(8π) |B|2
denote gas density, velocity, pressure (thermal plus mag-
netic), magnetic field, and total energy density (inter-
nal plus kinetic, plus magnetic), respectively. The MHD
equations are closed with a polytropic equation of state,
Pth = c2sρ

Γ with Γ = 1, such that the gas remains isother-
mal with a constant sound speed cs = 0.2 km s−1, corre-
sponding to a temperature of T ≈ 11 K for gas with a
mean molecular weight of 2.3. This is a reasonable ap-
proximation for dense, molecular gas of solar metallic-
ity, over a wide range of densities (Wolfire et al. 1995;
Omukai et al. 2005; Pavlovski et al. 2006; Glover & Mac
Low 2007a,b; Glover et al. 2010; Hill et al. 2011; Hen-
nemann et al. 2012). Moreover, Glover & Clark (2012)
find that the SFR is almost insensitive to the metallic-
ity. Reducing the metallicity of the gas by two orders of
magnitude reduces the time-averaged SFR by less than a
factor of two. Thus, our conclusions remain intact, even
though we neglect the detailed chemistry, cooling and
heating processes in molecular clouds in this study.

We solve the MHD Equations (42) on three-
dimensional, periodic grids with maximum resolutions
of N3

res = 1283–10243 grid points. These are all uniform-
grid simulations, except for the Nres = 1024 simulation,
where we use a root grid with 5123 cells and one level of
AMR with a refinement criterion to ensure that the local
Jeans lengths is covered with at least 32 grid cells, in or-
der to resolve turbulent vorticity and magnetic-field am-
plification on the Jeans scale (Sur et al. 2010; Federrath
et al. 2011c; Turk et al. 2012). We use a positive-definite
MHD Riemann solver (Bouchut et al. 2007, 2010; Waa-
gan 2009), which has been tested for efficiency, robust-
ness, and accuracy in Waagan et al. (2011). This study
shows that the MHD scheme keeps ∇·B errors at a negli-
gible level, and allows us to model extremely high-Mach
turbulence without producing unphysical states. This is
particularly important for this study because we model
supersonic turbulence on the largest scales of molecular
clouds with rms Mach numbers as high as M ≈ 50 and
compressive forcing, which produces density contrasts by
several orders of magnitude, sometimes between two ad-
jacent grid cells because of multiple interactions of shocks
and strong rarefaction waves, even before gravitational
collapse sets in. Grid-based HD solvers often produce
negative densities in such situations because of numer-
ical post-shock oscillations. Such unphysical states are
avoided by construction in the HLL3R Riemann scheme
(Waagan et al. 2011) used here. The self-gravity of the
gas, i.e., the gas–gas gravitational interaction (Equa-
tion 43) is computed using a multi-grid Poisson solver
(the FLASH2.5 version discussed in Ricker 2008), while
the sink particle interactions are computed by direct N -
body summation, as explained in Section 3.3 below. We
note that the gravitational potential Φgas is computed
with respect to the periodic boundary conditions speci-
fied in the simulations.

The ideal MHD Equations (42) do not contain any ex-
plicit kinematic viscosity and magnetic resistivity terms.

However, any numerical scheme has an effective numeri-
cal viscosity ν and magnetic resistivity η due to the neces-
sary discretization of the MHD equations. Even though
the numerical viscosity depends on the specifications of
the algorithm, it can be used to mimic the effects of ex-
plicit viscosity and resistivity (Benzi et al. 2008). It is im-
portant to realize, though, that the kinematic and mag-
netic Reynolds numbers that can be achieved with ideal
MHD depend on the grid resolution. As shown in Feder-
rath et al. (2011b), compressible, ideal MHD turbulence
resolved with 1283 grid cells reaches kinematic Reynolds
numbers Re = LσV /ν ≈ 1500 and magnetic Reynolds
numbers Rm = LσV /η ≈ 3000. For Burgers (1948) scal-
ing of the turbulence σv(`) ∝ `1/2 (Equation 12 with

p = 1/2), the Reynolds numbers scale ∝ N
3/2
res as op-

posed to Kolmogorov (1941) scaling of the turbulence,
σv(`) ∝ `1/3 (Equation 12 with p = 1/3), leading to

a Reynolds-number scaling ∝ N
4/3
res . Thus, even in our

highest resolution simulation with Nres = 1024, we only
achieve Reynolds numbers, Re ≈ (2.4–3.4)× 104 and
Rm ≈ (4.8–6.8)×104, depending on the scaling of the
turbulence. In summary, although the flows we model
exhibit fully developed turbulence (Frisch 1995), their
Reynolds number are still considerably smaller than the
ones inferred for real molecular clouds (see, e.g., Schober
et al. 2012). We will thus study the resolution depen-
dence of our results for the SFR below.

3.2. Turbulent Forcing

Previous numerical studies of non-driven turbulence
have shown that supersonic turbulence decays in about
a crossing time, irrespective of whether magnetic fields
are included or not (Scalo & Pumphrey 1982; Mac Low
et al. 1998; Stone et al. 1998; Mac Low 1999). The
observed presence of turbulence has thus lead to the
conclusion that interstellar turbulence should be driven
by some physical stirring mechanisms. Those mecha-
nisms include supernova explosions and expanding, ion-
izing shells from previous cycles of star formation (Mc-
Kee 1989; Krumholz et al. 2006; Balsara et al. 2004; Bre-
itschwerdt et al. 2009; Peters et al. 2011; Goldbaum et al.
2011; Lee et al. 2012), gravitational collapse and accre-
tion of material (Vazquez-Semadeni et al. 1998; Klessen
& Hennebelle 2010; Elmegreen & Burkert 2010; Vázquez-
Semadeni et al. 2010; Federrath et al. 2011c; Robertson
& Goldreich 2012), and galactic spiral-arm compression
of HI clouds (Dobbs & Bonnell 2008; Dobbs et al. 2008)
and magnetorotational instability (MRI) (Piontek & Os-
triker 2007; Tamburro et al. 2009). On smaller scales, jets
and outflows from young stellar objects have been sug-
gested to drive turbulence (Norman & Silk 1980; Baner-
jee et al. 2007; Nakamura & Li 2008; Cunningham et al.
2009; Carroll et al. 2010; Wang et al. 2010). Turbulence
in high-redshift galaxies is also likely driven by feedback
from previous cycles of star formation (Green et al. 2010).
A summary and comparison of driving mechanisms for
interstellar turbulence is provided in Mac Low & Klessen
(2004) and Elmegreen (2009). Mac Low & Klessen (2004)
conclude that expanding shells are likely the dominant
driver of interstellar turbulence in the star-forming parts
of the Galaxy. More recently, Lee et al. (2012) also noted
that the kinetic energy injected per unit time by star-
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forming complexes via expansion of bubbles is about 2/3
of the luminosity required to maintain the observed ve-
locity dispersions, supporting the view that expanding
bubbles driven by massive star clusters from previous
star formation are a major driver of turbulence in the
Milky Way (see e.g., the Cygnus X giant molecular cloud
studied in Schneider et al. 2011).

It is important to realize that all these potential drivers
(maybe with the exception of the MRI) are expected to
primarily drive compressible modes in the velocity field,
but do not directly excite solenoidal modes. However,
even though the turbulence in molecular clouds might be
driven compressively, solenoidal modes are indirectly ex-
cited by nonlinear interactions of multiple colliding shock
fronts (Vishniac 1994; Sun & Takayama 2003; Kritsuk
et al. 2007; Federrath et al. 2010b), by baroclinity, ro-
tation and shear (Del Sordo & Brandenburg 2011), and
by viscosity (Mee & Brandenburg 2006; Federrath et al.
2011b), such that supersonic turbulence driven by even
purely compressive forcing contains about half of its ki-
netic power in solenoidal modes and the other half in
compressible modes in the inertial range (Federrath et al.
2010b, Figure 14).

Modeling physical turbulent stirring mechanisms in nu-
merical simulations requires assumptions about the spa-
tial and temporal correlation of the turbulent forcing
events. It is also still a matter of debate which of the
physical mechanisms dominates the injection of turbu-
lent energy on different cloud scales. Given these un-
certainties, instead of trying to mimic one or more of
the potential physical drivers of turbulence, we here use
simulations of the so-called ‘driven turbulence in a box’.
From these simplified and idealized simulations, we can
draw statistical conclusions about the role of turbulence
for star formation, given average properties of a cloud
(αvir, M, b, and β). In particular, our turbulent forcing
approach allows us to evaluate the role of the mixture of
velocity modes excited by a physical driver.

In practice, the stochastic forcing term Fstir is applied
as a source term in Equations (42) to drive turbulence
in the simulations. Fstir only contains large-scale modes,
1 < k < 3, where most of the power is injected at the
k = 2 mode in Fourier space, which corresponds to half
of the box size L in physical space. We thus model tur-
bulent forcing on large scales, as favored by molecular
cloud observations (e.g., Ossenkopf & Mac Low 2002;
Heyer et al. 2006; Brunt et al. 2009; Gaensler et al. 2011;
Roman-Duval et al. 2011). Smaller scales, k > 3 are
not affected directly by the forcing, such that turbulence
can develop self-consistently on these scales. We use the
Ornstein-Uhlenbeck (OU) process to model Fstir, which
is a well-defined stochastic process with a finite auto-
correlation timescale (Eswaran & Pope 1988; Schmidt
et al. 2006), leading to a smoothly varying stochastic
force field in space and time. Details about the OU pro-
cess and the forcing applied in this study can be found
in Schmidt et al. (2009), Federrath et al. (2010b), and
Konstandin et al. (2012a). However, the essential point
of our forcing approach is that we can adjust the mix-
ture of solenoidal and compressive modes of Fstir. This
is achieved by decomposing a given vector field with ran-
dom mixtures into its solenoidal and compressive parts,
by applying the projection tensor P ζ(k) in Fourier space.

In index notation, this tensor reads

Pζij = ζ P⊥ij + (1− ζ)P‖ij = ζ δij + (1− 2ζ)
kikj
|k|2

, (44)

where δij is the Kronecker symbol, and P⊥ij = δij −
kikj/k

2 and P‖ij = kikj/k
2 are the solenoidal and com-

pressive projection operators, respectively. The ratio of
compressive power to total power in Fstir can be derived
from Equation (44) by evaluating the norm of the com-
pressive component of the projection tensor and dividing
it by the total injected power, resulting in

Fcomp

Ftot
=

(1− ζ)2

1− 2ζ + 3ζ2
, (45)

for three-dimensional space (Schmidt et al. 2009; Fed-
errath et al. 2010b). The projection operator serves to
construct a purely solenoidal force field by setting ζ = 1,
while for ζ = 0, a purely compressive force field is ob-
tained. Any combination of solenoidal and compressive
modes can be constructed by choosing ζ ∈ [0, 1]. Here
we compare simulations with ζ = 1 (sol), ζ = 1/2 (mix),
and ζ = 0 (comp). A detailed study of the forcing de-
pendence of the b-parameter entering the expression for
the variance of the density PDF, Equations (4) and (5),
is provided in Federrath et al. (2010b, Figure 8), where
they measure b as a function of the forcing parameter ζ.

3.3. Sink Particles and Resolution Criteria

In order to model collapse and accretion of star-
forming gas in the simulations, we use a subgrid model
called ‘sink particles’, which is a method originally in-
vented by Bate et al. (1995) for Smoothed Particle Hy-
drodynamics, and first adopted for Eulerian, AMR sim-
ulations by Krumholz et al. (2004). In Krumholz et al.
(2004), a Lagrangian sink particle is introduced, if the
gas reaches a given density. However, sink particles are
supposed to represent bound objects that are going into
collapse, and thus, a density threshold as the only cri-
terion for sink particle creation is insufficient (Federrath
et al. 2010a). Based on the ideas of Bate et al. (1995) and
Krumholz et al. (2004), we use an advanced AMR-based
approach for sink particles, in which only bound and col-
lapsing gas is accreted, thus avoiding the creation of spu-
rious sink particles (for a detailed analysis, see Federrath
et al. 2010a). The key feature of this approach is to de-
fine a control volume around cells that exceed the density
threshold set by the resolution criterion to avoid artifi-
cial fragmentation. Truelove et al. (1997) found that the
Jeans length must be resolved with at least 4 grid cells
to avoid artificial fragmentation, leading to a resolution-
dependent density threshold criterion for the creation of
sink particles:

ρsink =
πc2s

4Gr2
sink

, (46)

where the sink particle accretion radius rsink is set to
2.5 grid-cell lengths at the maximum level of refinement,
corresponding to half a Jeans length at ρsink, such that
the Jeans length is still resolved with 5 grid cells prior
to potential sink particle creation to avoid artificial frag-
mentation. Grid cells exceeding the density threshold
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given by Equation (46), however, do not form sink parti-
cles right away. First, a spherical control volume with ra-
dius rsink is defined around the cell exceeding ρsink within
which additional checks for gravitational instability and
collapse are performed. We check whether the gas

• is on the highest level of refinement,

• is converging from all directions in the rest frame
of the central cell (negative radial velocity),

• is at a local gravitational potential minimum,

• is bound (|Egrav| > Ekin + Eth + Emag),

• is Jeans-unstable, and

• is not within rsink of an existing sink particle.

If all these checks are passed, a sink particle is created
in the center of the control volume (see Federrath et al.
2010a). This procedure avoids spurious sink particle for-
mation, and allows us to trace only truly collapsing and
star-forming gas. Given the checks above, it is clear that
in some cases, a sink particle is not necessarily formed
even though the density threshold is exceeded. This does
not mean, however, that such gas would be subject to ar-
tificial gravitational fragmentation. Since the checks did
not allow sink particle creation, the gas in the control
volume was not collapsing and/or not bound, so there is
no need to worry about artificial fragmentation at this
stage, even though the density threshold was exceeded.
This can happen quite frequently in supersonic turbu-
lence because shocks can push the gas density above the
threshold, even though this gas is not necessarily gravi-
tationally bound after the shock passage.

Once a sink particle is created, it can gain mass by
accreting gas from the AMR grid, but only if this gas
exceeds the threshold density, is inside the sink particle
accretion radius, is bound to the particle, and is collaps-
ing toward it. If all these criteria are fulfilled, the ex-
cess mass above the density threshold defined by Equa-
tion (46) is removed from the MHD system and added to
the sink particle, such that mass, momentum and angular
momentum are conserved by construction (see Federrath
et al. 2010a, 2011a, for details).

All contributions to the gravitational interactions be-
tween the gas on the grid and the sink particles are com-
puted by direct N -body summation over all grid cells and
sink particles (gas–sink, sink–gas, and sink–sink), using
gravitational spline softening inside the sink particle ra-
dius to avoid singularities during close encounters. The
softening only affects scales that are anyway below the
grid-resolution cutoff set by the sink particle accretion
radius. A second-order accurate Leapfrog integrator is
used to advance the sink particles on a time step that
allows us to resolve close and highly eccentric orbits of
sink particles without introducing significant errors on
super-resolution grid scales.

3.4. Initial Conditions, Procedures, and List of Models

Starting from a uniform density distribution and zero
velocities, the forcing term Fstir in Equations (42) excites
turbulent motions. First, we evolve the MHD equations
for two turbulent crossing times, 2T = L/(Mcs) without

self-gravity, in order to establish fully developed, com-
pressible turbulence (e.g., Klessen et al. 2000; Klessen
2001; Heitsch et al. 2001; Federrath et al. 2009, 2010b;
Price & Federrath 2010; Micic et al. 2012). We do not
include the gravity terms until t = 2T , in order to avoid
that our measurements of the SFR are contaminated by
this rather artificial initial transient phase, during which
the system is building up a turbulent cascade (Schmidt
et al. 2009). After that, we solve the full system of MHD
Equations (42) and (43) including self-gravity and for-
mation of sink particles. For practical purposes, we reset
the time t = 2T to t = 0 tff(ρ0), which is the time when
turbulence is fully established and star formation is al-
lowed to proceed. We note that this procedure is slightly
different from setting up a simulation with power-law ve-
locity scaling drawn from Gaussian random seeds as an
initial condition, commonly applied in numerical star for-
mation studies (e.g., Bate et al. 2003; Clark et al. 2005;
Krumholz et al. 2007; Price & Bate 2008, 2009; Smith
et al. 2008; Federrath et al. 2010a; Walch et al. 2010;
Girichidis et al. 2011). In those cases, the initial ran-
dom velocity field is imposed on top of a given density
profile (often constant density or radial power-law dis-
tributions), such that density and velocity fields have no
causal connection. Here, the initial density and velocity
fields at t = 0 are consistently coupled via the equations
of (magneto)hydrodynamics. We also keep driving the
turbulence instead of imposing only an initial Gaussian
perturbation as in the studies mentioned above.

All our numerical simulations and their basic param-
eters are listed in Table 2. Each model has a unique
name, starting with ‘GT’ (for ‘GravTurb’), followed by
the maximum grid resolution (‘128’, ‘256’, ‘512’, and
‘1024’), the forcing type (‘s’:solenoidal, ‘m’:mixed, and
‘c’:compressive), and the Mach number (‘M3’, ‘M5’,
‘M10’, ‘M20’, and ‘M50’). Models with an initially uni-
form magnetic field in the z-direction through the simu-
lation box are additionally denoted with ‘B1’, ‘B3’, and
‘B10’, corresponding to B0 = 1, 3, and 10µG, respec-
tively. Different random sequences with the same statis-
tical properties for the turbulent forcing are indicated by
‘(s1)’, ‘(s2)’, and ‘(s3)’ at the end of the model name, in-
dicating that random ‘(seed1)’, ‘(seed2)’, or ‘(seed3)’ was
used. Columns 2–10 in Table 2 list the maximum numer-
ical resolution, type of forcing, mean density ρ0, box size
L, the total mass Mc, large-scale velocity dispersion σV ,
initial magnetic-field strength B0, initial plasma β0, and
virial parameter αvir,◦ computed with Equation (15).

Columns 11–15 are derived quantities, measured as
space and time averages after turbulence is fully estab-
lished, t ≥ 0, until 20% of the original cloud mass is
accreted onto sink particles, i.e., the star formation effi-
ciency has reached SFE = 20%. We list the average virial
parameter αvir, the sonic Mach number M, forcing pa-
rameter b, plasma β, and Alfvén Mach numberMA. The
instantaneous virial parameter, Equation (16), in column
11 of Table 2 is computed as αvir = 2Ekin/|Egrav| =∑
Miv

2
i /|
∑
MiΦgas,i| from the gravitational potential

Φgas returned by the Poisson solver (see Section 3.1), as a
sum over all grid cells i with mass Mi and velocity vi. We
note that this is different from the value αvir,◦ obtained
from Equation (15) and listed in column 10, which as-
sumes a homogenous, spherical density distribution. In
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TABLE 2
Basic Parameters of the Numerical Models of Forced, Supersonic, Self-gravitating, (M)HD Turbulence.

Model Nres Forcing ρ0 L Mc σV B0 β0 αvir,◦ αvir M b β MA

[g cm−3] [pc] [M�] [km s−1] [µG]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

01) GT256sM3 256 sol 5.8×10−19 3.3×10−1 3.1×102 0.59 0 ∞ 0.07 1.4 2.9 1/3 ∞ ∞
02) GT512sM3 512 sol 5.8×10−19 3.3×10−1 3.1×102 0.59 0 ∞ 0.07 1.4 3.0 1/3 ∞ ∞
03) GT256mM3 256 mix 5.8×10−19 3.3×10−1 3.1×102 0.61 0 ∞ 0.08 1.1 3.1 0.4 ∞ ∞
04) GT256cM3 256 comp 5.8×10−19 3.3×10−1 3.1×102 0.58 0 ∞ 0.07 0.46 2.9 1 ∞ ∞
05) GT512cM3 512 comp 5.8×10−19 3.3×10−1 3.1×102 0.58 0 ∞ 0.07 0.48 2.9 1 ∞ ∞
06) GT256sM5 256 sol 3.3×10−21 2.0×100 3.9×102 1.0 0 ∞ 1.0 8.0 5.0 1/3 ∞ ∞
07) GT256mM5 256 mix 3.3×10−21 2.0×100 3.9×102 0.99 0 ∞ 0.98 5.4 5.0 0.4 ∞ ∞
08) GT256cM5 256 comp 3.3×10−21 2.0×100 3.9×102 0.91 0 ∞ 0.82 1.5 4.5 1 ∞ ∞
09) GT128sM10 128 sol 8.2×10−22 8.0×100 6.2×103 2.1 0 ∞ 1.1 11. 10. 1/3 ∞ ∞
10) GT256sM10 256 sol 8.2×10−22 8.0×100 6.2×103 2.1 0 ∞ 1.1 12. 10. 1/3 ∞ ∞
11) GT512sM10 512 sol 8.2×10−22 8.0×100 6.2×103 2.1 0 ∞ 1.1 12. 10. 1/3 ∞ ∞
12) GT512mM10 (s1) 512 mix 8.2×10−22 8.0×100 6.2×103 2.1 0 ∞ 1.1 4.5 11. 0.4 ∞ ∞
13) GT512mM10B1 (s1) 512 mix 8.2×10−22 8.0×100 6.2×103 2.1 1 8.2 1.1 5.4 10. 0.4 2.8 12.

14) GT512mM10 (s2) 512 mix 8.2×10−22 8.0×100 6.2×103 2.2 0 ∞ 1.2 8.4 11. 0.4 ∞ ∞
15) GT512mM10B1 (s2) 512 mix 8.2×10−22 8.0×100 6.2×103 2.2 1 8.2 1.2 9.5 11. 0.4 1.8 10.

16) GT256mM10 (s3) 256 mix 8.2×10−22 8.0×100 6.2×103 2.0 0 ∞ 1.0 5.9 10. 0.4 ∞ ∞
17) GT512mM10 (s3) 512 mix 8.2×10−22 8.0×100 6.2×103 2.0 0 ∞ 1.0 5.9 10. 0.4 ∞ ∞
18) GT512mM10B1 (s3) 512 mix 8.2×10−22 8.0×100 6.2×103 2.0 1 8.2 0.97 6.4 9.9 0.4 3.6 13.

19) GT256mM10B3 (s3) 256 mix 8.2×10−22 8.0×100 6.2×103 1.8 3 0.92 0.81 8.4 9.0 0.4 0.20 2.9

20) GT512mM10B3 (s3) 512 mix 8.2×10−22 8.0×100 6.2×103 1.8 3 0.92 0.83 8.7 9.1 0.4 0.18 2.7

21) GT256mM10B10 (s3) 256 mix 8.2×10−22 8.0×100 6.2×103 1.8 10 0.08 0.79 6.6 8.9 0.4 0.04 1.3

22) GT128cM10 128 comp 8.2×10−22 8.0×100 6.2×103 1.8 0 ∞ 0.81 1.2 9.0 1 ∞ ∞
23) GT256cM10 256 comp 8.2×10−22 8.0×100 6.2×103 1.8 0 ∞ 0.85 1.1 9.2 1 ∞ ∞
24) GT512cM10 512 comp 8.2×10−22 8.0×100 6.2×103 1.9 0 ∞ 0.87 1.1 9.4 1 ∞ ∞
25) GT256sM20 256 sol 2.1×10−22 3.2×101 9.9×104 4.1 0 ∞ 1.0 11. 20. 1/3 ∞ ∞
26) GT256mM20 256 mix 2.1×10−22 3.2×101 9.9×104 4.2 0 ∞ 1.1 4.5 21. 0.4 ∞ ∞
27) GT256cM20 256 comp 2.1×10−22 3.2×101 9.9×104 4.0 0 ∞ 1.0 0.60 20. 1 ∞ ∞
28) GT256sM50 256 sol 3.3×10−23 2.0×102 3.9×106 10. 0 ∞ 1.1 12. 52. 1/3 ∞ ∞
29) GT512sM50 512 sol 3.3×10−23 2.0×102 3.9×106 10. 0 ∞ 1.1 13. 52. 1/3 ∞ ∞
30) GT256mM50 256 mix 3.3×10−23 2.0×102 3.9×106 10. 0 ∞ 1.0 7.0 51. 0.4 ∞ ∞
31) GT512mM50 512 mix 3.3×10−23 2.0×102 3.9×106 10. 0 ∞ 1.1 7.4 51. 0.4 ∞ ∞
32) GT256cM50 256 comp 3.3×10−23 2.0×102 3.9×106 9.8 0 ∞ 0.95 0.54 49. 1 ∞ ∞
33) GT512cM50 512 comp 3.3×10−23 2.0×102 3.9×106 9.9 0 ∞ 0.99 0.56 50. 1 ∞ ∞
34) GT1024cM50 1024 comp 3.3×10−23 2.0×102 3.9×106 10. 0 ∞ 1.00 0.55 50. 1 ∞ ∞
Notes. Column (1): simulation name. Columns (2–10): maximum grid resolution in one direction of the three-dimensional, cu-
bic domain, mode of forcing (solenoidal, mixed, compressive), mean density, linear box size, total mass, velocity dispersion on the box
scale, mean magnetic-field strength (in the z-direction of the domain), initial plasma β0, and virial parameter based on Equation (15).
Columns (11–15): time-averaged virial parameter based on Equation (16), computed directly from the three-dimensional gas distribution,
the sonic Mach number, forcing parameter, ratio of thermal to magnetic pressure (plasma β), and Alfvén Mach number. To guide the eye,
horizontal lines separate models with different sonic Mach number.

contrast, we obtain highly inhomogeneous density distri-
butions in our compressible, turbulent clouds. We thus
prefer to compute αvir based on the three-dimensional
density field as explained above9. In analogy, the sonic
and Alfvén Mach numbers, as well as β are computed as
spatial root-mean-squared averages over all cells in the
simulation box as a function of time, followed by aver-
aging over time. We will show in the next section that
this approach is justified because we find that all those
parameters do not vary significantly with time during
star formation. The value of the forcing parameter b was
not determined by averaging because it was already mea-

9 Note that a similar approach is used in Herschel observations
by André et al. (2010) to estimate the stability of interstellar fil-
aments. That is based on column density instead of volume den-
sity, but takes the spatial (projected) distribution of matter into
account, rather than estimating the dynamical state of the cloud
based on the spherical, uniform-density approximation in Equa-
tion (15).

sured in Federrath et al. (2010b, Figure 8), giving best-fit
values b = 1/3, 0.4, and 1 for solenoidal, naturally-mixed,
and compressive forcing of the turbulence, respectively.

We do not include any data or discussion of the state
of the clouds after SFE = 20% is reached because at that
point in time, local feedback processes would have likely
altered the subsequent evolution of the clouds so dras-
tically that we cannot trust our results for higher SFE.
Even before that, inclusion of feedback processes might
change the results, at least locally. For example, we ex-
pect the amount of accreted gas to be reduced, if feed-
back were included (e.g., Wang et al. 2010; Peters et al.
2011). This fact can be accounted for by adjusting the
local efficiency parameter ε introduced in Equation (7)
to values ε < 1 for all the models discussed here. We get
back to this issue when we compare our simulations with
the observational data in Section 6.

The basic model parameters in Table 2 were cho-
sen to roughly follow observed properties of molecular
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clouds, covering a range of cloud sizes L ≈ 0.3–200 pc,
masses Mc ≈ 300 to 4×106M�, and velocity dispersions
σV ≈ 0.6–10 km s−1 (e.g., Larson 1981; Solomon et al.
1987; Falgarone et al. 1992), with typical cloud scalings
summarized and discussed in Mac Low & Klessen (2004)
and McKee & Ostriker (2007). However, even though
most real clouds may roughly follow such an average scal-
ing, the scatter around that average is typically about
an order of magnitude or more in terms of mass, density,
and velocity dispersion for a given cloud size (e.g., Heyer
et al. 2009; Roman-Duval et al. 2010). The procedure
used here to determine the initial cloud parameters in
the simulations is as follows. First, for a given target
Mach number, we determine the appropriate size of the
cloud by inverting the observed velocity dispersion–size
relation given by Equation (12). Having the size and ve-
locity dispersion, we then set the virial parameter given
by Equation (15) to a value close to unity. The only
exceptions are the M ∼ 3 models, where we set it to
αvir,◦ ≈ 0.07 because this turned out to give actual virial
parameters αvir closer to unity after the turbulence had
been fully established (compare columns 10 and 11 in
Table 2). Using the initial guess of αvir,◦, we then solve
for the mass of the cloud, by inverting Equation (15).
From the mass and size, we compute the mean density
of the model cloud.

It is important to note that the actual virial param-
eter obtained after two turbulent crossing times can be
up to an order of magnitude different from the initial
guess provided by Equation (15), depending on the Mach
number and forcing of the model (see Table 2). This is
because the density distribution in the state of fully de-
veloped supersonic turbulence is highly inhomogeneous
and is not well described by Equation (15). Thus, we do
not know the virial parameter that arises in the regime
of fully developed turbulence a priori. The αvir in the
turbulent phase is typically higher (except for the com-
pressive forcing cases at high Mach numbers, M ∼ 20
and 50) than the one computed from Equation (15),
also because we use periodic boundary conditions. This
reduces the gravitational binding energy of the system
compared to an isolated system (as assumed in Equa-
tion 15). Real clouds are neither periodic nor isolated,
but using periodic boundaries, we mimic the effects of the
surrounding medium on the region studied in our compu-
tational boxes (discussed further in Section 7). We em-
phasize that the virial parameters obtained here are con-
sistent with observations, given that observational esti-
mates of αvir are usually obtained based on Equation (15)
or column-density versions of it.

Magnetic-field strengths for the MHD simulations were
chosen to be consistent with the range observed in clouds
(e.g., Crutcher 1999; Crutcher et al. 2010). We vary the
magnetic field for simulations with mixed forcing and
fixed sonic Mach number of M ∼ 10, which gives us a
good indication of the role of magnetic fields for typical
molecular cloud properties. Heiles & Troland (2005) and
Crutcher et al. (2010) show that most clouds with num-
ber densities in the range 10–104 cm−3 have magnetic-
field strengths in the range Bz ≈ 1–10µG, with an ap-
parent peak of the distribution at around Bz ≈ 3µG.
Our MHD simulations have mean densities of about
200 cm−3, so we decided to compare models with Bz = 1,

3, and 10µG, in order to cover the observed range of line-
of-sight magnetic-field strengths.

4. SIMULATION RESULTS

After the initial turbulent state has been established by
driving for two crossing times (see Section 3.4) in each
simulation, we study the subsequent evolution under the
influence of self-gravity by looking at column density pro-
jections of the simulated clouds and their magnetic-field
morphology (Section 4.1). We then discuss the time evo-
lution of αvir, M, MA, and SFE and measure the SFR
in Section 4.2.

4.1. Cloud and Magnetic-field Morphology

4.1.1. Effects of the Magnetic Field

Figure 4 shows the time evolution of column density
snapshots (from top to bottom) for models with mixed
forcing at M = 10 and 5123 resolution for initial mag-
netic fields B0 = 0, 1, and 3µG (left, middle, and right
panels). Key initial parameters (box size, total mass,
etc.), the time in units of tff(ρ0), the SFE, and the num-
ber of sink particles formed are given in each panel. The
top row shows the gas at t = 0, i.e., when turbulence is
fully developed and self-gravity is switched on. We see
shocks and large-scale structure induced by the large-
scale turbulence with column density contrasts ranging
over more than four orders of magnitude. Comparing
the purely HD run (left) with the two magnetized runs
(middle and right), we see that shocks become smoother
and density contrasts slightly decrease as the magnetic-
field strength increases. This is because magnetic fields
act like a cushion, reducing density fluctuations, due to
the additional magnetic pressure parameterized either by
plasma β or the Alfvén Mach number MA (see Equa-
tion 4 or 5, and Molina et al. 2012), the time-averaged
values of which are given in Table 2. At later times,
the gas starts collapsing locally at sites previously com-
pressed by the supersonic turbulence, at which point lo-
cal filaments become more and more massive as they ac-
crete gas from the surrounding and eventually become
so dense that these cores have to be replaced with sink
particles, allowing us to advance the simulations to later
times (see Section 3.3). The radius rsink of the sink parti-
cles is determined by the numerical resolution constraint,
and is given in each panel, as soon as sink particles have
formed. Our resolution is insufficient to resolve individ-
ual stars, but the sink particles can be regarded as dense,
bound cores in our simulations.

Comparing the runs with different magnetic-field
strengths in Figure 4, we see two important effects with
increasing magnetic field: (1) a reduction of fragmenta-
tion, i.e., fewer sink particles have formed by the end of
the simulations at SFE = 20% and (2) reaching a given
SFE takes longer, i.e., the core formation rate and hence
the SFR are reduced. For instance, when the SFE has
reached 20%, the runs with B0 = 0, 1, and 3µG have
formed 109, 71, and 63 sink particles in 0.71, 0.85, and
1.1 tff(ρ0), respectively.

The higher the magnetic field, the larger the
topologically-connected structures, compared to the
more fragmented and dispersed filaments in the purely
hydrodynamical run. Comparing numerical simula-
tions and observations with filament-tracking tools (e.g.,
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Fig. 4.— Time evolution of column density projections of the simulations with mixed forcing at M = 10 with initial magnetic-field
strengths B0 = 0µG (left panels), B0 = 1µG (middle panels), and B0 = 3µG (right panels). The times shown correspond to the initial,
fully developed turbulent state, t = 0 (top panels), and when the star formation efficiency reached SFE = 5% and 20% (middle and bottom
panels, respectively), i.e., 5% and 20% of the gas was accreted by sink particles (shown as circles with the sink particle radius). The higher
the magnetic field, the slower the star formation (see time in the top right corner), and the fewer sink particles form (see bottom right
corner of each image) due to the increasing magnetic pressure.
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Fig. 5.— Column density and magnetic-field vectors in simula-
tion model #20 (GT512mM10B3; see Table 2) with B0 = 3µG for
t/tff = 0 (top) and SFE = 10% (bottom). The magnetic field is
amplified in the core and cluster regions, where compression and
turbulent dynamo action both contribute to increasing the field
strength locally (Sur et al. 2010; Federrath et al. 2011c). The mag-
netic field frequently changes direction and strength in the cores
in this model of super-Alfvénic turbulence with MA ≈ 2.7 (see
Table 2), best seen in the movies (see additional online material).
The colors are identical to Figure 4.

André et al. 2010; Men’shchikov et al. 2010; Arzouma-
nian et al. 2011; Hill et al. 2011; Schneider et al. 2012)
or polarization analyses (e.g., Burkhart et al. 2012) may
eventually help to reveal the role of magnetic fields. In
particular, the orientation of magnetic fields might tell us
about its dynamical influence (Schneider et al. 2010; Li &
Henning 2011; Peretto et al. 2012). In Figure 5, we show
the time evolution of column density snapshots with lo-
cal magnetic-field vectors computed by a mass-weighted
average along the line of sight superimposed, for the run
with B0 = 3µG for t/tff = 0 (top) and SFE = 10% (bot-
tom). The magnetic field grows due to compression of
the field lines and due to dynamo action (Sur et al. 2010;
Federrath et al. 2011c; Bertram et al. 2012), particularly
in regions where dense cores accumulate and form clus-
ters. The magnetic field is very intermittent and shows
no particularly preferred direction in the cluster centers

because the gas motions are so chaotic that the magnetic-
field direction changes frequently. The magnetic field is
of moderate strength compared to the turbulence in this
case, shown by the average super-Alfvénic Mach num-
ber in this simulation, MA ≈ 2.7 (see Table 2). The
field strengths are consistent with observations in typical
molecular clouds. On scales larger than molecular clouds
and on Galactic scales though, the turbulence might be
trans-Alfvénic rather than super-Alfvénic, which would
naturally lead to more aligned magnetic field structures
there (e.g., Beck et al. 1996; Heiles & Troland 2005; Li
& Henning 2011).

4.1.2. Effects of Turbulent Forcing and Sonic Mach Number

After having looked at the time evolution of column
density snapshots in mixed, M ∼ 10 simulations, we
now focus on the gas morphology when SFE = 10%, rep-
resenting a typical molecular cloud value, but compar-
ing different forcing and sonic Mach numbers. Figure 6
shows column density projections of the 5123 runs with
solenoidal forcing (left panels) and compressive forcing
(right panels) at M ∼ 3 (top), M ∼ 10 (middle), and
M ∼ 50 (bottom). Note the different length and mass
scales probed in these images, with box sizes of L = 0.3,
8 and 200 pc, and masses of Mc = 310, 6.2 × 103 and
3.9× 106M�, respectively. Since the resolution is fixed,
the sink particle radii vary from rsink = 335 AU over
rsink = 0.04 pc, up to 1 pc. Thus, neither of those rep-
resents stars, but rather star clusters in the largest-scale
runs and potentially protostellar accretion envelopes in
the smallest-scale runs. The scale and mass sequence
from the bottom to the top panels in Figure 6 can be in-
terpreted as zooms into patches of larger-scale runs and
re-simulating these patches with higher resolution in suc-
cessively smaller boxes. Clearly, these images emphasize
how artificial this kind of numerical experiment is, yet
real molecular clouds exhibit similar hierarchical struc-
tures (Falgarone et al. 1992; Ossenkopf & Mac Low 2002),
often characterized as fractals (Scalo 1990; Elmegreen &
Falgarone 1996; Stutzki et al. 1998; Sánchez et al. 2005;
Roman-Duval et al. 2010). The fractal dimension D in-
ferred from different techniques (∆-variance, box count-
ing, mass–size relation, and perimeter-area method) was
shown to vary between D ≈ 2.6 for purely solenoidal and
D ≈ 2.3 for purely compressive forcing, in the range of
observational determinations (Federrath et al. 2009), and
is consistent with theoretical ideas to explain the slope
of the stellar IMF (Chabrier & Hennebelle 2011). As can
be seen in Figure 6, compressive forcing produces more
sheet-like structures (planar shocks), while solenoidal
forcing produces more volume-filling structures, provid-
ing a visual explanation for the dependence of D on the
forcing.

Besides the morphological distinctions, the most strik-
ing difference between solenoidal and compressive forc-
ings is the timescale of core and star formation (compare
t/tff in the upper right corner of each panel in Figure 6).
For fixed Mach number, cloud size, and mass, compres-
sive forcing accelerates the conversion of gas into stars
compared to solenoidal forcing by factors of 4, 8, and
12 for the M ∼ 3, 10, and 50 runs, respectively, when
SFE ∼ 10%. This result emphasizes the important role
of the turbulent forcing for setting the SFR.



The Star Formation Rate 19

Fig. 6.— Column density projections of the simulations with solenoidal forcing (left panels) and compressive forcing (right panels) for
Mach numbers M ∼ 3 (top), M ∼ 10 (middle), and M ∼ 50 (bottom), when 10% of the initial gas mass is accreted by sink particles
(shown as circles with the sink particle radius). The mass and size of the three-dimensional domains, and the number of sink particles
formed, are given in each panel. In addition to the morphological differences between the forcings for a given Mach number, the elapsed
time in units of the freefall time at the mean density (see label in the top right corner of each panel) is significantly different between the
two extreme cases of turbulent forcing, suggesting extremely different star formation rates for solenoidal and compressive forcing.
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Fig. 7.— Time evolution of the rms Mach number M (top), the
virial parameter αvir (middle), and the star formation efficiency
SFE (bottom) for models with fixed Mach number M ∼ 10, and
without magnetic field, but with solenoidal forcing (gold) and com-
pressive forcing (violet) at numerical resolutions of 1283 (dotted),
2563 (dashed), and 5123 (solid), as well as for three mixed-forcing
models (black), each forced with a different random number se-
quence at fixed 5123 resolution: seed1 (dash-dotted), seed2 (triple-
dot-dashed), and seed3 (solid). The time axis is scaled in units of
the freefall time at the mean density of the respective simulation
(see Table 2). Values of SFRff , measured from linear fits to the
SFE–time curves (bottom panel) in the range SFE = [4%, 20%]
are given for each model in the legend.

4.2. Time Evolution of αvir, M, MA, and SFE

4.2.1. Effects of the Forcing, Random Seed, and Resolution

We now turn to the detailed time evolution and deter-
mination of the SFR in the simulations. Figure 7 shows
the time evolution of dynamical quantities M, αvir, and
SFE for models with M∼ 10 and B0 = 0 for solenoidal
and compressive forcing at numerical resolutions of 1283,
2563, and 5123 grid cells, and for mixed forcing with three
different random seeds of the turbulent forcing. The
Mach number (top panel) shows variations of order 10%

around the target Mach number of M ∼ 10 for each
simulation, and some systematic variations with differ-
ent forcing and random seeds. The differences between
solenoidal, mixed, and compressive forcings are caused
by stronger dissipation with more compressive forcing,
requiring a higher forcing amplitude to reach the same
Mach number than in solenoidal forcing. We adjust the
amplitude of the forcing such that the gas reaches a given
Mach number in the fully developed turbulent phase.
Since the value of M depends on nonlinear dissipation
properties, i.e., strengths of shocks and amount of vor-
ticity generated, and thus on the Mach number of the
turbulence (Federrath et al. 2011b), the time-averaged
rms Mach number for a given forcing amplitude cannot
be predicted a priori and must be adjusted iteratively by
running test simulations with different forcing amplitude
and measuring the time-averaged rms Mach number, re-
sulting in some deviation of the actual Mach number
from the target Mach number (see the time-averagedM
for each model in Table 2). The temporal fluctuations
and the differences between random seeds, however, are
purely statistical. In order to compare our simulation
data with the analytic theories, we thus always use the
volume- and time-averaged quantities entering the theo-
retical models from Section 2.5.

The middle panel of Figure 7 shows αvir(t). As for
M(t), the resolution dependence is only marginal, and
significantly less than the statistical fluctuations (see also
Kitsionas et al. 2009; Price & Federrath 2010; Kritsuk
et al. 2011b, showing that one-point statistics are typi-
cally well converged with grid resolutions of 2563 cells).
This demonstrates that the length scales of the dominant
gravitational structures are resolved well enough in our
present numerical experiments and that our definition of
αvir is robust with respect to changes in the numerical
resolution.

The difference of αvir ≡ 2Ekin/|Egrav| between the
forcings deserves some attention. While the M ∼ 10
runs with solenoidal forcing have αvir ≈ 12, the com-
pressive ones have αvir ≈ 1.1 (see Table 2), even though
the Mach number is similar and the mass of the clouds
is identical. In Figure 6 we saw that compressive forc-
ing produces more locally compressed structures than
solenoidal forcing, resulting in an overall higher gravi-
tational binding energy |Egrav| compared to solenoidal
forcing. The total kinetic energy Ekin on the other hand
is the same within a factor of ∼ 2, which means that
the factor of ∼ 10 difference in αvir is primarily due
to the difference in |Egrav|. This shows that compar-
ing simple theoretical estimates of the virial parameter,
solely based on the total mass as a measure for |Egrav|
(as, e.g., assumed in Equation 15), should be considered
with great caution because such an estimate ignores the
internal structure of the clouds. Thus, we prefer to es-
timate αvir based on the actual spatial distribution, as
we have done in Figure 7 and in Table 2 for all models.
We emphasize that this direct comparison of αvir,◦ with
αvir performed here means that observational estimates
of the virial parameter based on global measures such
as described by Equation (15) or alike are only accurate
within an order of magnitude. Measurements of gravi-
tational (in)stability based on the actual column density
distribution of filaments in Herschel observations of the
Gould Belt (GB) by André et al. (2010), for example, are
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thus likely more accurate and meaningful than estimates
based on uniform-density, spherical approximations such
as Equation (15).

The bottom panel of Figure 7 shows the time evolution
of the total mass accreted by sink particles, divided by
the total cloud mass, i.e., the SFE. We measure the slope
of these curves by fitting a linear function in the interval
SFE = [4% , 20%], which gives the SFRff for each model
quoted in the legend. We choose to set the lower limit of
the fit range to SFE = 4% because the initial accretion
phase is highly nonlinear with a fast increase in slope,
after which the accretion becomes roughly linear in time,
such that the slope is reasonably well defined for most of
the models.

First, we study the dependence of SFRff on the random
seed. The three models with mixed forcing and different
random seeds (seed1, seed2, seed3) exhibit variations in
SFRff by a factor of 1.5. However, other seeds might de-
viate further from this, such that the factor 1.5 in SFRff

is a lower limit for the uncertainty introduced by the
random seed. When we compare mixed-forcing models
at M ∼ 10 with different magnetic-field strengths later,
we always compare runs with seed3 because the SFRff

for seed3 is in between the ones measured for seed1 and
seed2, thus giving the best average behavior for the data
at hand.

Finally, we investigate the resolution dependence of
our simulations with solenoidal and compressive forc-
ings in Figure 7. For resolutions of 1283, 2563, and 5123

grid cells, we find that SFRff = 0.27, 0.17, and 0.14 for
solenoidal forcing, and SFRff = 1.58, 2.27, and 2.75 for
compressive forcing, respectively. Thus, with increas-
ing resolution, SFRff is decreasing for solenoidal forcing,
but increasing for compressive forcing. The difference
in SFRff between 1283 and 2563 is a factor of 0.63 for
solenoidal forcing, and a factor of 1.44 for compressive
forcing. These factors become smaller when we com-
pare the 2563 with the 5123 simulations, giving factors
of 0.82 for solenoidal forcing and 1.21 for compressive
forcing. Thus our results converge with increasing res-
olution. Moreover, we can estimate SFRff in the limit
of infinite resolution from extrapolating the convergence
behavior. Doing this, we see that our measurements of
SFRff at 1283 resolution are converged only within a fac-
tor of about 2.5, so we discard the two 1283 simulations
(GT128sM10 and GT128cM10) in all the following. In
contrast, the 2563 data are converged to within a fac-
tor of 1.5 for both solenoidal and compressive forcings,
which is similar to the uncertainty introduced by varying
the random seed as discussed in the previous paragraph.
Thus, differences larger than a factor of 1.5 in SFRff

between models with different physical parameters are
likely of physical rather than numerical or statistical ori-
gin. For instance, the SFRff for compressive forcing with
M∼ 10 is more than an order of magnitude larger than
the SFRff of the respective solenoidal simulation, demon-
strating the physical importance of the turbulent forcing
for controlling the SFR.

4.2.2. Effects of Increasing the Sonic Mach Number

Having looked at models with different forcing, random
seed, and resolution, we now study models with varying
Mach number. Figure 8 shows the same as Figure 7, but
for compressive-forcing models with MachM∼ 3, 5, 10,

Fig. 8.— Same as Figure 7, but for compressive-forcing models
with sonic Mach number, M∼ 3, 5, 10, 20, and 50.

20, and 50. The Mach number increases slightly with
time in all models, which is caused by local accelerations
during collapse. This only accounts for a few percent at
most. The exception is the M ∼ 3 model, for which M
increases by almost a factor of two (top panel). This is
because theM∼ 3 model is more gravitationally unsta-
ble initially, indicated by the virial parameter (middle
panel), which increases to around unity, similar to the
other models. The SFRff generally increases with Mach
number due to the stronger local compressions created at
higher M (bottom panel). The only exception is again
the M ∼ 3 model, which has a slightly higher SFRff

than the M ∼ 5 model because the M ∼ 3 model is
more unstable and starts collapsing globally, while this
is not the case in the other models. The difference of
SFRff between M∼ 5 and 50 is about a factor of 4.4.

4.2.3. Effects of Increasing the Magnetic-field Strength
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Fig. 9.— Same as Figure 7, but for mixed-forcing models (b =
0.4) atM∼ 10 with different initial magnetic-field strengths B0 =
0, 1, 3, and 10µG. The additional panel on the top shows the time
evolution of the Alfvén Mach number in the MHD simulations.

Finally, in Figure 9 we investigate the time evolution
of models with different initial magnetic-field strengths,
B0 = 0, 1, 3, and 10µG (initial plasma β0 = 8.2, 0.92,
and 0.082; see Table 2). The panels are the same as in
Figure 7, except for an additional panel on the top, show-

ing the Alfvén Mach numberMA. Apart from some tem-
poral fluctuations, MA, M, and αvir are fairly constant
over time. BothMA andM show some minor systematic
decrease, which is caused by dynamo action, amplifying
the magnetic field by converting turbulent energy into
magnetic energy (Brandenburg & Subramanian 2005).
Most of the dynamo action, however, took place already
during the first two turbulent crossing times, t < 0 tff ,
during which the turbulence becomes fully established
(compare columns 9 and 14 of Table 2). The dynamo is
nearly saturated at t = 0 with only very slow linear am-
plification happening afterward. In addition, field lines
are compressed during local collapse, amplifying the field
further in dense cores and clusters (see Figure 5).

Most importantly, the last panel of Figure 9 shows that
the SFRff decreases monotonically with increasing mag-
netic field because of the stabilizing effect of the magnetic
pressure. The strongest magnetic field case studied here
(B0 = 10µG, MA ≈ 1.3) has an SFRff ≈ 0.24, which
is almost a factor of two smaller than in the respective
purely hydrodynamical run (B0 = 0, SFRff ≈ 0.46). A
similar reduction of the SFR with strong magnetic fields
compared to purely hydrodynamical or weakly magne-
tized models is reported in Padoan & Nordlund (2011)
and Padoan et al. (2012), who find a maximum reduction
by a factor of ∼ 3. This is a significant, but relatively
small effect compared to the influence of different forc-
ing on the SFRff (see above). Magnetic fields reduce
SFRff , but are unlikely the major player in controlling
the SFR, provided that molecular cloud turbulence is
super-Alfvénic or at most trans-Alfvénic. This seems to
be the case in most clouds. However, as pointed out ear-
lier, on larger scales than molecular clouds, i.e., in the
warmer, mainly atomic part of the ISM, turbulence may
be trans-Alfvénic or even sub-Alfvénic (Heiles & Troland
2005; Li & Henning 2011; Heyer & Brunt 2012), ren-
dering magnetic fields potentially more important in the
process of molecular cloud formation. Still, even inside
molecular clouds, magnetic fields seem to reduce frag-
mentation significantly (see Figure 4), thus potentially
having a strong impact on the mass distribution of cores
and stars (see also Price & Bate 2007; Hennebelle &
Teyssier 2008; Bürzle et al. 2011; Peters et al. 2011; Hen-
nebelle et al. 2011).

5. COMPARING SFRS IN THE MHD SIMULATIONS WITH
THEORETICAL PREDICTIONS

Using the dimensionless parameters αvir, M, b, and
β (or MA) measured for each numerical simulation and
listed in the last five columns of Table 2, we can now
compute the SFRff predicted by each of the six theories:
KM, PN, HC, and multi-freefall KM, PN, HC, introduced
in Section 2 (summarized in Table 1), and compare it to
the simulated SFRff . The comparison between SFRff

(theory) and SFRff (simulation) is shown in Figure 10
(left panels: KM, PN, HC; right panels: multi-freefall
KM, PN, HC). The SFRff in each of the six theoretical
models is fully determined by αvir, M, b, and β, except
for the parameters ε/φt and the fudge factors φx (KM),
θ (PN), or ycut (HC). In the simulations, the local ef-
ficiency ε = 1 because we did not include any form of
feedback, but 1/φt and the theory fudge factors are free
parameters. In order to constrain them for each the-
ory, we perform two-parameter fits of SFRff (theory) to
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Fig. 10.— SFRff (theory) for the six theories listed in Table 1: KM (boxes), PN (diamonds), and HC (crosses) in the left panels, and
the corresponding multi-freefall versions of the theories in the right panels, computed based on the numerical simulation parameters αvir,
M, b, and β listed in Table 2 and compared with the SFRff (simulation). The simulation number is given in each of the KM boxes. The
analytic model predictions, SFRff (theory), were fitted to SFRff (simulation) with the fit parameters ε/φt (where ε = 1 by definition in the
simulations) and the fudge factors φx (KM), θ (PN), and ycut (HC). The best-fit parameters are given in the legend. The fits in the top
panels only used the hydrodynamic models for which B0 = 0, while the fits in the bottom panels include all MHD models listed in Table 2
(except for the low-resolution 1283-models). A zoom of the region containing the MHD models is shown in the inset plots in the bottom
panels, where only the six MHD simulations are included. The diagonal solid line in each plot represents perfect agreement between SFRff
(theory) and SFRff (simulation). The best-fit parameters with uncertainties and χ2-values are listed in Table 3. Each simulation–theory
data pair is listed in Table 4.

SFRff (simulation). The best-fit parameters are listed
in the legend of Figure 10. Table 3 additionally lists
uncertainty estimates for the parameters, together with
χ2-values, the number of degrees of freedom (DOF) in
the fits, and the reduced χ2

red = χ2/DOF. The χ2
red is a

quantitative indicator for the goodness of fit, with better
fits having smaller χ2

red. To separate the effects of the
magnetic field, we only use purely HD models (B0 = 0)
in the top panels of Figure 10 (HD fit), while we in-
clude all MHD models in the bottom panels (MHD fit).
This distinction is also made in Table 3. Inset plots in
the bottom panels show a zoom-in on the MHD models
only. The solid diagonal line in each panel represents
SFRff(theory) = SFRff(simulation), i.e., perfect agree-
ment between theory and simulation.

Figure 10 shows that all the theoretical models ex-
hibit some positive correlation between SFRff (theory)
and SFRff (simulation). The multi-freefall KM and PN
models (right panels) show much better agreement with
the simulation data in both the HD and MHD fits, indi-
cated by the smallest χ2

red = 1.2–1.3 (see Table 3), than
the original KM and PN models (left panels). The HC
models exhibit the opposite behavior, i.e., the HC the-

ory gives slightly better fits than the multi-freefall HC
theory. This is not surprising because both HC mod-
els use the multi-freefall factor, but the HC model ad-
ditionally includes turbulent support in the estimate of
the threshold density (Equations 38 and 39 into Equa-
tion 37), while the multi-freefall HC model only includes
thermal support (Equation 38 only). However, all HC
fits exhibit relatively large χ2

red ≈ 4.9–6.2. The reason
for this is the choice of the critical density in the HC
models and its resulting dependence on the sonic Mach
number, ρcrit ∝M−2, while all KM and PN models have
ρcrit ∝M+2, which is (apart from the different choice of
fudge factors) the only fundamental difference between
the multi-freefall HC and the two multi-freefall KM and
PN models (see Table 1). The difference in fudge factors
is irrelevant in this comparison because they all enter
in the same way for each theory, simply as factors in
the critical density, for which the fitting procedure de-
termines the best-fit value automatically. In contrast,
the dependence of SFRff (theory) on αvir,M, b, and β is
determined by each analytic theory separately. Table 1
gives an overview of the basic similarities and differences
between the six theoretical models for the SFRff .
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TABLE 3
SFRff(Theory)–SFRff(Simulation) Fit Parameters (Fig. 10).

(1) (2) (3) (4) (5) (6)

Theory (HD fit) 1/φt Fudge Factor χ2 DOF χ2
red

KM 3.00± n/a φx = 0.12± n/a 127 24 5.3

PN 1.50± 0.16 θ = 0.65± 0.05 46 24 1.9

HC 0.24± n/a ycut = 1.3± n/a 135 24 5.6

multi-ff KM 0.49± 0.06 φx = 0.19± 0.02 32 24 1.3

multi-ff PN 0.49± 0.06 θ = 0.97± 0.10 32 24 1.3

multi-ff HC 0.21± n/a ycut = 1.1± n/a 149 24 6.2

Theory (MHD fit)

KM 4.10± n/a φx = 0.17± n/a 172 30 5.7

PN 1.40± 0.14 θ = 0.70± 0.04 54 30 1.8

HC 0.21± n/a ycut = 4.5± n/a 147 30 4.9

multi-ff KM 0.46± 0.06 φx = 0.17± 0.02 39 30 1.3

multi-ff PN 0.47± 0.06 θ = 1.0± 0.1 37 30 1.2

multi-ff HC 0.20± n/a ycut = 5.9± n/a 152 30 5.1

Notes. Column 1: Theoretical model according to Ta-
ble 1. Columns 2 and 3: Fit parameters for the HD fit set
(top) and MHD fit set (bottom), corresponding to the top and
bottom panels in Figure 10. Column 4: χ2 of the fit. Column
5: Number of degrees of freedom (DOF), i.e., the number of
numerical models used for fitting (see Table 2) minus 2 (the
number of fit parameters). The last column (6) shows the reduced
χ2

red = χ2/DOF, enabling a direct comparison of the fit quality

between the HD and MHD fit sets. Smaller χ2
red indicate better

fits. Uncertainty estimates for the fit parameters in columns 2 and
3 are only shown for models with χ2

red<2.

The KM fits also exhibit fairly large χ2
red = 5.3 and 5.7

in the HD and MHD fit set, respectively. In contrast, the
multi-freefall version of the KM model gives much better
fits (χ2

red = 1.3 for both the HD and MHD fits, respec-
tively). The original PN model already gives fairly good
fits (χ2

red = 1.9 and 1.8), but again, the multi-freefall PN
version gives better fits, in fact the best fits of all ana-
lytic theories (χ2

red = 1.3 for the HD and χ2
red = 1.2 for

the MHD fit). The HD fits for the multi-freefall KM and
multi-freefall PN models are identical because in the HD
limit the two theories are identical, while in the MHD
case, the only difference is the β-dependence of ρcrit,
which is ρcrit,KM ∝ 1/(1 + β−1) for KM (Equation 20),
while it is ρcrit,PN ∝ f(β) given by Equation (31) for
the PN theory. However, the difference in χ2

red between
multi-ff KM and multi-ff PN is very small, such that both
the multi-freefall KM and multi-freefall PN models pro-
vide the best match to our set of numerical simulations.

The best-fit MHD theory parameters for the multi-
freefall KM and multi-freefall PN models are similar (see
Table 3). Taking into account the full range of error
margins, we find 1/φt = 0.4–0.55, and φx = 0.15–0.21
and θ = 0.87–1.1. The multi-ff KM fit thus suggests
a close correspondence of the magnetothermal Jeans
length (Equation 21) and the magnetosonic scale (Equa-
tion 22) with a correction of order φx = 0.18±0.03. The
multi-ff PN model fit supports the expected large-scale
injection of turbulence, parameterized by θ = 0.99±0.11
(see Section 2). Moreover, the χ2

red = 1.2–1.3 of the
multi-ff KM and multi-ff PN fits are similar, but slightly
smaller in the MHD fit set than in the HD fit set. This
indicates that the magnetic-field dependence in the an-
alytic models provides a good match to the simulation
data, and that our extension of the multi-ff KM model
to MHD in Section 2.4 is reasonable.

Even though the agreement between SFRff (theory)
and SFRff (simulation) is very good for the multi-ff KM
and multi-ff PN models shown in Figure 10, some nu-
merical simulations only agree within a factor of 2–3
with the analytic prediction. To distinguish each sim-
ulation, we added the simulation numbers of Table 2
in each KM box of Figure 10. The values of the mea-
sured SFRff (simulation) and the computed SFRff (the-
ory) are listed in Table 4. Generally, the multi-ff KM
and PN theories agree with the simulation data within a
factor of two. The simulation with the largest deviation
is model #30 (GT256mM50), for which the predicted
SFRff by the multi-ff KM and PN models is a factor of
2.9 and 2.7 higher than the measured SFRff in the sim-
ulation. The higher-resolution version of this simulation
with 5123 cells (#31: GT512mM50) shows an improve-
ment, such that SFRff (simulation) is now only a factor
of 2.2 higher than SFRff in both the multi-ff KM and
PN theories. A similar trend with increasing resolution
is obtained for MHD models #19 (GT256mM10B3) and
#20 (GT512mM10B3), as well as for #28 (GT256sM50)
and #29 (GT512sM50), all converging toward the diago-
nal, solid line in Figure 10 for the multi-freefall KM and
PN models. This improvement with increasing resolution
can be seen best for the M ∼ 50, compressive-forcing
models #32 (GT256cM50) with 2563, #33 (GT512cM50)
with 5123, and #34 (GT1024cM50) with 10243 resolution
in the right panels of Figure 10. The convergence with
increasing resolution suggests that the analytic theories
give reasonable results and that we have constrained the
theory parameters well with our set of numerical simula-
tions.

The overall agreement between the theories and simu-
lations is encouraging. Although some numerical models
only agree within a factor of 2–3 at the limited resolu-
tion available, we have to keep in mind that the overall
agreement holds over two orders of magnitude in SFRs,
from SFRff ≈ 0.1 to 10, as covered by all the numerical
simulations with different virial parameters, Mach num-
bers, forcing, and magnetic-field strengths, combined in
Figure 10. All our simulations are fit simultaneously by
the multi-ff KM and multi-ff PN models.

6. COMPARISON WITH OBSERVATIONS

Here we compare the MHD simulation results of the
SFR from Section 5 with observations of Galactic clouds.
Since observed SFRs are usually quoted as SFR column
densities, ΣSFR, i.e., SFR per unit area, we convert the
simulated SFRs to ΣSFR to facilitate the comparison with
observations.

6.1. MHD Simulations Converted to Σgas and ΣSFR

We measure Σgas and ΣSFR with a method as close
as possible to what observers do to infer ΣSFR-to-Σgas

relations (see, e.g., Bigiel et al. 2008; Heiderman et al.
2010), including the effects of telescope beam smooth-
ing. For each simulation, we construct two-dimensional
projections of the gas column density Σgas and the sink
particle column density ΣSF along each coordinate axis:
x, y, z. All maps were smoothed to a resolution Nres/8
with the numerical resolution Nres given in Table 2,
such that the size of each pixel in the smoothed maps
slightly exceeds the sink particle diameter (which is 5
grid cells; see Section 3.3). We also test smoothing to
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TABLE 4
SFRff in the Simulations Listed in Table 2 and Theoretical Predictions for the Best-fit MHD Parameters in Table 3.

Model SFRff : Simulation KM PN HC multi-ff KM multi-ff PN multi-ff HC

(1) (2) (3) (4) (5) (6) (7) (8)

01) GT256sM3 6.2×10−1 3.4×10+0 7.6×10−1 2.7×10−1 5.3×10−1 5.3×10−1 2.6×10−1

02) GT512sM3 6.2×10−1 3.3×10+0 7.4×10−1 2.7×10−1 5.3×10−1 5.3×10−1 2.6×10−1

03) GT256mM3 7.3×10−1 3.5×10+0 9.1×10−1 3.0×10−1 6.1×10−1 6.1×10−1 2.8×10−1

04) GT256cM3 2.5×10+0 4.0×10+0 8.9×10−1 4.9×10−1 1.1×10+0 1.1×10+0 4.6×10−1

05) GT512cM3 2.4×10+0 4.0×10+0 9.1×10−1 4.9×10−1 1.1×10+0 1.1×10+0 4.6×10−1

06) GT256sM5 2.4×10−1 2.8×10−1 8.2×10−2 3.0×10−1 1.3×10−1 1.2×10−1 3.3×10−1

07) GT256mM5 2.5×10−1 7.2×10−1 2.9×10−1 3.6×10−1 3.0×10−1 2.9×10−1 3.6×10−1

08) GT256cM5 2.1×10+0 3.0×10+0 1.5×10+0 6.7×10−1 1.4×10+0 1.4×10+0 6.3×10−1

09) GT128sM10 2.7×10−1 n/a n/a n/a n/a n/a n/a

10) GT256sM10 1.7×10−1 1.3×10−1 1.4×10−1 4.9×10−1 1.6×10−1 1.5×10−1 5.2×10−1

11) GT512sM10 1.4×10−1 1.3×10−1 1.3×10−1 4.9×10−1 1.6×10−1 1.5×10−1 5.2×10−1

12) GT512mM10 (seed1) 5.8×10−1 5.9×10−1 6.3×10−1 6.2×10−1 5.6×10−1 5.5×10−1 6.0×10−1

13) GT512mM10B1 (seed1) 4.6×10−1 5.4×10−1 5.5×10−1 5.4×10−1 4.4×10−1 4.8×10−1 5.3×10−1

14) GT512mM10 (seed2) 3.9×10−1 3.1×10−1 4.0×10−1 6.2×10−1 3.9×10−1 3.7×10−1 6.2×10−1

15) GT512mM10B1 (seed2) 2.9×10−1 2.9×10−1 3.4×10−1 5.1×10−1 2.8×10−1 3.2×10−1 5.2×10−1

16) GT256mM10 (seed3) 4.6×10−1 4.6×10−1 4.9×10−1 5.9×10−1 4.6×10−1 4.4×10−1 5.8×10−1

17) GT512mM10 (seed3) 4.6×10−1 4.6×10−1 4.9×10−1 5.9×10−1 4.6×10−1 4.4×10−1 5.8×10−1

18) GT512mM10B1 (seed3) 4.0×10−1 4.5×10−1 4.6×10−1 5.3×10−1 3.9×10−1 4.2×10−1 5.3×10−1

19) GT256mM10B3 (seed3) 3.4×10−1 5.1×10−1 1.6×10−1 2.6×10−1 1.8×10−1 2.0×10−1 3.1×10−1

20) GT512mM10B3 (seed3) 2.9×10−1 5.0×10−1 1.4×10−1 2.5×10−1 1.7×10−1 1.9×10−1 3.0×10−1

21) GT256mM10B10 (seed3) 2.4×10−1 2.4×10+0 2.8×10−1 1.6×10−1 3.5×10−1 3.6×10−1 2.3×10−1

22) GT128cM10 1.6×10+0 n/a n/a n/a n/a n/a n/a

23) GT256cM10 2.3×10+0 2.5×10+0 2.2×10+0 1.1×10+0 2.2×10+0 2.3×10+0 1.1×10+0

24) GT512cM10 2.8×10+0 2.5×10+0 2.2×10+0 1.1×10+0 2.2×10+0 2.3×10+0 1.1×10+0

25) GT256sM20 3.3×10−1 1.4×10−1 3.7×10−1 8.6×10−1 3.7×10−1 3.5×10−1 8.5×10−1

26) GT256mM20 5.9×10−1 4.5×10−1 1.1×10+0 1.0×10+0 9.4×10−1 9.2×10−1 9.9×10−1

27) GT256cM20 4.8×10+0 2.3×10+0 3.4×10+0 2.0×10+0 4.0×10+0 4.1×10+0 1.9×10+0

28) GT256sM50 3.8×10−1 1.1×10−1 9.3×10−1 1.8×10+0 8.6×10−1 8.3×10−1 1.7×10+0

29) GT512sM50 4.4×10−1 9.9×10−2 8.8×10−1 1.8×10+0 8.2×10−1 7.9×10−1 1.7×10+0

30) GT256mM50 5.5×10−1 2.4×10−1 1.8×10+0 2.0×10+0 1.6×10+0 1.5×10+0 1.9×10+0

31) GT512mM50 6.8×10−1 2.3×10−1 1.7×10+0 2.0×10+0 1.5×10+0 1.5×10+0 1.9×10+0

32) GT256cM50 4.7×10+0 1.9×10+0 6.0×10+0 3.9×10+0 7.6×10+0 7.7×10+0 3.7×10+0

33) GT512cM50 7.3×10+0 1.8×10+0 6.1×10+0 4.0×10+0 7.7×10+0 7.8×10+0 3.7×10+0

34) GT1024cM50 9.1×10+0 1.8×10+0 6.1×10+0 4.0×10+0 7.8×10+0 7.9×10+0 3.8×10+0

Notes. Column (1): simulation model. Column (2): SFRff measured in the simulations. Columns (3–8): Theoretical SFRff
computed for the simulation parameters αvir, M, b, and β (or equivalently MA) listed in Table 2 in the KM (3), PN (4), and HC
(5) theories, as well as, in the multi-freefall KM (6), multi-freefall PN (7), and multi-freefall HC (8) theories, using the best-fit MHD
parameters from Table 3. No theoretical values were computed for the GT128sM10 and GT128cM10 simulations because they only used a
numerical resolution of 1283 cells (see the discussion on numerical convergence in Section 4.2).

Nres/32 below, which yields similar results. We then
search for pixels with a sink particle column density
greater than zero, ΣSF > 0, and extract the correspond-
ing pixel in the gas column density map, which gives
Σgas in units of M� pc−2 for that pixel. The SFR col-
umn density is computed by taking the sink particle col-
umn density ΣSF of the same pixel and dividing it by
a characteristic timescale for star formation, tSF, which
yields ΣSFR = ΣSF/tSF in units of M� yr−1 kpc−2. The
simplest choice for tSF is a fixed star formation time,
tSF = 2 Myr, based on an estimate of the elapsed time
between star formation and the end of the Class II phase
(e.g., Evans et al. 2009; Covey et al. 2010). This is also
the tSF adopted by Lada et al. (2010) and Heiderman
et al. (2010) to convert young stellar object (YSO) counts
into an SFR column density, so we use it here as the stan-
dard approach. However, we also experimented with two
other choices for tSF and present a comparison of those
choices below, all yielding similar results.

The result of the procedure explained above is plot-
ted in panel (a) of Figure 11. It shows a scatter plot

of ΣSFR versus Σgas measured in all the maps produced
from our simulations listed in Table 2 (except for the two
low-resolution, 1283-simulations) for a star formation ef-
ficiency SFE = 1% (blue) and SFE = 10% (red). Thus,
each pixel shown in panel (a) of Figure 11 is one pair of
(Σgas,ΣSFR) extracted for each simulation and each pro-
jection direction. By combining all data of maps from
the three principal projections in x, y, and z, we in-
crease the statistical sample for each model by about a
factor of three on average. A total number of 3.5 × 103

and 1.2 × 104 simulation pixels for SFE = 1% and
SFE = 10%, respectively, contribute to the scatter plots
in Figure 11. We also add contours of the (Σgas,ΣSFR)
distribution, with two contour levels for SFE = 1% (blue
contours) and SFE = 10% (red contours). The thick
contours enclose 50% of all simulation pixels and the
thin contours enclose 99%. The contours help to eas-
ily identify the underlying probability distribution of the
scattered data points.

The simulation data have a broad probability distribu-
tion with a clear positive correlation between ΣSFR and
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Fig. 11.— (a): Star formation rate column density ΣSFR vs. gas column density Σgas measured in the GRAVTURB simulations listed in
Table 2 for a star formation efficiency SFE = 1% (blue) and SFE = 10% (red), respectively. Two contour lines for each SFE are drawn. The
thick contours enclose 50% of all (Σgas, ΣSFR) simulation pairs, centered on the peak of the distribution, while the thin contours enclose
99%. (b): Same as (a), but only the contours of the simulations are drawn, and observational data of Galactic clouds from Heiderman
et al. (2010) are superimposed. The individual data points are labeled in the legend of the bottom panels (Taurus: filled black box, Class I
YSOs and Flat YSOs: green and red stars and upper-limits shown as downward-pointing triangles, HCN(1–0) Clumps: golden diamonds,
and C2D+GB Clouds: dark blue boxes). The simulation data in panels (a) and (b) are plotted for a local core-formation efficiency ε = 1,
the value expected without any local feedback from YSOs. (c): Same as (b), but the simulation data were transformed to ε = 0.5 using
Equations (47), which changes the GRAVTURB contours compared to (a) and (b). The value ε = 0.5 was determined by fitting the
simulation data to the observational data using Equation (48), suggesting local efficiencies of ε ≈ 0.3–0.7 for an assumed SFE ≈ 1%–10%
in the observed clouds. (d): Same as (c), but for the simulation maps smoothed to 4× coarser resolution, demonstrating the effect of
observing the simulated clouds with reduced telescope resolution.

Σgas. The data for SFE = 10% are shifted to higher ΣSFR

and lower Σgas compared to the SFE = 1% distribution
because more gas is accreted by sink particles and thus
removed from the gas phase at higher SFE. If we were
to fit power laws to the distributions, the slopes would
be in the range 1–2, i.e., ΣSFR ∝ Σ1–2

gas with somewhat
flatter slopes at higher SFE.

6.2. Galactic Observations of Σgas and ΣSFR

To compare the simulation data with observations, we
add data of Galactic clouds from Heiderman et al. (2010)
in panel (b) of Figure 11, superimposed on the simula-
tion contours. The observational data are from Galactic
observations of clouds and YSOs identified in the Spitzer
Cores-to-Disks (C2D) and GB surveys (Evans et al. 2009)
of massive dense clumps (Wu et al. 2010), and of the
Taurus molecular cloud (Pineda et al. 2010; Rebull et al.
2010). The simulation data indicated by the same con-
tours of panel (a) fall in the range of the observational
data, however, the simulation data show slightly higher
ΣSFR than the observational data, on average. This is
not surprising, given that our simulations did not include
any local feedback from YSOs. It is known, however,
that young stars eject a significant amount of accreted

material, thereby reducing the overall accretion rate due
to feedback from jets, winds, and outflows (Wardle &
Koenigl 1993; Konigl & Pudritz 2000; Beuther et al.
2002; Pudritz et al. 2007; Peters et al. 2011; Seifried et al.
2011a). Hence, only a fraction ε < 1 of the in-falling gas
actually ends up on the protostar.

The local core-formation efficiency is parameterized by
the factor ε in Equation (7), from which all the SFRff -
models in Section 2 were derived. Since there is no feed-
back in our simulations, ε = 1 by definition. However,
we can devise a correction to account for ε < 1. For this,
we simply have to multiply the original ΣSFR for ε = 1
by a given ε < 1. To conserve mass, we also have to ac-
count for the fact that a fraction (1− ε) was not accreted
and remained in the gas phase due to local feedback.
This means we have to increase Σgas according to the
reduction of ΣSFR, such that Σtot = Σgas + ΣSF with
ΣSF = ΣSFRtSF is conserved. Given our simulation data
Σgas and ΣSFR with ε = 1, we can compute values Σ′SFR
and Σ′gas for ε < 1 according to the following equations:

Σ′SFR(ε) = εΣSFR ,

Σ′gas(ε) = Σgas + (1− ε) ΣSF . (47)
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Fig. 12.— Same as panel (c) in Figure 11, but here we compute the simulation ΣSFR with two other methods, both different from the
standard method used in Figure 11, where ΣSFR ≡ ΣSF/(2 Myr). Left: ΣSFR ≡ ΣSF/tff(ρ0), i.e., the sink particle column density ΣSF is
divided by the global freefall time at the mean density ρ0 of the simulation in which the ΣSF pixel was found. Right: ΣSFR ≡ ΣSF/tff(Σgas),

i.e., we divide ΣSF by the local freefall time of the gas for each pixel, tff(Σgas) =
√

3πL/(32GΣgas) with the line of sight L of the
corresponding simulation model. Both ρ0 and L are listed in Table 2. Some minor differences compared to panel (c) in Figure 11 are
apparent, but the overall agreement between simulations and Galactic cloud observations remains good, irrespective of the method used
to define ΣSFR in the simulations.

Using these expressions, we can correct our simulation
data to follow more realistic values of the local efficiency
(see also the discussion of ε in Section 2.3).

The Heiderman et al. (2010) sample of SFR column
densities for Galactic clouds shown in panel (b) of Fig-
ure 11 is rather broad and presumably covers different
evolutionary stages of the clouds, such that a single SFE
for the whole sample is quite unlikely. However, since we
are currently lacking additional information about the
SFE in the observational sample, we can reasonably as-
sume SFEs in the range 1%–10% in the observational
data (Evans et al. 2009; Federrath & Klessen 2012, Paper
II). In order to find the best-fit local efficiency parame-
ter ε, we fit our simulated distribution psim(Σ′gas,Σ

′
SFR)

to the observed distribution pobs(Σgas,ΣSFR), by apply-
ing Equations (47). To do this, we compute the sum of
the squared differences ∆2 between the two distributions,
which have both been sampled to the same (Σgas,ΣSFR)
grid with indexes i,

∆2 =
∑
i

[
psim(Σ′gas,i, Σ′SFR,i)− pobs(Σgas,i, ΣSFR,i)

]2
,

(48)
for SFE = 1%, 3%, and 10% and for 21 local efficiencies,
ε = [0, 1] in steps of dε = 0.05. For each given SFE,
we search for the minimum of ∆2 as a function of ε.
This procedure yields best-fit values of the local efficiency
parameter ε = 0.7, 0.5, and 0.3 for SFE = 1%, 3%, and
10%, respectively, in our comparison of simulation data
with the Heiderman et al. (2010) Galactic cloud sample.

The simulation data modified to a local efficiency of
ε = 0.5 are shown in panel (c) of Figure 11 together
with the original Heiderman et al. (2010) data. Assum-
ing that the observational data have an SFE between 1%
and 10%, the local efficiency parameters would be in be-
tween ε = 0.3 and 0.7. This is in good agreement with
theoretical models for ε (Matzner & McKee 2000), with
numerical simulations including outflow feedback (Wang
et al. 2010; Seifried et al. 2012), and with observational
estimates (Beuther et al. 2002, and the discussion on ε
in Section 2.3).

We note that the simulation data in Figure 11 are fur-
thermore consistent with the Galactic cloud samples in
Lada et al. (2010) and Gutermuth et al. (2011), showing
that ΣSFR can vary by more than an order of magnitude
at any given Σgas.

Considering the uncertainties in the SFE from the ob-
servations and the uncertainties in the simulations, the
overall agreement is encouraging. The HCN(1–0) obser-
vational data points of molecular clumps are at the lower
end of the distribution, but are still consistent with the
simulation data. Possibly, the molecular clumps have
a systematically smaller SFE because they are larger
structures compared to the YSOs, such that the molecu-
lar clumps fall slightly below the general trend. How-
ever, this can only be tested when estimates of the
cloud SFEs become available (see Paper II, Federrath
& Klessen 2012). The Taurus data point as well as a
few of the YSO data in the range log10 Σgas ≈ 1.4–2.8
also lie at the low-ΣSFR end of the distributions ob-
tained in the simulations. This might be caused by an
enhanced magnetic-field influence for these objects. For
instance, Taurus seems to be trans-Alfvénic rather than
super-Alfvénic (Heyer & Brunt 2012), leading to a re-
duced ΣSFR as discussed in Section 4.1. Only one of our
MHD simulations approaches this strongly magnetized
regime (GT256mM10B10 with MA ≈ 1.3; see Table 2),
where anisotropies induced by the magnetic field start to
become important.

6.3. Influence of Telescope Resolution and Choice of tSF

We test the effects of telescope beam smoothing in
panel (d) of Figure 11. Panel (d) is identical to panel (c),
except that the simulation data were smoothed to grids
with resolution Nres/32, i.e., four times coarser resolu-
tion compared to the contours shown in panel (c). The
increased beam smoothing results in distributions with
somewhat smaller Σgas and ΣSFR, best seen by compar-
ing the positions of the thickest contours between panels
(c) and (d). However, the overall agreement of the simu-
lation data with the Galactic cloud sample is still good,
even when the resolution is decreased by a factor of four.
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In Figure 12, we study the influence of different choices
for the star formation timescale tSF. The two panels
are identical to panel (c) in Figure 11, except for the
method by which ΣSFR = ΣSF/tSF was computed in the
simulations. The left panel adopts tSF = tff(ρ0), i.e.,
the sink particle column density ΣSF is divided by the
freefall time at the mean density ρ0 of the simulation in
which the ΣSF pixel was found. In the right panel, we
use tSF = tff(Σgas) =

√
3πL/(32GΣgas), i.e., instead of

taking the global mean free-fall time, we take the local
freefall time of the gas in each pixel. The contours differ
slightly between those two last choices and between our
standard choice of fixed tSF = 2 Myr in Figure 11, but the
overall agreement between simulation data and Galactic
observations is similar in all three cases.

6.4. Comparison with Extragalactic Measurements

Figures 11 and 12 indicate some power-law correla-
tion of the form ΣSFR ∝ ΣNgas (albeit with significant
scatter), similar in exponents N ≈ 1–2 to the Kennicutt-
Schmidt relation (Schmidt 1959; Kennicutt 1998) and
follow-up measurements for molecular gas (e.g., Wong
& Blitz 2002; Gao & Solomon 2004; Bigiel et al. 2008;
Kennicutt & Evans 2012). However, the measured val-
ues of ΣSFR in our numerical sample are larger than the
extragalactic values of ΣSFR and larger than theoretical
estimates for that regime (e.g., Krumholz et al. 2009)
by about 1–2 orders of magnitude. The Galactic mea-
surements of ΣSFR by Heiderman et al. (2010) in Fig-
ure 11 and by Lada et al. (2010), however, also show
values of ΣSFR that are 1–2 orders of magnitude above
the extragalactic measurements with a scatter of about
1–2 orders of magnitude. Heiderman et al. (2010) ex-
plain this difference between Galactic and extragalactic
measurements of ΣSFR with the different telescope reso-
lutions available for both regimes and thus the different
areas over which the measurements of Σgas and ΣSFR are
averaged. Both disk-averaged and spatially-resolved ex-
tragalactic measurements only provide highly smoothed
images, mixing both star-forming and non-star-forming
gas. Taking these factors into account and correcting for
them, Heiderman et al. (2010) conclude that the extra-
galactic (Σgas,ΣSFR) relations are in agreement with the
Galactic measurements. Indeed, decreased telescope res-
olution (or equivalently observing a region at greater dis-
tance) reduces ΣSFR, but also Σgas, as demonstrated here
by comparing panels (c) and (d) of Figure 11. Krumholz
et al. (2012) argue that both Galactic and extragalac-
tic measurements are consistent with a local star forma-
tion law, correlating ΣSFR with Σgas/tSF, where tSF “is
the freefall time evaluated at the density averaged over
length scales comparable to the outer scale of turbulence,
regardless of the mean density of the region being ob-
served”. This seems to be a rather especial definition.
Our experiments with three different definitions of tSF in
Figures 11 and 12 do not exclude or prefer any particular
choice for tSF in the Galactic cloud sample studied here.
After acceptance of this work, we also learned about a
recently submitted paper on a theoretical model for the
ΣSFR-to-Σgas relation by Renaud et al. (2012), which is
consistent with our findings for Galactic clouds, favoring
a non-universal behavior of the star formation relation.

The simulations and the observational data shown in

Figure 11 are generally in very good agreement. The
variations of the observed SFRs in different clouds by
up to two orders of magnitude for a given value of Σgas

(Mooney & Solomon 1988; Lada et al. 2010; Heiderman
et al. 2010) and the different scaling relations of ΣSFR

versus Σgas (Suzuki et al. 2010) might thus be a re-
sult of different physical conditions in Galactic as well
as extragalactic molecular clouds. As shown above, star
formation is primarily controlled by the forcing and the
sonic Mach number of the turbulence, with the magnetic
field having a secondary effect. Molecular clouds cover a
range of values for these physical parameters and differ-
ent combinations of those, providing an explanation for
the observed scatter in SFRs.

7. DISCUSSION AND LIMITATIONS

Here we discuss limitations of the analytic theories for
the SFR from Section 2, the numerical simulations from
Sections 3–5, and limitations of the comparison of both
theory and simulations with observations in Section 6.

7.1. Analytic Theories

7.1.1. Non-log-normal Effects in the Density PDF

One limitation of the current analytic theories for
SFRff is the assumption of a perfect log-normal PDF
of the gas density, Equation (1), in the derivation of
the SFR integral, Equation (7), which affects all six
analytic theories (Table 1) similarly. Even though a
log-normal PDF is expected for purely isothermal tur-
bulence (Vázquez-Semadeni 1994), intermittency intro-
duces skewness and kurtosis in the distributions (Klessen
2000; Kritsuk et al. 2007; Burkhart et al. 2009), which
becomes stronger for more compressive forcing (Schmidt
et al. 2009; Federrath et al. 2010b) and for higher Mach
numbers (Konstandin et al. 2012b). Temperature varia-
tions can also introduce deviations from perfect log nor-
mals in the wings of the distributions. This occurs, for
instance, if the turbulence is modeled with a polytropic
equation of state (EOS), P ∝ ρΓ with Γ larger or smaller
than unity (Passot & Vázquez-Semadeni 1998; Li et al.
2003; Jappsen et al. 2005). However, when a detailed,
fully coupled, chemical, and radiative cooling and heat-
ing model is used instead of a polytropic EOS, the PDF
of the main molecular gas component, H2, follows a log-
normal distribution very well (Glover & Mac Low 2007a;
Glover et al. 2010; Shetty et al. 2011; Micic et al. 2012).
The strongest deviations from log-normal PDF arise,
when the gas starts to collapse due to self-gravity, pro-
ducing power-law tails at high densities (Klessen 2000;
Dib & Burkert 2005; Federrath et al. 2008a; Vázquez-
Semadeni et al. 2008; Cho & Kim 2011; Kritsuk et al.
2011a; Ballesteros-Paredes et al. 2011; Collins et al. 2012;
Safranek-Shrader et al. 2012), which has been observed
in the column density PDFs of clouds that have already
formed stars (Kainulainen et al. 2009; Schneider et al.
2012). One might thus argue that star formation might
accelerate over time (Cho & Kim 2011; Collins et al.
2012). In our numerical experiments, we see that after
an initial transient acceleration of SFE(t) in Figures 7–9,
the SFR becomes fairly constant in most of the numeri-
cal models for SFE & 4%. This taken together with the
good fit-quality of SFRff (theory) to SFRff (simulation)
obtained for the multi-freefall KM and PN models in Fig-
ure 10 suggests that the development of power-law tails
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in the density PDF during star formation does not sig-
nificantly affect star formation itself. Using a log-normal
PDF in the analytic theories to estimate SFRff seems
to be a reasonably good approximation. From a cer-
tain perspective, we could say that the initial conditions
for star formation are basically determined by the log-
normal part of the PDF. In regions that form stars, the
PDF develops a power-law tail at high densities, which
is a result (or a byproduct) of star formation, but does
not necessarily affect the process of stellar birth itself.
We discuss this further in Paper II (Federrath & Klessen
2012), where we present the density PDFs of the simula-
tions, showing the development of power-law tails when
star formation sets in, consistent with the assumption
that the power-law tails observed in molecular clouds
correlate with star formation (Kainulainen et al. 2009;
Schneider et al. 2012).

7.1.2. Anisotropies in Sub-Alfvénic Turbulence

The present analytic theories only work for super-
Alfvénic turbulence because Equation (4) and (5) break
down for MA . 2 (see the discussion in Molina et al.
2012). All theories assume statistical isotropy, which is
only fulfilled in the trans- to super-Alfvénic regime of
turbulence studied here.

7.1.3. Virial Parameter

The virial parameter in Equation (15) only applies
to spherical, uniform-density clouds. In the compari-
son with numerical simulations (columns 10 and 11 in
Table 2), it became clear that the virial parameter,
αvir ≡ 2Ekin/|Egrav|, Equation (16), based on the spatial
gas distribution can be more than an order of magni-
tude different from the virial parameter estimated by
Equation (15). This is because turbulent interstellar
gas is concentrated in fractal-like structures that differ
significantly between solenoidal and compressive forc-
ings, and between different sonic Mach numbers (see
Figure 6), even when the total mass is identical. How-
ever, we also tested using αvir,◦ instead of αvir in the
theory–simulation comparison of Section 5. Doing so
yielded similar fits to the ones shown in Figure 10 and
listed in Table 3, yet with somewhat larger χ2

red in some
cases. We thus preferred to use the direct computation
of αvir in the simulations, Equation (16), which provides
a more meaningful description of the dynamical state of
the clouds. In the derivation of the analytic models in
Section 2, however, we use the simple definition given by
Equation (15) because it can be treated analytically.

7.2. MHD Simulations

7.2.1. Approximation of SFRff as Constant Over Time

In both the theory and MHD simulations, we approx-
imate SFRff as constant over time. Figures 7–9 show
that this is a reasonable assumption for SFE & 4%, but
the initial acceleration of SFRff when SFE . 4% is more
complicated and is not accounted for in the present the-
ory and simulations. In real molecular clouds, the SFRff

might also change over time, depending on the evolution-
ary stage of a cloud, or on environmental parameters.

7.2.2. Limited Numerical Resolution

Our numerical resolution studies in Figures 7 and 10
show that SFRff converges with increasing resolution in
the numerical simulations. However, some models still
differ by a factor of 2–3 from the best analytic predic-
tions. In particular, the very high Mach number simula-
tions with M ∼ 50 are not converged at a resolution of
2563 and only marginally resolved with 5123 cells. How-
ever, the 10243-simulation GT1024cM50 with compres-
sive forcing at M∼ 50 seems reasonably well converged
as suggested by Figure 10 (model #34). The lower-Mach
number simulations typically agree within a factor of
1.5 with the best analytic theories (see Table 4), which
is similar to the typical statistical variation induced by
different random realizations of the turbulence (see the
comparison of three different random seeds in Figure 7).

7.2.3. Periodic Boundary Conditions

Our numerical simulations are highly idealized in that
the boundary conditions are periodic. Real molecu-
lar clouds are embedded in the larger-scale interstel-
lar medium and eventually in galaxies, which sets their
boundary conditions. Our choice of boundaries intro-
duces some uncertainties, e.g., in the virial parameter
because the gravitational energy Egrav entering αvir de-
pends on the choice of boundary condition. The other
extreme would be to initialize a cloud in isolation as done
in related studies (e.g., Bate et al. 2003; Clark et al. 2005;
Krumholz et al. 2007; Price & Bate 2008, 2009; Smith
et al. 2008; Federrath et al. 2010a; Walch et al. 2010;
Girichidis et al. 2011). This is similarly artificial because
real clouds are not isolated, but exist in a large-scale
interstellar web of filaments and other clouds.

Here, we test the analytic theories introduced in Sec-
tion 2 with such simulations of isolated star formation.
For instance, Girichidis et al. (2011) modeled isolated
clouds with different density profiles and an initial turbu-
lent perturbation, i.e., impulsive turbulent forcing. Since
the clouds with initial power-law or Bonnor-Ebert pro-
files already assume a stage of previous evolution that
may have led to such a density profile, we prefer to com-
pare the more basic, simple initial condition when the
density field is initially uniform. Girichidis et al. (2011)
modeled such a uniform density profile with a mixed (b =
0.4) turbulent perturbation with two different random
seeds, in which the sonic Mach numberM = 3.3 for their
simulation TH-m-1 and M = 3.6 for TH-m-2. The sim-
ulations did not include magnetic fields, so β →∞. The
virial parameters are in the range αvir = 1–2 (Girichidis
et al. 2012), depending on the time interval and spa-
tial range chosen to determine αvir, which exhibits some
temporal and spatial variation. Using the best-fit multi-
freefall PN parameters determined from Figure 10 and
Table 3 (1/φt = 0.47 ± 0.16 and θ = 1.0 ± 0.3), an
average virial parameter αvir = 1.5, an average Mach
number of M = 3.45, and b = 0.4 for mixed turbu-
lence, we find SFRff(multi-ff PN) = 0.56 by evaluating
Equation (41) with scrit,PN from Equation (30). Taking
the uncertainties in the fit parameters 1/φt and θ, as
well as the uncertainty in αvir = 1–2 and M = 3.3–3.6
into account, we find the analytic multi-ff PN predic-
tion SFRff(multi-ff PN) = 0.56 ± 0.35 for both TH-m-1
and TH-m-2 simulations by Girichidis et al. (2011). A
very similar prediction is obtained using the multi-freefall
KM model instead of the multi-freefall PN model with
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the corresponding parameters listed in Table 3. From
a linear fit to the evolution of the total accreted mass
versus time in the TH-m-1 and TH-m-2 simulations, we
find SFRff(TH-m-1) ≈ 0.67 and SFRff(TH-m-2) ≈ 0.61
(Girichidis et al. 2011, Figure 7), in very good agree-
ment with the analytic model prediction, indicating that
different boundary conditions do not severely affect our
results and conclusions concerning SFRff .

7.3. Observations

Assuming a uniform SFE = 1%–10% in the observed
Galactic cloud sample by Heiderman et al. (2010), we
estimated the local core-formation efficiency parameter
ε = 0.3–0.7 with the best-fit value ε ≈ 0.5, by fitting
our numerical simulations to the observed distribution
in Figure 11. There are three major uncertainties in this
comparison of the simulations and observations.

First, the SFE in the observed sample is not known.
We reasonably assumed SFE = 1%–10%, but some of the
individual clouds may not fall in this range. Moreover,
there could be a systematic correlation of SFE with gas
column density Σgas, which is not accounted for. For
instance, the HCN(1–0) molecular clump data shown in
Figure 11 has potentially smaller SFE on average than
the YSO data because smaller scales tend to exhibit
higher SFE (McKee & Ostriker 2007). For instance,
it seems plausible that SFE approaches the local core-
efficiency ε, once scales as small as a single core are con-
sidered. In contrast, giant molecular cloud complexes as
a whole typically only have SFEs of a few percent at most
(see Paper II, Federrath & Klessen 2012).

The second uncertainty is the effect of the telescope
resolution. Lower resolution (or observation of a very
distant region, e.g., a whole galaxy) inevitably means
that the observed star-forming regions are smoothed over
larger areas compared to a high-resolution observation of
the same region. The effect of reducing the beam reso-
lution by a factor of four in our synthetic observations
of the simulated clouds is demonstrated by comparing
panels (c) and (d) in Figure 11, resulting in a relatively
weak, but noticeable reduction of ΣSFR and Σgas.

The third major uncertainty is the star formation
timescale tSF used to convert a given star formation col-
umn density ΣSF into a rate ΣSFR = ΣSF/tSF. In Fig-
ure 11, we adopted a fixed tSF = 2 Myr as often used
by observers (e.g., Heiderman et al. 2010; Lada et al.
2010). However, we studied two additional choices of tSF

in Figure 12, one where tSF = tff(ρ0) (division by the
global freefall time) and the other where tSF = tff(Σgas)
(division by the local freefall time). Comparing these
three choices for tSF, we find that the resulting ΣSFR-to-
Σgas correlations change slightly, but the overall effect
is rather weak. Given the broad distributions in both
the simulation data and in the Heiderman et al. (2010)
Galactic cloud sample, it is hard to decide which method
provides better agreement. They all seem to agree rea-
sonably well within the observational range of Galactic
clouds.

Finally, we note a fundamental difficulty of estimat-
ing actual SFRs or SFRff in observations. Cloud obser-
vations are inevitably limited to a nearly instantaneous
snapshot of the state of a cloud with respect to the rele-
vant timescales for star formation, which exceed the life-
time of a human being by orders of magnitude. How-

ever, measuring a real SFR requires knowledge about
the time evolution of the cloud, which is thus not avail-
able. Strictly speaking, a direct measurement of the time
derivative of star formation, i.e., the SFR is thus impos-
sible in observations. This is why we can only make
meaningful comparisons of star formation in simulations
and observations based on the methods explained and
applied in Section 6 (Figures 11 and 12), but not the
actual SFRs computed from the time evolution of star
formation.

8. SUMMARY AND CONCLUSIONS

We investigated the role of turbulence and magnetic
fields for the SFR in molecular clouds. We compared
theoretical models for the SFR with a comprehensive set
of numerical magnetohydrodynamic simulations of core
and star formation, and with observations of Galactic
clouds. The main conclusion from this study is that the
SFR depends on four parameters: (1) the virial parame-
ter, αvir ≡ 2Ekin/|Egrav|; (2) the sonic Mach numberM;
(3) the turbulent forcing parameter b (solenoidal, mixed,
compressive); and (4) the strength of magnetic fields, pa-
rameterized by plasma β = 2M2

A/M2 with the Alfvén
Mach number MA.

Our simulations are in good agreement with SFR
column densities and gas column densities of observed
molecular clouds. We suggest that variations of the four
basic, dimensionless parameters can explain the scatter
in the observations. Given that molecular clouds seem
to have an αvir of order unity, the most important pa-
rameters controlling the SFR are the sonic Mach number
M and the turbulent forcing of a molecular cloud, with
magnetic field having a secondary effect. The turbulent
forcing can be parameterized by b in Equation (4). It is a
measure for the fraction of energy excited in the form of
compressive modes in a turbulent cloud. We distinguish
solenoidal (divergence-free) forcing (b = 1/3) from com-
pressive (curl-free) forcing (b = 1), as well as mixtures of
both (1/3 < b < 1). We find that the SFR decreases with
increasing magnetic pressure, but only by a factor of two.
The sonic Mach number can change the SFR by a factor
of 4–5, while b can introduce order-of-magnitude differ-
ences in the SFR, emphasizing the role of the turbulent
forcing for star formation.

8.1. Analytic Theories for SFRff

1. In Section 2, we derived six analytic models for
the SFR per freefall time, SFRff : the original
Krumholz & McKee (2005, KM), Padoan & Nord-
lund (2011, PN), and Hennebelle & Chabrier (2011,
HC) models and the multi-freefall KM, PN, and
HC models, which are all based on an integral over
the density PDF, Equation (1), leading to differ-
ent analytic solutions for SFRff , summarized in
Table 1. They all yield a dimensionless SFR per
freefall time, SFRff , based on Equation (7), which
can be transformed to a real SFR with units of
M� yr−1 by applying Equation (6).

2. We extended the (multi-freefall) KM and (multi-
freefall) HC theories to include magnetic fields by
introducing a magnetic-pressure correction given
by Equation (17), which allows us to replace the
sound speed by an effective magnetosonic speed
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given by Equation (18) or (19) for super-Alfvénic,
isothermal turbulence.

3. We analyzed the basic dependencies of all six the-
ories on the four parameters listed above. SFRff

decreases with increasing virial parameter αvir,
while it increases with increasing sonic Mach num-
ber M in the best multi-freefall theories (see Fig-
ure 1). Varying the forcing parameter b from
purely solenoidal forcing (b = 1/3) to purely com-
pressive forcing (b = 1) leads to a higher SFRff

by more than an order of magnitude (Figure 2).
Stronger magnetic fields parameterized by decreas-
ing plasma β (or equivalently decreasing Alfvén
Mach number MA) lead to decreasing SFRff (Fig-
ure 3).

8.2. Numerical Simulations

1. In Sections 3 and 4, we performed a set of numerical
experiments of star formation, covering molecular
cloud sizes and masses in the range L = 0.3 to
200 pc and Mc = 300 to 4 × 106M� (see Table 2)
with solenoidal, mixed, and compressive forcings
of the turbulence (see Section 3.2 for details of the
forcing) to test the analytic models. We also ran
super-Alfvénic simulations with varying magnetic-
field strength to test the influence of magnetic fields
on the SFR. All simulations include sink particles
to model core and star formation, allowing us to
measure SFRff , depending on αvir, M, b, and β.

2. We computed the virial parameter αvir ≡
2Ekin/|Egrav| based on the uniform-density, spher-
ical approximation given by Equation (15), and
based on the actual, three-dimensional, inhomo-
geneous gas distribution in the simulations. De-
pending on the forcing and Mach number of the
turbulence, we find that these two definitions can
differ by more than an order of magnitude (com-
pare columns 10 and 11 in Table 2), which means
that theoretical and observational estimates of αvir

based on a uniform-density, spherical approxima-
tion must be considered with caution.

3. The SFR converges with increasing numerical res-
olution (Figures 7 and 10). The statistical uncer-
tainty in SFRff is about a factor of 1.5, indicated
by comparing three different random realizations of
the same parameter set (Figure 7), similar to the
uncertainty introduced by limited numerical reso-
lution.

4. We found that for our models with M∼ 10, com-
pressive forcing yields SFRs at least an order of
magnitude higher than solenoidal forcing, empha-
sizing the role of different turbulent energy injec-
tion mechanisms for the SFR (Figure 7). The cloud
morphology also depends strongly on the type of
forcing and sonic Mach number (see Figure 6). The
SFR increases by a factor of about four for com-
pressive forcing betweenM = 3 andM = 50 (Fig-
ure 8).

5. Including magnetic fields in simulations withM∼
10 and mixed turbulent forcing, we found that the

magnetic field is amplified in regions of core and
cluster formation (Figure 5), reducing the SFRff by
a factor of two between purely hydrodynamic tur-
bulence (MA →∞) and trans-Alfvénic turbulence
with MA ∼ 1.3 (see Figure 9). This is a relatively
small change in SFRff for such a fairly strong mag-
netic field, compared to the dependence of SFRff on
αvir, M, and b. However, magnetic fields do affect
the morphology of the clouds even on large scales,
and they reduce fragmentation (see Figure 4), thus
potentially having an important impact on the core
and stellar IMF.

6. A detailed comparison of SFRff (simulation) with
SFRff (theory) in Figure 10 showed that the multi-
freefall analytic theories are generally better than
the non-multi-freefall theories. The multi-ff KM
and multi-ff PN models give the best fits to our
simulation data (see Tables 3 and 4) with reason-
able best-fit model parameters, 1/φt ≈ 0.5 for both
multi-ff KM and PN models, as well as φx ≈ 0.17
for the multi-ff KM model, and θ ≈ 1 for the multi-
ff PN model, suggesting a close connection between
the magnetothermal Jeans scale and the magne-
tosonic scale, as well as turbulence driven on the
outer, largest scales of molecular clouds.

7. All numerical simulations agree with the multi-ff
KM and PN theories within a factor of three, and
come closer to the analytic prediction with increas-
ing numerical resolution. This is an encouraging
agreement, given that the modeled SFRs vary over
two orders of magnitude in our numerical simula-
tions (see Figure 10).

8.3. Comparison with Observations

1. We compared our numerical simulations with ob-
servations of the SFR column density ΣSFR as a
function of the gas column density Σgas, measured
in Galactic clouds in Section 6 (Figure 11). We
showed that the simulations slightly overestimate
the SFR compared to the observed clouds because
we did not include any local radiative and mechani-
cal feedback from young stellar objects, and hence,
the local efficiency parameter ε = 1 in our simu-
lations, by definition. However, assuming a con-
stant, global star formation efficiency in the ob-
served clouds of SFE ≈ 1%–10% (see Paper II, Fed-
errath & Klessen 2012), we can adjust our numeri-
cal simulation data with Equations (47) to account
for ε < 1. Doing so, we found the best-fit local effi-
ciency ε ≈ 0.5 (ε = 0.7, 0.5, and 0.3 for SFE = 1%,
3%, and 10%, respectively) for the observed Galac-
tic clouds, which is in good agreement with theo-
retical expectations, independent numerical simu-
lations, and observations of individual protostellar
cores.

2. We studied the effects of telescope beam smooth-
ing in panels (c) and (d) of Figure 11, and the ef-
fect of varying the definition of the star formation
timescale tSF to determine ΣSFR in Figure 12. We
found that both the telescope beam resolution and
the definition of tSF introduce minor uncertainties
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in our comparison between simulations and obser-
vations.

3. The correlation between Σgas and ΣSFR in Fig-
ure 11 is consistent with power laws of the form
ΣSFR ∝ ΣNgas with exponents N = 1–2 (albeit with
significant scatter), which is similar to extragalac-
tic measurements of Σgas–ΣSFR correlations.

The overall agreement between theory, simulations and
observations in Figures 10 and 11 is encouraging, con-
sidering the simplifications inherent in the theoretical
models, the limitations of the numerical simulations, and
the uncertainties in the SFEs of the observed sample of
clouds (see Section 7). We conclude that supersonic,
magnetized turbulence is a key process, likely control-
ling the SFR of molecular clouds in the Milky Way and
potentially in other galaxies.
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1436

Balsara, D. S., Kim, J., Mac Low, M., & Mathews, G. J. 2004,
ApJ, 617, 339

Banerjee, R., Klessen, R. S., & Fendt, C. 2007, ApJ, 668, 1028
Bate, M. R., Bonnell, I. A., & Bromm, V. 2003, MNRAS, 339, 577
Bate, M. R., Bonnell, I. A., & Price, N. M. 1995, MNRAS, 277,

362
Beck, R., Brandenburg, A., Moss, D., Shukurov, A., & Sokoloff,

D. 1996, ARA&A, 34, 155
Benzi, R., Biferale, L., Fisher, R. T., Kadanoff, L. P., Lamb,

D. Q., & Toschi, F. 2008, Phys. Rev. Lett., 100, 234503
Beresnyak, A., Lazarian, A., & Cho, J. 2005, ApJ, 624, L93
Berger, M. J., & Colella, P. 1989, Journal of Computational

Physics, 82, 64
Bertram, E., Federrath, C., Banerjee, R., & Klessen, R. S. 2012,

MNRAS, 420, 3163
Beuther, H., Schilke, P., Sridharan, T. K., Menten, K. M.,

Walmsley, C. M., & Wyrowski, F. 2002, A&A, 383, 892
Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G.,

Madore, B., & Thornley, M. D. 2008, AJ, 136, 2846
Bonazzola, S., Heyvaerts, J., Falgarone, E., Perault, M., & Puget,

J. L. 1987, A&A, 172, 293
Bonnor, W. B. 1956, MNRAS, 116, 351
Bouchut, F., Klingenberg, C., & Waagan, K. 2007, Numerische

Mathematik, 108, 7
—. 2010, Numerische Mathematik, 115, 647
Brandenburg, A., & Subramanian, K. 2005, Phys. Rep., 417, 1
Breitschwerdt, D., de Avillez, M. A., Fuchs, B., & Dettbarn, C.

2009, Space Science Reviews, 143, 263
Brunt, C. M., Federrath, C., & Price, D. J. 2010, MNRAS, 403,

1507
Brunt, C. M., Heyer, M. H., & Mac Low, M. 2009, A&A, 504, 883
Burgers, J. M. 1948, Adv. Appl. Mech., 1, 171
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Forbrich, J., & Ascenso, J. 2010, ApJ, 722, 971
Crutcher, R. M. 1999, ApJ, 520, 706
Crutcher, R. M., Hakobian, N., & Troland, T. H. 2009, ApJ, 692,

844
Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E., &

Troland, T. H. 2010, ApJ, 725, 466
Cunningham, A. J., Frank, A., Carroll, J., Blackman, E. G., &

Quillen, A. C. 2009, ApJ, 692, 816
de Avillez, M. A., & Breitschwerdt, D. 2005, A&A, 436, 585
Del Sordo, F., & Brandenburg, A. 2011, A&A, 528, A145
Dib, S., & Burkert, A. 2005, ApJ, 630, 238
Dobbs, C. L., & Bonnell, I. A. 2008, MNRAS, 385, 1893
Dobbs, C. L., Glover, S. C. O., Clark, P. C., & Klessen, R. S.

2008, MNRAS, 389, 1097
Donkov, S., Veltchev, T. V., & Klessen, R. S. 2012, MNRAS, 423,

889



The Star Formation Rate 33

Dubey, A., et al. 2008, in Astronomical Society of the Pacific
Conference Series, Vol. 385, Numerical Modeling of Space
Plasma Flows, ed. N. V. Pogorelov, E. Audit, & G. P. Zank, 145

Ebert, R. 1955, Zeitschrift für Astrophysik, 37, 217
Elmegreen, B. G. 2008, ApJ, 672, 1006
Elmegreen, B. G. 2009, in IAU Symposium, Vol. 254, IAU

Symposium, ed. J. Andersen, J. Bland-Hawthorn, &
B. Nordström, 289

—. 2011, ApJ, 731, 61
Elmegreen, B. G., & Burkert, A. 2010, ApJ, 712, 294
Elmegreen, B. G., & Falgarone, E. 1996, ApJ, 471, 816
Elmegreen, B. G., & Scalo, J. 2004, ARA&A, 42, 211
Esquivel, A., & Lazarian, A. 2011, ApJ, 740, 117
Eswaran, V., & Pope, S. B. 1988, Computers and Fluids, 16, 257
Evans, II, N. J., et al. 2009, ApJS, 181, 321
Falgarone, E., Puget, J.-L., & Perault, M. 1992, A&A, 257, 715
Federrath, C., Banerjee, R., Clark, P. C., & Klessen, R. S. 2010a,

ApJ, 713, 269
Federrath, C., Banerjee, R., Seifried, D., Clark, P. C., & Klessen,

R. S. 2011a, in IAU Symposium, Vol. 270, Computational Star
Formation, ed. J. Alves, B. G. Elmegreen, J. M. Girart, &
V. Trimble, 425–428

Federrath, C., Chabrier, G., Schober, J., Banerjee, R., Klessen,
R. S., & Schleicher, D. R. G. 2011b, Physical Review Letters,
107, 114504

Federrath, C., Glover, S. C. O., Klessen, R. S., & Schmidt, W.
2008a, Physica Scripta T, 132, 014025

Federrath, C., & Klessen, R. S. 2012, ApJ, submitted (Paper II)
Federrath, C., Klessen, R. S., & Schmidt, W. 2008b, ApJ, 688,

L79
—. 2009, ApJ, 692, 364
Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., &

Mac Low, M. 2010b, A&A, 512, A81
Federrath, C., Sur, S., Schleicher, D. R. G., Banerjee, R., &

Klessen, R. S. 2011c, ApJ, 731, 62
Frisch, U. 1995, Turbulence, the legacy of A. N. Kolmogorov

(Cambridge Univ. Press)
Fryxell, B., et al. 2000, ApJS, 131, 273
Gaensler, B. M., et al. 2011, Nature, 478, 214
Gao, Y., & Solomon, P. M. 2004, ApJ, 606, 271
Girichidis, P., Federrath, C., Allison, R., Banerjee, R., & Klessen,

R. S. 2012, MNRAS, 420, 3264
Girichidis, P., Federrath, C., Banerjee, R., & Klessen, R. S. 2011,

MNRAS, 413, 2741
Glover, S. C. O., & Clark, P. C. 2012, MNRAS, 426, 377
Glover, S. C. O., Federrath, C., Mac Low, M., & Klessen, R. S.

2010, MNRAS, 404, 2
Glover, S. C. O., & Mac Low, M.-M. 2007a, ApJS, 169, 239
—. 2007b, ApJ, 659, 1317
Goldbaum, N. J., Krumholz, M. R., Matzner, C. D., & McKee,

C. F. 2011, ApJ, 738, 101
Goodman, A. A., Barranco, J. A., Wilner, D. J., & Heyer, M. H.

1998, ApJ, 504, 223
Green, A. W., et al. 2010, Nature, 467, 684
Gritschneder, M., Naab, T., Walch, S., Burkert, A., & Heitsch, F.

2009, ApJ, 694, L26
Gutermuth, R. A., Pipher, J. L., Megeath, S. T., Myers, P. C.,

Allen, L. E., & Allen, T. S. 2011, ApJ, 739, 84
Heiderman, A., Evans, II, N. J., Allen, L. E., Huard, T., & Heyer,

M. 2010, ApJ, 723, 1019
Heiles, C., & Troland, T. H. 2005, ApJ, 624, 773
Heitsch, F., Mac Low, M.-M., & Klessen, R. S. 2001, ApJ, 547,

280
Hennebelle, P., & Chabrier, G. 2008, ApJ, 684, 395
—. 2009, ApJ, 702, 1428
—. 2011, ApJ, 743, L29
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