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ABSTRACT

We perform a series of three-dimensional, adaptive-mesh-refinement (AMR) magnetohydrodynamical (MHD) simulations of
star cluster formation including gravity, turbulence, magnetic fields, stellar radiative heating and outflow feedback. We observe
that the inclusion of protostellar outflows (1) reduces the star formation rate per free-fall time by a factor of ∼ 2, (2) increases
fragmentation, and (3) shifts the initial mass function (IMF) to lower masses by a factor of 2.0 ± 0.2, without significantly
affecting the overall shape of the IMF. The form of the sink particle (protostellar objects) mass distribution obtained from
our simulations matches the observational IMFs reasonably well. We also show that turbulence-based theoretical models of
the IMF agree well with our simulation IMF in the high-mass and low-mass regime, but do not predict any brown dwarfs,
whereas our simulations produce a considerable number of sub-stellar objects. Our numerical model of star cluster formation
also reproduces the observed mass dependence of multiplicity. Our multiplicity fraction estimates generally concur with the
observational estimates for different spectral types. We further calculate the specific angular momentum of all the sink particles
and find that the average value of 1.5 × 1019 cm2 s−1 is consistent with observational data. The specific angular momentum of
our sink particles lies in the range typical of protostellar envelopes and binaries. We conclude that the IMF is controlled by a
combination of gravity, turbulence, magnetic fields, radiation and outflow feedback.
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1 INTRODUCTION

Our understanding of the star formation process has improved re-
markably in past few years by virtue of advanced, high-resolution
observations, rigorous theoretical works and ever-expanding numer-
ical techniques. However, we are far from having achieved a complete
picture of star formation. Numerical simulations enable scrutiny of
observations and provide a framework for theoretical analysis. How-
ever, performing large-scale simulations of the collapse of molecular
clouds is challenging because it involves complex, interrelated physi-
cal mechanisms like gravity, magnetic fields, and stellar radiative and
mechanical feedback (Federrath 2018; Krumholz & Federrath 2019).
Moreover, the interstellar medium (ISM) is turbulent down to the
scales of molecular clouds and star-forming sub-regions (Elmegreen
& Scalo 2004). Numerical models of star formation strive to repro-
duce or explain, but not limited to, the observed initial mass function
(IMF), star formation rate and efficiency, multiplicity and mass ratio
in stellar systems, the slow rotation rates of zero-age main sequence
stars (ZAMS), and how these properties are affected by different
physical mechanisms (e.g., Jappsen & Klessen 2004; Hennebelle &
Teyssier 2008; Offner et al. 2009; Federrath & Klessen 2012; Bate
2012; Krumholz et al. 2012; Federrath & Klessen 2013; Myers et al.
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2014; Cunningham et al. 2018; Guszejnov et al. 2020b; Mathew &
Federrath 2020). Here we aim to determine the role of the combined
effects of gravity, turbulence, magnetic fields, and feedback for the
IMF.

The IMF represents the distribution of the mass of stars formed
in a single cloud-collapse event and it is found to be surprisingly
universal, not just in the solar neighbourhood, but also beyond (see
the reviews by Bastian et al. 2010; Hopkins 2018; Lee et al. 2020).
Salpeter (1955) proposed that the IMF can be described by a power-
law of the form 𝑑𝑁 ∝ 𝑀−Γ 𝑑log𝑀 , where 𝑁 is the number of stars,
𝑀 is the stellar mass and Γ = 1.35. Later it was realised that the mass
spectrum flattens at masses less than 1 M⊙ and that the distribution of
low-mass stars can be represented by a log-normal function (Miller &
Scalo 1979). The most commonly referenced functional forms of the
IMF include a log-normal function that transforms into a Salpeter-
like power-law at high masses (Chabrier 2005), and a three-segment
power-law (Kroupa 2001). The IMF has a peak or characteristic mass
at around 0.2−0.3 M⊙ (Chabrier 2003; Elmegreen et al. 2008; Offner
et al. 2014). It is intriguing that supersonic turbulence, which embod-
ies the chaotic nature of star formation, is also considered primarily
responsible for the observed universality of the initial mass func-
tion (IMF). The role of turbulence in the star formation process is
two-fold. Turbulence is supersonic on the scales of molecular clouds,
and the turbulent pressure supports the cloud against a monolithic
collapse (Elmegreen 1993; Padoan 1995; Klessen et al. 2000). On
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the other hand, it also seeds star formation by creating local density
fluctuations or over-dense regions (analogous to the observed dense
cores) (Mac Low & Klessen 2004; McKee & Ostriker 2007). Super-
sonic turbulence results in a probability density function (PDF) of
the gas density that is approximately log-normal (Vazquez-Semadeni
1994; Padoan et al. 1997; Kritsuk et al. 2007; Federrath et al. 2008;
Federrath 2013; Hopkins 2013b; Federrath & Banerjee 2015). It is
on this premise that recent IMF theories are formulated (Padoan &
Nordlund 2002; Hennebelle & Chabrier 2008, 2009; Hopkins 2012,
2013a). These gravo-turbulent IMF models are built upon the ob-
served correlation between the core mass function (CMF) and the
IMF. The CMF has a form similar to the IMF, but is shifted to higher
masses by a factor of 2–4 (Motte et al. 1998; Testi & Sargent 1998;
Johnstone et al. 2000; Alves et al. 2007; Stanke et al. 2006). The
mass gap between the CMF and the IMF is thought to be the result
of the mass loss of the protostellar object due to jets and outflows,
which is generally parameterized by a mass-independent core-to-star
efficiency 𝜖 ∼ 0.25 − 0.5 (Matzner & McKee 2000; Myers 2008;
Federrath & Klessen 2012; Federrath et al. 2014; Offner & Arce
2014). Jets and outflows not only remove a fraction of accreting
material from the protostars, but also drive small-scale turbulence
by injecting turbulent kinetic energy into the cloud (Li & Naka-
mura 2006; Nakamura & Li 2011). They reduce the star formation
rate significantly and aid the formation of new protostellar objects
(Federrath et al. 2014). Previous numerical studies suggest that the
mechanical feedback indeed play a fundamental role in bringing out
the observed mass scale of the IMF (Li et al. 2010; Krumholz et al.
2012; Cunningham et al. 2018; Guszejnov et al. 2020a). Thus, the
incorporation of outflow feedback in numerical works is essential to
produce conclusive results on the IMF.

The multiplicity of stars is a highly debated topic that is coupled
to the IMF. Stars generally form in clusters (Lada & Lada 2003) and
observations suggest that the multiplicity fraction is an increasing
function of primary mass (Duchêne & Kraus 2013). Astronomers
make use of the mass-dependence of multiplicity and the mass ratio
in stellar systems to correct for the unresolved companions and extract
the individual-star IMF from the system IMF. Core fragmentation due
to the inherent rotation in dense cores is a viable mechanism for the
formation of multiple systems. The angular momentum of the cores
is acquired from the large-scale turbulent motions and the differential
rotation of the galactic disc. The angular momentum transport is a
long-standing problem in the field of astrophysics (Spitzer 1978). At
least 5 to 6 orders of magnitude in specific angular momentum are
lost between the evolution from a dense core to a typical star like the
Sun (Bodenheimer 1995; Belloche 2013). The processes proposed for
solving the angular momentum problem include magnetic braking
(Mouschovias & Paleologou 1980), disc formation (Papaloizou &
Lin 1995) and removal by jets and outflows (disc winds) (Blandford
& Payne 1982). The multiplicity and angular momentum of stars are
therefore key properties that can be used to probe theories of star
formation.

The major aim of this paper is to investigate the impact of pro-
tostellar outflows on the star formation process, in particular on the
IMF and the star formation rate. Our results are derived from mul-
tiple simulations to form a statistically significant sample of stars.
We compare the mass distribution of stars formed in our simulations
with observations and theoretical models of the IMF. We also study
the multiplicity and angular momentum of the protostellar objects
that form in our simulations and compare them with observational
data.

In Section 2, we explain the simulation methodology, introduce the
sub-grid models for stellar heating and outflow feedback, and define

the initial configuration and simulation parameters. In Section 3, we
study the effect of jets/outflows in the process of star cluster forma-
tion by comparing a model that includes the outflow feedback with a
model with no protostellar outflows. For each of the two models, we
investigate the column density and temperature morphology, evolu-
tion of dynamical quantities and the IMF of the stars formed in 10
cloud/cluster simulations. In Section 4, we compare our IMF with
the observational and theoretical models of the IMF. In Section 5,
we discuss the multiplicity and the specific angular momenta of the
stars. Limitations are discussed in Section 6. Section 7 summarises
the main results and presents our conclusions.

2 METHODS

2.1 Magnetohydrodynamical equations

The cloud-collapse is modelled numerically by solving the magneto-
hydrodynamical (MHD) equations including gravity on an adaptive
mesh refinement (AMR) (Berger & Colella 1989) grid using the
PARAMESH library (MacNeice et al. 2000) in the flash4 code
(Fryxell et al. 2000; Dubey et al. 2008),

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌v) = 0, (1)

𝜌 (
𝜕

𝜕𝑡
+ v · ∇) v =

(B · ∇)B

4𝜋
− ∇𝑃tot + 𝜌(g + Fstir), (2)

𝜕B

𝜕𝑡
= ∇ × (v × B), ∇ · B = 0, (3)

where 𝜌, v,B, 𝑃tot = 𝑃+1/(8𝜋) |B|2, and Fstir denote the gas density,
velocity, magnetic field, pressure (sum of thermal and magnetic) and
turbulent acceleration field, respectively. Here g is the gravitational
acceleration and is the aggregate of the self-gravity of the gas and
the acceleration due to the presence of sink particles (see §2.3). We
utilize a multi-grid Poisson solver for computing the self-gravity
of the gas (Ricker 2008). We use the 5-wave HLL5R approximate
Riemann method to solve the MHD equations. The HLL5R solver
has comparable accuracy to the standard FLASH-Roe solver, but it
is more efficient and has a better stability (Waagan et al. 2011).

2.2 Turbulence

The kinetic energy of freely decaying turbulence dissipates on
timescales shorter than a dynamical timescale (Gammie & Ostriker
1996; Mac Low et al. 1998; Stone et al. 1998). Stellar feedback, such
as stellar winds and supernova explosions, inject turbulent kinetic
energy and replenish the turbulence. Turbulence can also be induced
by accretion and shear motions on galactic scales (Elmegreen 2009;
Federrath et al. 2017a). We use a stochastic Ornstein-Uhlenbeck pro-
cess (Eswaran & Pope 1988; Schmidt et al. 2006; Federrath et al.
2010b) to construct an acceleration field Fstir and continuously drive
turbulent motions. Fstir is added as a momentum and energy source
term in the MHD equations (see Eq. 2). Our turbulence driving
module inputs kinetic energy on the largest scales (wavenumbers
𝑘 = 1 . . . 3, where 𝑘 is in units of 2𝜋/𝐿 with the side length 𝐿 of the
computational domain), which cascades down to smaller scales, nat-
urally producing the velocity power spectrum ∼ 𝑘−2 or equivalently
a velocity dispersion – size relation of 𝜎𝑣 ∝ ℓ1/2 (Larson 1981;
Ossenkopf & Mac Low 2002; Heyer & Brunt 2004; Roman-Duval
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et al. 2011; Federrath 2013; Federrath et al. 2021). We define the
turbulence driving parameter 𝜁 = 0.5 (Schmidt et al. 2009; Feder-
rath et al. 2010b) to obtain a natural mixture of forcing modes. Such
a value produces a ratio of compressive forcing power to the total
forcing power, of about 1/3, typical for clouds in the Milky Way
disc (Federrath et al. 2016). A mixed turbulence driving represents
a combination of compressive (∇ × Fstir = 0, 𝜁 ∼ 0) and solenoidal
(∇ ·Fstir = 0, 𝜁 ∼ 1) modes of driving (Federrath et al. 2008, 2010a;
Molina et al. 2012; Nolan et al. 2015).

2.3 Sink particles and AMR

As the central gas density of a collapsing region increases, its internal
structure becomes complex and the timescale decreases. Eventually,
it becomes extremely difficult to follow the gas evolution numerically.
Sink particles are sub-grid models that are used to represent the gravi-
tationally bound, high-density regions in cloud-collapse simulations.
Depending on the requirement or maximum resolution that can be
achieved, sink particles are used to model the formation and accre-
tion of individual protostellar cores or the disc + protostar systems
that form later within these cores. In addition to requiring that the
gas forming a sink particle be gravitationally bound, we perform a
series of tests as described by Federrath et al. (2010c) before locally
converting gas to sink particles to ensure that only truly bound and
collapsing gas is turned into sink particles. The sink particles are
introduced and centred at the computational cell that exceeds the
threshold density defined by the Jeans length,

𝜌sink =
𝜋 𝑐2

𝑠

𝐺 𝜆2
J

=
𝜋 𝑐2

𝑠

4𝐺 𝑟2
sink

, (4)

where 𝑐2
𝑠 is the sound speed, 𝐺 is the gravitational constant, 𝜆J =

[𝜋𝑐2
𝑠/(𝐺𝜌)]1/2 is the local Jeans length, and 𝑟sink = 𝜆J/2 is the sink

particle radius.
We define the size of the sink particle as 2𝑟sink = 5Δ𝑥, where Δ𝑥

is the grid cell length on the highest level of refinement. This ensures
that the Truelove et al. (1997) criterion is satisfied, avoiding artificial
fragmentation. On all other AMR levels, 𝜆J is always resolved with at
least 16 grid cell lengths to prevent underestimation of the turbulent
energy and to resolve the local collapse reasonably well (Federrath
et al. 2011).

The conservation laws are exercised to update the mass, linear
momentum and angular momentum of each sink particle in every
accretion step. The new position of the sink particle after accretion
is the centre of mass of the sink particle and the accreted material.
In order to conserve total angular momentum, an intrinsic angular
momentum (spin) is introduced for the sink particle, which stores the
accreted angular momentum. The spin is then used to determine the
rotational axis of the sink particle along which jets and outflows are
launched (see Federrath et al. 2014); see details in Sec. 2.5.

All gravitational interactions of the sink particles with the gas and
between each other are calculated by direct summation over all the
sink particles and grid cells. A second-order leapfrog integrator is
employed for advancing the sink particles in time.

2.4 Equation of state (EOS)

The thermodynamics of the gas in protostellar cores is determined by
the competition between heating and cooling mechanisms, e.g., com-
pressional heating, cosmic-ray heating, and cooling by dust grains
(Larson 1973; Masunaga et al. 1998). The early phase of the collapse
of molecular cloud cores (birthplace of stars) is isothermal (Wolfire

et al. 1995; Masunaga & Inutsuka 2000; Glover et al. 2010). The
cores are optically thin initially, and the gravitational energy released
is readily radiated away. However, cooling becomes inefficient and
the compressional heating dominates when an opaque region forms
in the centre, trapping the infrared radiation from dust grains. To
accurately model the thermal evolution of the gas, the equation of
energy conservation has to be solved simultaneously with the RT
equation. Solving the RT equation, even on the small scales of cloud
cores, is difficult because it involves tracing rays that get absorbed,
emitted and scattered by the constituents of the dust and gas. Fur-
ther, it requires knowledge of the dust chemistry. Since we follow
the collapse of molecular clouds that contain ∼ 20–50 cores, and
considering the fact that we perform multiple simulations for better
statistics, solving the energy conservation and RT equations is im-
practical. Therefore, to close the system of MHD equations, we use
a polytropic equation of state for the gas pressure 𝑃 = 𝑃EOS, with

𝑃EOS = 𝑐2
𝑠 𝜌

𝛾 . (5)

Using the ideal gas EOS, the respective temperature is given by

𝑇EOS =
𝜇 𝑚H

𝑘B 𝜌
𝑃EOS =

𝜇 𝑚H

𝑘B
𝑐2
𝑠 𝜌

𝛾−1 . (6)

Here 𝑐2
𝑠 = (0.2 km/s)2 is the square of the sound speed in the

isothermal regime (𝛾 = 1) for solar-metallicity, molecular gas at 10 K,
and 𝜇 = 2.35 is the mean molecular weight (in units of hydrogen atom
mass 𝑚H). The polytropic exponent is then set differently depending
on the density of the gas, as

𝛾 =





1 for 𝜌 ≤ 𝜌1 ≡ 2.50 × 10−16 g cm−3,

1.1 for 𝜌1 < 𝜌 ≤ 𝜌2 ≡ 3.84 × 10−13 g cm−3,

1.4 for 𝜌2 < 𝜌 ≤ 𝜌3 ≡ 3.84 × 10−8 g cm−3,

1.1 for 𝜌3 < 𝜌 ≤ 𝜌4 ≡ 3.84 × 10−3 g cm−3,

5/3 for 𝜌 > 𝜌4.

(7)

The value of the polytropic exponent 𝛾 varies with the local density
of the gas, and is based on previous detailed radiation-hydrodynamic
simulations of protostar formation. It covers the phases of isothermal
collapse, adiabatic heating during the formation of the first and sec-
ond core and the impacts of H2 dissociation in the second collapse
(Larson 1969; Yorke et al. 1993; Masunaga & Inutsuka 2000; Offner
et al. 2009). However, it does not account for the increase in thermal
pressure due to protostellar heating, which we discuss next.

2.5 Stellar feedback

2.5.1 Radiative heating

Stellar heating feedback influences the number and mass distribution
of stars formed in the collapse of molecular clouds (Bate 2009b;
Krumholz et al. 2011; Guszejnov et al. 2016; Federrath et al. 2017b;
Mathew & Federrath 2020; Hennebelle et al. 2020). The high lu-
minosities of young stars suppress fragmentation, allowing the stars
to accrete more gas and grow in mass. Therefore, it is essential to
account for the change in gas temperature due to the stellar radiative
heating. But as mentioned above, solving the RT equation involving
every point in space and for every timestep is computationally expen-
sive, and therefore including it for parameter studies in large-scale
simulations is often not possible. To include protostellar heating in
our simulations, we use the polar stellar heating model implemented
in Mathew & Federrath (2020). The model takes into account the ex-
istence of optically-thick accretion discs around the new-born stars
and the resulting shielding of stellar radiation by dust. Based on the
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works of Pascucci et al. (2004) and Buntemeyer et al. (2016), it as-
sumes a disc density distribution around each sink particle (protostar)
that is dependent on the radial distance 𝑟 and the angle 𝜃 subtended
from the sink particle’s angular momentum axis. The stellar radiant
power is distributed on the grid cells surrounding the sink particle
based on this dust/disc density distribution.

Dust particles absorb the radiation from the central star with the
rate of energy absorption given by

𝑄(𝑟, 𝜃) = 𝜒
𝐿★

4𝜋𝑟2
exp (−𝜏(𝑟, 𝜃)) , (8)

where 𝜒 is the absorption coefficient. The star’s luminosity (𝐿★),
which includes both the accretion and intrinsic luminosities, is cal-
culated by employing the protostellar evolution model by Offner et al.
(2009). The total optical depth (𝜏) in any direction given by 𝜃 is

𝜏 =

∫
𝜅 𝜌(𝑟, 𝜃) d𝑟, (9)

where 𝜅 is the grey opacity and 𝜌(𝑟, 𝜃) is the assumed dust/disc
density distribution (see Mathew & Federrath 2020, for a description
of the analytical model of the disc density distribution used here).
The radiation is attenuated in the directions of the disc because of the
absorption by dust grains, and therefore the main heating is confined
to the polar directions.

At the equilibrium temperature, the amount of energy emitted by
the dust grains will be equal to the amount they absorb, i.e., 𝑄.
Therefore we can write

𝜎SB

𝜋
𝜒𝑇4

heat
=

𝑄

4𝜋
, (10)

where 𝜎SB is the Stefan-Boltzmann constant and 𝑇heat is the tem-
perature due to stellar radiative heating. Here we have neglected the
reprocessed radiation field.

To account for the change in thermal pressure due to stellar radia-
tive feedback, we add the space-dependent pressure term obtained
from the polar stellar heating module to the pressure computed from
the polytropic equation of state (see Guszejnov et al. 2016, 2018a;
Federrath et al. 2017b). Thus, the final gas pressure is

𝑃 =

[
𝑃4

EOS + 𝑃4
heat

]1/4

=

[

𝑃4
EOS +

(
𝑘𝐵 𝜌

𝜇 𝑚H

)4

𝑇4
heat

]1/4

, (11)

which is imposed in the MHD momentum equation, Eq. (2).

2.5.2 Jets/Outflows

The bipolar mechanical feedback from stars consists of two compo-
nents — the highly collimated fast stream of gas, called jets, that drill
through the cloud, and the wide-angle low-speed molecular outflows
(Frank et al. 2014). We employ the subgrid-scale (SGS) outflow
model of Federrath et al. (2014) for launching this jet/outflow com-
bination in our simulations. It captures the fast jet component and
includes angular momentum transfer.

The SGS module imparts momentum uniformly to the grid cells
within a confined volume defined by two spherical sections (cones)
around the sink particle. The cones open towards the opposite poles of
the sink particle and are characterised by an opening angle 𝜃out = 30◦

measured from the angular momentum axis. We set the radial extent
equal to 𝑟out = 16Δ𝑥 measured from the position of the sink particle
(tip of the cone), where Δ𝑥 is the cell size on the highest level of
refinement, as tested and recommended in Federrath et al. (2014).

The model uses radial and angular smoothing functions to prevent
numerical artifacts at the interfaces. The momentum injected into
each of the cones is

Pout = ±(1/2) 𝑀out Vout, (12)

where 𝑀out is the ejected mass, which is equal to the fraction 𝑓m
of the mass accreted by the sink particle in a timestep Δ𝑡, i.e.,
𝑀out = 𝑓m ¤𝑀acc Δ𝑡. We use 𝑓m = 0.3 (Federrath et al. 2014), which
is consistent with observations (Hartmann & Calvet 1995; Cabrit
et al. 2007; Bacciotti et al. 2011), theoretical models of the out-
flow mechanism (Blandford & Payne 1982; Shu et al. 1988; Pudritz
et al. 2007) and the values derived from previous numerical simu-
lations (Hennebelle & Fromang 2008; Seifried et al. 2012; Fendt &
Sheikhnezami 2013)

Vout is set to the Kepler speed near the surface of the protostar,
such that

|Vout | = 100 km s−1

(
𝑀sink

0.5 M⊙

)1/2

, (13)

where 𝑀sink is the mass of the sink particle and 100 km s−1 is the typ-
ical jet speed (and Kepler speed) for a protostar of mass 𝑀 = 0.5 M⊙

at a radius of 𝑅 = 10 R⊙ . Vout consists of a slow component with a
speed of 0.25 |Vout | and a fast component with speed of 0.75 |Vout |.
The high-speed component contributes to the momentum injection
in the cones only within an opening angle of 5◦. By using such a
velocity profile, the model distinguishes the faster jet and the slower
molecular outflow components. A fraction 𝑓a of the accreted angular
momentum is removed from the sink particle and re-introduced to
the two outflow/jet components. We use the default value of 𝑓a = 0.9

in the SGS model, which is based on the observations in Bacciotti
et al. (2002) and numerical works, e.g., Banerjee & Pudritz (2006)
and Hennebelle & Fromang (2008).

The inserted momentum into the two cones is effectively carried
away to larger scales by the MHD code. The SGS outflow model
reproduces converged large-scale outflow properties for the mass,
linear momentum, angular momentum and the outflow speed, almost
independent of the resolution. We refer the reader to Federrath et al.
(2014) and references therein for a detailed description of the SGS
model and justification of the parameter choices.

2.6 Initial conditions and simulation parameters

The computational domain of the simulations is a three-dimensional
triple-periodic box with side length 𝐿 = 2 pc. The maximum re-
finement level provides a maximum effective grid resolution of
𝑁3

eff, res
= 40963 cells or a minimum cell size of Δ𝑥cell = 100 AU.

The initial gas density is uniform with 𝜌◦ = 6.56 × 10−21 g cm−3,
which gives a total cloud mass of 𝑀cl = 775 M⊙ and a mean free-fall
time of 𝑡ff = 0.82 Myr. The turbulence driving module stirs the gas
in the box initially in the absence of self-gravity. The induced tur-
bulence creates cloud-typical structures and density contrasts in the
form of filaments and clumps. The high-density regions within these
structures are potential sites of star formation (Arzoumanian et al.
2011; Schneider et al. 2013; André et al. 2014). The amplitude of the
turbulence driving is set by the velocity dispersion 𝜎𝑣 = 1.0 km s−1

and the initially isothermal sound speed 𝑐𝑠 = 0.2 km s−1, which
gives a steady-state sonic Mach number of M = 𝜎𝑣/𝑐𝑠 = 5.0. The
magnetic field, which is uniform initially with 𝐵 = 10−5 G along
the z-axis of the computational box, is later modified due to the
compression, tangling and folding by the turbulence, approximating
the morphology of magnetic fields in real molecular clouds (Feder-
rath 2016). The initial virial parameter 𝛼vir = 2𝐸kin/𝐸grav = 0.5 is
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in the range of observed values (Falgarone et al. 1992; Kauffmann
et al. 2013; Hernandez & Tan 2015). After two turbulent crossing
times, 2𝑡turb = 𝐿/(M𝑐𝑠) = 2 Myr, a fully-developed turbulent state
is reached , which is when we turn on self-gravity and allow for
sink particle creation, which is the typical procedure for this type of
cluster-formation experiments. We study the temporal evolution of
different dynamical quantities and statistical properties of the form-
ing star clusters from this point in time, which we define as 𝑡 = 0, i.e.,
when self-gravity is activated. This method is similar to that used in
earlier works (e.g., Federrath & Klessen 2012; Krumholz et al. 2012;
Padoan et al. 2016; Guszejnov et al. 2018b).

3 RESULTS

We run 10 simulations of star cluster formation with different tur-
bulence realisations (T1–T10), incorporating gravity, turbulence,
magnetic fields, stellar heating and outflow feedback (Model OUT-
FLOW). We evolve the simulations till 5% of the total mass of the
cloud has formed stars, i.e., the star formation efficiency SFE = 5%.
The objective of performing multiple simulations is to produce a suf-
ficient number of stars to obtain statistically conclusive results. Since
we include a set of physical mechanisms (gravity, turbulence, mag-
netic fields, and both mechanical and radiation feedback) governing
the star formation process, we are in a good position to compare the
statistical properties like the IMF and multiplicity with observations
and theory. We begin by examining how the evolution of the cloud is
influenced by the outflow feedback.

We investigate the impact of jets/outflows on the number and dis-
tribution of the stars formed and the star formation rate (SFR) by
comparing the simulations of the OUTFLOW model with another
set of 10 simulations with no outflow feedback (Model NOWIND).
The simulation setup and turbulence seeds used in the NOWIND sim-
ulations are the same as in the OUTFLOW simulations. Fig. 1 shows
the mass-weighted column density (integral of the number density
weighted by mass along the line-of-sight) of both the models for one
particular turbulence realisation (simulation T1). The NOWIND and
OUTFLOW models form 21 and 48 sink particles, respectively. The
NOWIND simulation reaches an SFE = 5% in 0.58 Myr, while the
OUTFLOW simulation takes 0.70 Myr to reach the same SFE. It is
evident from the temperature maps (bottom panel in Fig. 1) that the
gas temperature around the sink particles in the NOWIND model is
higher than that in the OUTFLOW simulation.

The OUTFLOW model generates a higher number of stars as com-
pared to the NOWIND model at the same SFE of 5% because (1)
the molecular cloud in the OUTFLOW model has evolved further in
time, and therefore some stars that form independent of the presence
of the outflow feedback have not yet emerged in the NOWIND case,
(2) the outflows from protostellar objects can inject enough momen-
tum into the cloud to drive small-scale turbulence and perturb the
accretion flow, allowing the formation of more stars (Wang et al.
2010; Federrath et al. 2014), and (3) they indirectly lower the effi-
ciency of stellar heating. The ejection of the accreted material from

1 We define the mass-weighted projection of the gas number density as∫
𝜌2 𝑑𝑧 /

∫
𝜌𝑑𝑧 and the mass-weighted projection of the temperature as∫

𝜌𝑇 𝑑𝑧 /
∫
𝜌𝑑𝑧, where the projection is taken along the 𝑧-direction. All fig-

ures in this paper showing density and temperature maps are mass-weighted.
The aim of the mass-weighting is to enable better visualisation of the mor-
phological features, i.e., to bring out the densest structures. A version of Fig. 2
without mass-weighting is shown in Fig. A1.

the star+disc system and the sweeping away of a part of the surround-
ing envelope by disc and/or stellar winds reduce the mass of the stars
and therefore their luminosity (Hansen et al. 2012; Krumholz et al.
2012). Thus, the ability of the stellar heating feedback to suppress
fragmentation is significantly reduced when jet/outflow feedback is
included.

The influence of the outflows in promoting star formation by redi-
recting accretion flows and in reducing the stellar heating efficiency
can be inferred from Fig. 2. The figure shows the gas density struc-
ture and the temperature distribution of the region within the marked
squares in Fig. 1 for each of the models at the same simulation
time. At the time the OUTFLOW model has reached SFE = 5%,
the NOWIND model has already reached SFE = 11%. Even in this
small region of size 0.6 pc, the OUTFLOW model has almost double
the number of stars. Since the considered region of both the models
are now viewed at the same simulation time 𝑡 = 0.69 Myr, we can
say with confidence that the increase in the number of sinks with
the inclusion of outflows is not just because of the slow star forma-
tion rate, i.e., the OUTFLOW model being more evolved than the
NOWIND model when considered at the same SFE (see also panel
(c) in Fig. 4). The stars in the OUTFLOW model are relatively lower
in mass, and also the main filament in which most of the stars form in
this region breaks into several sub-fragments due to the action of the
jets/outflows. By contrast, the NOWIND model preserves the main
filament structure with significantly less fragmentation, and the mat-
ter within the main filament is accreted by the existing stars. Clearly,
the stellar heating is more efficient in the NOWIND model. The gas
temperature in the immediate regions around the high-mass stars in
the NOWIND simulation reach a few hundred Kelvin, which leads
to suppression of fragmentation.

Fig. 3 presents the time evolution of a 0.4 pc sub-region in the
cloud of NOWIND and OUTFLOW simulations with turbulence re-
alisation T2. At 𝑡 = 0.25 Myr = 0.31 𝑡ff (first panel), there are four
over-dense regions close to the already formed sink particle, marked
as o1, o2, o3 and o4. The sink particle in the OUTFLOW case is
lower in mass than the one in the NOWIND case because of the mass
loss through jet/outflows. The outflow axis of the sink is parallel to
the filament, which can be inferred from the velocity field lines and
the orientation of the heating zones around the sink particle. The
radiative flux is primarily in the directions of the disc/outflow axis,
because of the extinction by dust particles in the disc. It can be ob-
served from the snapshots that the sink particles that formed in o2
and o1 in the OUTFLOW model at 𝑡 = 0.28 Myr and 𝑡 = 0.32 Myr,
respectively, only form much later in the NOWIND case. This sug-
gests that protostellar outflows can trigger local star formation in
nearby cores. Core o4 harbours a binary in both models, for which
both components of the binary formed around the same time. In
the NOWIND simulation, o3 does not form a star and all the gas is
completely accreted by the high-mass sink particle. The higher gas
temperature in o3 due to the higher luminosity of the massive sink
particle in the NOWIND model has likely prevented the collapse of
o3. However, in the OUTFLOW case, a sink particle does form in
o3, which later goes into a close binary orbit with the massive sink
particle.

We plot the evolution of the average number of sink particles
and the average stellar mass with SFE and time in Fig. 4. We find
that, at the same SFE, the ratio of the number of sinks formed in
the OUTFLOW model to that in the NOWIND model is 2.1 ± 0.1

averaged over the SFE range 1–5%. Li et al. (2010) also find that
their simulation including outflow feedback has twice as many stars
as their simulation with no outflows when compared at the same SFE.
When compared at the same time, the number of sink particles in
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Table 1. Key simulation results.

Model SFRff [%] 𝑁Total sinks 𝑀median [M⊙ ] 𝑀 avg [M⊙ ] Γ SSF 𝑗mean [cm2 s−1 ]

(1) (2) (3) (4) (5) (6) (7) (8)

1. NOWIND 15 ± 3 212 1.0 ± 0.3 1.9 ± 0.3 1.3 ± 0.2 0.65 1.2 × 1020

2. OUTFLOW 7 ± 2 449 0.5 ± 0.1 0.9 ± 0.1 1.5 ± 0.3 0.66 1.5 × 1019

Notes. Ten simulations with different turbulence realisations (T1–T10) are run for both the NOWIND and OUTFLOW models. The value of SFRff quoted in
the table is time averaged, while all the other quantities are calculated at SFE = 5%. The resolution level, cloud properties and turbulence setup are the same in
both models and the only difference is that protostellar outflows are absent in the NOWIND simulations. Main simulation parameters: computational box size:
𝐿 = 2 pc, maximum effective grid resolution: 𝑁 3

eff, res
= 40963 cells, minimum cell size: Δ𝑥cell = 100 AU, sink particle threshold density:

𝜌sink = 3.8 × 10−16 g cm−3, uniform initial gas density: 𝜌◦ = 6.56 × 10−21 g cm−3, total cloud mass: 𝑀cl = 775 M⊙ , uniform initial magnetic field: 𝐵 = 10−5 G

(along the z-axis), turbulence driving parameter: 𝜁 = 0.5, velocity dispersion on the driving scale of the turbulence: 𝜎𝑣 = 1.0 km s−1.

Figure 1. The first column presents the mass-weighted1 projection maps of the gas number density (top) and temperature (bottom) of the NOWIND model and
the second column shows the same for the OUTFLOW model at SFE = 5%. The circular markers in each panel represent the position of the sink particles formed
in the simulations. The colour and size of the markers are scaled by the mass of the sink particles (see right-hand colour scale). The size of the markers should
not be confused with the numerical size of the sink particles, which is constant with a radius of 𝑟sink = 250 AU. The OUTFLOW model produces 48 sinks
compared with 21 sinks in the NOWIND model. The SFR during the main star formation stages is reduced by a factor ∼ 2 in the OUTFLOW model compared
to the NOWIND case (see Tab. 1), and there is less heating in the OUTFLOW model (compare the bottom panels).

MNRAS 000, 1–19 (2021)



The IMF and multiplicity of stars 7

Figure 2. Zoom-in images of the region within the squares in Fig. 1 showing the contrast in the morphology and temperature structure between the NOWIND
(left) and OUTFLOW (right) models at the same simulation time. The arrows represent the velocity field lines of the gas.

the OUTFLOW model is higher by a factor of 1.3 ± 0.1 in the range
0.1 < 𝑡elap/𝑡ff < 0.3. The momentum injection by the outflows
and the reduced heating effect are responsible for the difference in
the number of sink particles between the models when compared
at the same time. Federrath et al. (2014) detect that the inclusion
of outflow feedback in simulations increases the number of stars by
a factor of ∼ 1.5 compared to simulations with no outflows at the
same time. The simulation model in Federrath et al. (2014) does
not include the stellar radiative heating and therefore the momentum
injection by the outflows is solely responsible for the increase in
the number of stars in their study. This, along with the fact that
they also observe an increase by a similar factor as in our case,
suggests that, although the reduced heating effect is important, the
momentum injection by outflows plays a more significant role in
increasing fragmentation. The average sink particle mass (𝑀avg) in
the NOWIND case increases with the evolution of the cloud, while it
is relatively constant with a value of 0.7±0.1 M⊙ in the OUTFLOW
case. Here the measurement is made by taking the average of 𝑀avg

over the SFE range 1–5% with the error bars corresponding to the
standard deviation over this SFE range. The overbar in 𝑀avg denotes
the average over the 10 simulations. At the same SFE, 𝑀avg in the
OUTFLOW simulations is lower than in the NOWIND simulations

by a factor of 2.2 ± 0.2, reflecting the fact that the number of stars
increased by a similar factor at the same SFE. When compared at
the same time, 𝑀avg in the OUTFLOW simulations is lower by a
factor of 2.6 ± 0.2. Fig. 5 presents the average SFE and average
star formation rate per free-fall time (SFRff in %) (Krumholz &
McKee 2005; Federrath & Klessen 2012) as functions of time. We
observe that the star formation rate per free-fall time averaged over
10 simulations, SFRff (%), increases with time, but the progression
is slower in the OUTFLOW model, because of self-regulation by
the outflows. SFRff in the NOWIND and OUTFLOW simulations
are 15 ± 3% and 7 ± 2%, respectively, in the range 0.05 < 𝑡elap/𝑡ff
< 0.25 𝑡ff (see Tab. 1). Therefore, the stellar outflows reduce the
SFR by a factor of ∼ 2. Our results are consistent with Federrath
et al. (2014) who also observed a reduction in the SFR by the same
factor with the inclusion of outflow feedback. As mentioned above,
one major difference between our model and that of Federrath et al.
(2014) is that stellar heating was missing in the latter. However,
the SFR is relatively insensitive to radiative feedback (Mathew &
Federrath 2020). Although our value of SFRff (OUTFLOW case)
is higher than the average value in the Milky Way (∼ 1–2% per
free-fall time) (Krumholz & Tan 2007; Khullar et al. 2019), it is still
within the dispersion of SFRff obtained in observational surveys and
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Figure 3. Zoom-in time snapshots of a filament in the T2 simulation of the NOWIND (rows 1 and 2) and the OUTFLOW (rows 3 and 4) models showing the
evolution of over-densities within the filament and comparing the evolution of the formation (or absence thereof) of stars in locations o1, o2, o3, and o4, as
labelled in the first panel of each simulation set.

from theoretical predictions (e.g., Krumholz & McKee 2005; Evans
et al. 2009; Hennebelle & Chabrier 2011; Murray 2011; Federrath &
Klessen 2012; Vutisalchavakul et al. 2016; Lee et al. 2016).

Finally, we mention that the properties of the turbulence can sig-
nificantly affect the SFR (Federrath & Klessen 2012) and the IMF
(Schmidt et al. 2010; Nam et al. 2021). For example, the effect of the
turbulence driving and Mach number on the SFR and IMF with the
physics included here will be the main focus of a follow-up study.

3.1 Sink particle mass distributions

The mass distribution of stars formed in the 10 simulations of each
model is presented in Fig. 6. With the introduction of the outflow
feedback, the sink mass distribution (SMD) shifts to lower masses,
with the median and average masses reduced by factors of 2.0 and 2.1,
respectively. However, putting aside the shift in mass, the OUTFLOW
SMD has almost the same shape as that of the NOWIND SMD. This
means that outflows do not seem to significantly change the basic
shape (or functional form) of the IMF, and thus, the same basic
mechanism(s) that set the high-mass slope of the IMF and a turnover
at intermediate masses seem to be at play regardless of whether
jet/outflow feedback is included or not. A log-normal function with a

standard deviation for the Chabrier IMF fits both models well at the
low-mass end, with a peak at 1.0 M⊙ for the NOWIND distribution
and 0.5 M⊙ for the OUTFLOW SMD. While the power-law fit to the
high-mass end of the OUTFLOW SMD (Γ = 1.5 ± 0.3) is slightly
steeper than the fit to the NOWIND SMD (Γ = 1.3 ± 0.2), they are
statistically identical within the 1-sigma uncertainties.

The parallelism between the two distributions resembles the ob-
served correlation between the observed core mass function (CMF)
and the stellar IMF. The existence of a correspondence between the
CMF and the IMF implies that a star’s mass is decided at the core
level. The recognition of dense cores as the direct progenitors of
stellar objects allows us to explain why the overall form of the distri-
bution did not change with the inclusion of mechanical feedback. Su-
personic turbulence creates density enhancements of varying sizes,
but not all of these over-densities form stars. Only the ones that ex-
ceed the threshold mass for collapse will form stars. Outflows do not
create new density enhancements; instead, they increase the chance
that a star forms in an over-density generated by gravo-turbulent frag-
mentation. This can be seen in Fig. 3, where the extra sink particle
forms in an over-density that pre-existed (see Fig. A2 of Appendix A
for another example). It should then naturally follow that the mass
distribution of extra sinks in the OUTFLOW SMD also reflects the

MNRAS 000, 1–19 (2021)



The IMF and multiplicity of stars 9

0

10

20

30

40

N
sin

ks

(a)(a)NOWIND
OUTFLOW

(c)(c)NOWIND
OUTFLOW

0 1 2 3 4
SFE (%)

0.0

0.5

1.0

1.5

2.0

M
av

g (
M

)

(b)(b)NOWIND
OUTFLOW

0.00 0.05 0.10 0.15 0.20 0.25 0.30
telap /tff

(d)(d)NOWIND
OUTFLOW

Figure 4. The left panels show (a) the average number of sink particles formed and (b) the average stellar mass as a function of the star formation efficiency
(SFE in %). The right panels (c) and (d) indicate the average number of sink particles formed and the average stellar mass, respectively, as a function of time.
All quantities shown here for both the models correspond to the average values obtained from 10 simulations (T0–T10), and the coloured bands represent the
standard deviation over the set of these 10 simulations. Here 𝑡elap/𝑡ff is the elapsed time from the formation of the first sink particle in units of the free-fall time
and is distinguished from the time 𝑡 in the above column density maps, which is the time measured from the moment self-gravity was turned on.

distribution of over-density masses, i.e., the typical mass of the extra
sinks should conform to the typical over-density mass with an effi-
ciency factor decided by the mass loss via winds and entrainment of
the envelope material by jets.

Observational surveys of dense cores find high-mass CMF slopes
of Γ between 1.0 and 1.6 (Motte et al. 1998; Testi & Sargent 1998;
Johnstone et al. 2000; Nutter & Ward-Thompson 2007; Alves et al.
2007), similar to the Salpeter slope of the IMF, but the range of
CMF slopes does not impose strong constraints on the similarity of
the CMF and the IMF. Nevertheless, we find that the introduction of
the outflow feedback shifts the IMF to lower masses, but virtually
sustaining its overall shape. Within the limit of these arguments, the
present set of simulations suggests that jet/outflow feedback can be
responsible for the observed correlation and shift between the CMF
and the IMF (Alves et al. 2007; Clark et al. 2007; Smith et al. 2008).

4 COMPARISON WITH OBSERVATIONAL DATA AND

THEORETICAL IMF MODELS

4.1 Comparisons with observed IMFs

Fig. 7 compares the distribution of the sink masses formed in the
10 simulations of each model with various fits to the observed IMF
studied in the literature since Salpeter (1955) (dash-dotted line). We
compare the SMDs with the system IMFs rather than the individual-
star IMFs, because we do not resolve all the low-order multiple
systems. The Chabrier (2005) system IMF is represented by a short-
dotted curve. The Parravano et al. (2011) IMF (long-dotted line) is
an analytical model defined by multiple parameters based on obser-
vational constraints, e.g., the slope of the high-mass end of the IMF
and the ratio of the number of brown dwarfs (BDs) to the number
of stars (see also Paresce & De Marchi 2000). This function predicts
a higher fraction of BDs below 0.03 M⊙ than the Chabrier (2005)
IMF. Da Rio et al. (2012) (solid line) measured the IMF in the Orion
Nebula Cluster (ONC) and observed a steep decline in the brown
dwarf regime. Their census was focused on the low-mass range and
they successfully fit a log-normal function to the obtained mass dis-
tribution. We use the best-fit parameters, namely the characteristic
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Figure 5. The top and bottom panels show the time evolution of the av-
erage SFE and average star formation rate per free-fall time (SFRff in %),
respectively.

mass 𝑚𝑐 and the standard deviation 𝜎 (log𝑚), from table 3 of Da
Rio et al. (2012) to reproduce the log-normal fit to the mass distri-
bution they derived by assuming a Baraffe et al. (1998) evolutionary
model. We then combine it with a Salpeter-like power-law tail, simi-
lar to what was done in Krumholz et al. (2012). Kroupa et al. (2013)
argue that stars and brown dwarfs (BDs) must be represented by
separate mass functions because the hypothesis that BDs form in
the same manner as stars contradicts the observed binary properties
of BDs. The Kroupa et al. (2013) stellar system IMF (taken from
Fig. 25 in Kroupa et al. 2013) and BD IMF (short-dashed and long-
dashed lines) result from random pairing of companions out of the
canonical IMF (Kroupa 2001) by assuming initial binary fractions of
100% and 0%, respectively. Damian et al. (2021) (dash-dot-dotted
line) studied the role of environmental conditions on the form of the
IMF by analysing the mass distribution of nine young clusters that
differ in terms of the stellar density, number of massive stars and
the Galactocentric distance. They observe no significant disparity
between the mass distributions and find that the low-mass end of the
IMF can be fitted by a log-normal distribution peaked at 0.32± 0.02

and 𝜎 = 0.47 ± 0.02 (in logarithmic scale).
The NOWIND SMD (top panel in Fig. 7) peaks at around 1 M⊙

while the the system IMFs of Chabrier (2005) (dotted line) and Da
Rio et al. (2012) (solid line) have peak masses of ∼ 0.25 M⊙ and
0.35 M⊙ , respectively. In contrast, the broad peak of our OUTFLOW
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Figure 6. Comparison between the sink mass distribution of the NOWIND (no
outflow feedback) and OUTFLOW models at SFE = 5%. The data compilation
in each model is acquired from 10 simulations. The histogram with solid edges
and the solid curves correspond to the NOWIND model, while the histogram
with dashed edges and the dashed curves correspond to the OUTFLOW
model. The standard deviation of the lognormal curves are equal to that of
the Chabrier (2005) IMF (𝜎 = 0.55), but the peaks are located at around
the median (mean) mass of the respective SMDs, i.e., at 1.0 (1.9) M⊙ for
NOWIND and 0.5 (0.9) M⊙ for OUTFLOW. 𝑀median and 𝑀 avg are the
median and average sink masses averaged over the 10 simulations at SFE =
5%, where the error bars represent the standard deviation (see Tab. 1).

SMD (bottom panel in Fig. 7) is located at around 0.4–0.6 M⊙ .
Clearly, the introduction of the outflow feedback has resulted in a
mass scale of the sink particles comparable to that of the observa-
tional models, although the peak mass is still higher by a factor of
∼ 2. The slope of the power-law fit to the high-mass end of our SMD
(OUTFLOW; Γ = 1.5 ± 0.3) is slightly steeper than the Salpeter
slope (Γ = 1.35), but is well within the 1𝜎 uncertainties, both from
our fit and from observational estimates (Weisz et al. 2013; Offner
et al. 2014). The median stellar mass of our SMD is 0.5 ± 0.1 M⊙

and the average mass is 0.9 ± 0.1 M⊙ (at SFE = 5%). We also cal-
culate 𝑀50 which is, as defined in Krumholz et al. (2012), the 50th

percentile mass associated with a cumulative mass distribution, i.e.,
the sum of all the stellar masses lower than 𝑀50 is half the total
mass of the distribution. We find 𝑀50 = 1.5 M⊙ which is close to
the value of ∼ 2 M⊙ for the observed IMFs. The ratio of the number
of sink particles with sub-stellar masses (𝑀sink ≤ 0.08 M⊙) to that
of the sink particles with stellar masses (0.15 < 𝑀sink ≤ 1.0 M⊙) is
43/225 = 0.19, which is consistent with observations (where close
binaries are unresolved) that approximately one BD is formed per
every five late-type (sub-solar) stars (Andersen et al. 2006, 2008;
Thies & Kroupa 2007; Parravano et al. 2011; Kroupa et al. 2013).

4.2 Comparisons with gravo-turbulent theoretical models of

the IMF

In Fig. 8, we compare the NOWIND (top panel) and OUTFLOW
(bottom panel) SMDs with the mass function (MF) predicted by dif-
ferent theoretical models of the CMF/IMF for parameters relevant to
our simulation setup, e.g., the Mach number M = 5 and the turbu-
lence driving parameter 𝜁 = 0.5. The resulting functions from the
gravo-turbulent theories (Padoan & Nordlund 2002; Hennebelle &
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Figure 7. Top panel: Comparison between the sink mass distribution of the
NOWIND model at SFE = 5% with various observational IMFs. Bottom
panel: Same as the top panel, but for the OUTFLOW data. The plotted curves
are the system IMF models, based on observations, by Salpeter (1955) (dash-
dotted), Chabrier (2005) (short-dotted), Parravano et al. (2011) (long-dotted),
Da Rio et al. (2012) (solid), Kroupa et al. (2013) for brown dwarfs (long-
dashed) and stars (short-dashed), and Damian et al. (2021) (dash-dot-dotted).

Chabrier 2008; Hopkins 2012) are analogous to the mass distribu-
tion of cores (CMF) and the models are generally multiplied by a
core-to-star efficiency factor 𝜖 (primarily to account for the impact
of outflows) to facilitate comparison with the observational IMFs
or the MF obtained in numerical studies. Therefore the compari-
son between the NOWIND SMD and the theoretical MFs is almost
equivalent to a comparison between the OUTFLOW SMD and the
theoretical MFs multiplied by an efficiency factor (𝜖 ∼ 0.5 in our
study).

4.2.1 The Padoan & Nordlund (2002) model

According to the Padoan & Nordlund (2002) model, star-forming
cores are the densest regions in the shocked layers of gas formed
by supersonic turbulence. The model approximates the size of cores
as the thickness of post-shock gas which in turn depends on the
Mach number through the isothermal shock jump conditions. The
scale dependence of Mach number (Larson 1981) and the connection
between the Larson relation and the velocity power spectrum result
in a distribution of core masses for which the slope of the high-mass
tail can be calculated from the velocity power spectral index 𝛽 in
𝑃(𝑘) ∝ 𝑘−𝛽 (Nam et al. 2021). The mass distribution of unstable
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Figure 8. Top panel: Comparison between the sink mass distribution of
the NOWIND model at SFE = 5% with various theoretical models of the
CMF/IMFs (M = 5, 𝜁 = 0.5, 𝛽 = 2, 𝑀J,0 ≈ 2). The curves corre-
spond to Padoan & Nordlund (2002) (dash-dotted), Bate & Bonnell (2005)
(solid), Hennebelle & Chabrier (2008) (dotted), and Hopkins (2012) (dashed)
CMF/IMFs. The Hopkins (2012) model has been shifted to lower masses by
a factor of 2 such that the position of their peak coincides with the peak mass
bin of the SMD. Bottom panel: Same as the top panel, but for the OUTFLOW
simulations. Here the gravo-turbulent theoretical models (Padoan & Nord-
lund 2002; Hennebelle & Chabrier 2008; Hopkins 2012) have been shifted to
lower masses by a factor of 2 from their positions in the top panel in order to
account for the effect of outflows (core-to-star efficiency 𝜖 = 0.5).

cores is given by

𝑁 (𝑀) 𝑑log𝑀 ∝ 𝑀−Γ

[∫ 𝑀

0
𝑝(𝑀J) d𝑀J

]
𝑑log𝑀, (14)

where 𝑝(𝑀J) d𝑀J is the distribution of the Jeans mass and the in-
tegral gives the fraction of cores of mass 𝑀 that are Jeans unstable.
For 𝛽 = 2, which is the typical one-dimensional power spectral index
found for molecular clouds in observations and simulations (Os-
senkopf & Mac Low 2002; Heyer & Brunt 2004; Roman-Duval et al.
2011; Federrath 2013; Federrath et al. 2021), the high-mass slope of
the IMF based on the MHD shock jump conditions is predicted to be
(Padoan & Nordlund 2002)

Γ = 3/(4 − 𝛽) = 1.5. (15)

The mass distribution at low masses is decided by the Jeans mass
distribution, which in turn is determined by the probability density
function (PDF) of the turbulent gas, which is approximately log-
normal with a standard deviation defined by 𝜎2

s = ln(1 + 𝑏2M2)

(see Padoan et al. 1997; Federrath et al. 2008). The peak of the
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distribution is influenced by the scale of the mean thermal Jeans
mass 𝑀J,0, which is ∼ 2–3 M⊙ in our simulations.

The Padoan & Nordlund (2002) model is represented by dash-
dotted curves in both the top and bottom panels of Fig. 8. The mass
distribution has been reproduced by using M = 5, 𝑏 = 0.4, 𝛽 = 2

and 𝑀J,0 = 2 as the input parameters for their model. In the bottom
panel, the theoretical models have been shifted to lower masses by a
factor of 2 from their positions in the top panel in order to account
for the impact of the outflow feedback.

4.2.2 The Hennebelle & Chabrier (2008) model

Hennebelle & Chabrier (2008) apply the Press-Schechter formal-
ism (Press & Schechter 1974) to study condensations in molecular
clouds. In this context, the over-densities or density contrasts are
created by supersonic turbulent motions. The spectrum of collapsing
cores is obtained by statistically calculating the mass fraction of self-
gravitating regions assuming a Gaussian field of density fluctuations.
These regions are identified based on whether their mass exceeds the
Jeans mass, also taking into account the support by turbulent pres-
sure. The derived analytical function for the CMF/IMF consists of a
log-normal component and a power-law component. The mass distri-
bution has a power-law nature in the high-mass regime, but gradually
flattens and then declines sharply at 𝑀 ≪ (1+𝑏2M2)−3/2 𝑀J,0. Us-
ing their expression for the slope of the power-law mass spectrum
based on the turbulence power spectral index 𝛽 = 2, the prediction
for the high-mass slope of the IMF is (Hennebelle & Chabrier 2008)

Γ ≈ (𝛽 + 3)/2𝛽 = 1.25. (16)

We mention that, according to Hennebelle & Chabrier (2013), the
high-mass slope becomes slightly steeper if the time-dependence is
taken into account in the derivation of the IMF. We plot the Hen-
nebelle & Chabrier (2008) CMF/IMF by using Eq. 44 in Hennebelle
& Chabrier (2008) with input parameters as M = 5, 𝑏 = 0.4, 𝛽 = 2,
𝑀J,0 = 2 and M∗ = 1.4, which approximately represent our simu-
lation configuration. The effective Mach number M∗ corresponds to
the velocity dispersion on the scale of the mean Jeans length. The
model is depicted by dotted curves in Fig. 8.

4.2.3 The Hopkins (2012) model

Hopkins (2012) employ the excursion set theory (Bond et al. 1991)
based on the principle of random walks to obtain the mass spectrum
of cores (last crossing distribution) and giant molecular clouds (first
crossing distribution). An important signature of the model is that,
for a Gaussian distribution of density contrasts, the density variance
at any given scale is not assumed but is inferred from the ISM
properties. The form of the MF strongly depends on the Mach number
at the injection scale of turbulent energy, characterised by the Mach
number Mℎ on the galactic scale-height. Further, the theory resolves
the ‘cloud-in-cloud’problem, i.e., the over-counting associated with
a structure embedded in another structure of a larger scale. The
MF transitions from a power law to a log-normal behaviour at the
turnover mass 𝑀sonic, which is defined by the sonic scale 𝑅sonic, i.e.,
the scale at which the turbulent flow becomes subsonic (Federrath
et al. 2021). We use the Python code developed by Nam et al. (2021) to
reproduce the Hopkins (2012) mass function (dashed line in Fig. 8).
We point out that here we define Mℎ = 5, which is the Mach
number corresponding to the velocity dispersion on the driving scale
of the turbulence (𝐿/2) in the simulations. Our simulations do not

have a characteristic scale height because of the periodic boundary
conditions. Nam et al. (2021) show that such an ambiguity in the
choice of Mℎ can significantly affect the results, particularly, the
shape of the IMF as predicted in the Hopkins (2012) model.

The mass functions of the above three theoretical models matches
considerably well with our IMF in the high-mass regime and down
to the low-mass range, but falls off exponentially towards the very
low-mass range, faster than our SMD, i.e., the models do not predict
any brown dwarfs based on the input parameters relevant to our
simulations.

4.3 Formation of sub-stellar objects

For the cloud properties adopted in our simulations, i.e., M = 5,
𝜁 = 0.5, 𝑇 = 10 K, 𝑛 = 𝜌◦/(2.35𝑚H) = 1.7 × 103 cm−3, the three
theoretical models of the IMF introduced above predict very few
dense cores small enough to produce BDs (Padoan & Nordlund
2004; Hennebelle & Chabrier 2008, 2009). In fact, we rarely observe
sub-stellar objects forming in such small, marginally isolated over-
densities in our simulations. Some of our very low-mass (VLM)
sink particles (< 0.1 M⊙) were the ones that were ejected from high-
order systems, which truncates their accretion (Reipurth & Clarke
2001; Bate et al. 2002), and some formed as companions to other
sinks that are slightly higher in mass. Most of the VLM objects in
our simulations emerged in small clumps where a cluster of stars
is formed. Fig. 9 presents an example of the formation of VLM
objects in a clump. The first snapshot shows sink particles forming
at different locations of the clump. With time, they grow in mass and
move towards the bottom of the potential well. When the stars are
in close proximity to each other, multiple new objects are formed.
These objects are likely to have formed due to fragmentation of
the extended discs (Bate et al. 2002; Goodwin & Whitworth 2007;
Stamatellos et al. 2007, 2011; Rogers & Wadsley 2012; Thies et al.
2015) of some of the initial sink particles, encouraged by dynamical
interactions, e.g., star-disc or disc-disc collisions (Boffin et al. 1998;
Watkins et al. 1998; Shen et al. 2010). Thies et al. (2010) find that
BDs can form by tidally induced fragmentation in extended discs
due to close encounters with another star. Towards the end of the
simulation, the cluster is dispersed because of gas removal from the
clump. It is evident from the last time snapshot that in the process
of clustering and eventual dispersal, at least 8 VLM objects were
formed.

It is in the clustered regions, similar to the above example, that
the influence of stellar luminosity (including that due to accretion) is
paramount. Despite the fact that the heating of the disc by the central
source is significantly reduced due to the shielding by dust particles,
the disc is within the radius of influence of all the other stars because
of the crowding. The increase in temperature due to the overlap of
heating zones of all the stars would be enough to reduce the degree
of fragmentation (Mathew & Federrath 2020). Although outflows
weaken the overall influence of stellar radiative heating feedback, the
gas temperature would still be high enough to limit fragmentation,
because of the contribution from multiple stars (see more examples
of BD formation in Fig. A3 and Fig. A4 of Appendix A).

Since our results suggest that dynamical interactions are important
for the formation of very low-mass objects, we also compare our
simulation IMFs with the semi-analytical Bate & Bonnell (2005) IMF
model, which proposes that the IMF is controlled by the combination
of accretion (Bonnell et al. 1997, 2001) and stochastic dynamical
ejection (Reipurth & Clarke 2001; Bate et al. 2002).
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Figure 9. Time evolution (panels from left to right) of a clump in the T2 simulation (same simulation as the one considered in Fig. 3, but a different region of
the cloud is studied here) of the OUTFLOW model illustrating the formation of sub-stellar objects.

Table 2. Calculated parameter values for the Bate & Bonnell (2005) IMF model.

Model ¤𝑀 acc [M⊙ yr−1 ] 𝜎acc (log 𝑀 ) 𝑡eject [yr] Tp [yr]

(1) (2) (3) (4) (5)

1. NOWIND 1.6 × 10−5 0.29 1.05 × 105 3.08 × 105

2. OUTFLOW 5.5 × 10−6 0.26 1.33 × 105 4.32 × 105

Notes. The values listed here are averages of the parameter values derived from the 10 simulations (realisations of the turbulence) for each simulation set,
NOWIND and OUTFLOW. The Bate & Bonnell (2005) IMF fits (solid curves in Fig. 8) have been obtained by using these parameter values.

4.3.1 The Bate & Bonnell (2005) model

Bate & Bonnell (2005) IMF model assumes that all stellar and sub-
stellar objects form with similar masses defined by the opacity limit
for fragmentation. These objects then grow in mass at a constant
rate until their accretion is terminated by dynamical ejection from
dense gas region they formed in. The distribution of the accretion rate
among the objects is assumed to be log-normal and the probability

that an object is ejected at time 𝑡 is proportional to exp
(
−𝑡/𝑡eject

)
,

where 𝑡eject is the characteristic ejection time-scale. The Bate & Bon-
nell (2005) fits to our simulation IMFs can be obtained by calculating

the following parameters: the mean accretion rate ¤𝑀acc, the standard
deviation in the accretion rates 𝜎acc (log 𝑀), the characteristic ejec-
tion time 𝑡eject, the minimum stellar mass 𝑀min, and the time period

of the cluster formation Tp. The quantity ¤𝑀acc 𝑡eject gives approx-
imately the peak mass of the IMF in the model. The dispersion in
the accretion rates 𝜎acc (log 𝑀) defines the high-mass and low-mass
slopes, and the minimum stellar mass 𝑀min sets the low-mass cut-
off of the IMF. The time period Tp is the time elapsed between the
formation of the first star and the end of the simulation. The calcu-
lated parameter values for each of the models are shown in Tab. 2,
which correspond to the averages of the parameter values obtained
in the 10 simulations for each set (NOWIND and OUTFLOW). We
set 𝑀min = 0.01 M⊙ as the low-mass cut-off of the IMF fit for both
the simulation models and substitute the above parameter values into
equations 10–12 of Bate & Bonnell (2005) to reproduce their fits for

our simulation IMFs. The Bate & Bonnell (2005) model is repre-
sented by solid curves in Fig. 8. The model matches well with our
simulation IMFs, especially in the very low-mass regime, which was
underestimated by the models based on turbulent fragmentation. This
shows that stochastic dynamical ejections play an important role in
determining the low-mass end of the IMF (see also Basu & Jones
2004; Dib et al. 2010; Myers 2011; Maschberger et al. 2014).

5 MULTIPLICITY AND ANGULAR MOMENTUM

5.1 Multiplicity fraction

We identify the multiple systems in our simulations by following the
algorithm used in Bate (2009a). In the list of individual sink particles
formed in a simulation, or equivalently a list of single objects, we
find the closest pair of objects that are gravitationally bound to each
other. These two objects are replaced by a binary object having the
mass, position and velocity equal to the system mass, centre-of-mass
position and velocity, respectively. In the resulting list, we again find
the closest pair of bound objects. In case the pair consists of a binary
object and a single object, then the new object will be a triple. The
process of removing the closest bound pair and replacing it with a
higher-order object is repeated until none of the objects in the list
are bound to one another or the only possible gravitationally bound
pair selection will result in a quintuple. We do not consider systems
of order higher than quadruples, because most high-order multiple
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systems are dynamically unstable and are expected to decay with
further evolution of the cloud.

The algorithm effectively converts a list of individual sink particles
into a list of single, binary, triple and quadruple systems or objects,
with none being a subset of a higher-order system. For example,
none of the objects characterised as binaries is a part of a triple or
quadruple object. The multiplicity fraction in any mass range can be
obtained by calculating the ratio of the number of multiple systems
to the total number of systems whose primary sink particle lie within
the given mass range. The multiplicity fraction (𝑚 𝑓 ) is defined as

𝑚 𝑓 =
𝐵 + 𝑇 +𝑄

𝑆 + 𝐵 + 𝑇 +𝑄
(17)

where 𝑆, 𝐵, 𝑇 and𝑄 represent the number of singles, binaries, triples
and quadruples, respectively, whose primary sink’s mass is within
the range in which 𝑚 𝑓 is to be calculated.

Fig. 10 depicts the multiplicity fraction in different primary mass
intervals (also done in Bate 2012; Krumholz et al. 2012; Cunningham
et al. 2018; Sharda et al. 2020) at SFE = 5% in the case of the
OUTFLOW model, which is the more realistic model. The mass
ranges are selected similar to those chosen in the observational studies
so as to allow for a direct comparison. We can immediately notice
that the multiplicity fraction evolves as an increasing function of the
primary mass, which is the general understanding. Our 𝑚 𝑓 values
also compare well with those of the observations, except that we are
underestimating the value in the very low-mass star (VLMS) and BD
regime.

Since our highest attainable spatial resolution is 100 AU, we do
not resolve all of the low-order multiple systems. Therefore, some
of the sink particles may be representing binaries by themselves,
or rarely, triple systems. However, the multiplicity fraction is very
robust numerically. Even if a sink particle can be further fragmented
into a binary or a triple stellar system, 𝑚 𝑓 increases only if the
sink particle is a single. The value remains unchanged if the sink
particle is part of a multiple system, i.e., a member of a binary, triple
or quadruple object. For example, if one of the sinks belonging to a
triple object is a binary by itself, then𝑇 and𝑄 become𝑇−1 and𝑄+1,
respectively, which leaves 𝑚 𝑓 unchanged. Further, considering the
fact that the frequency of singles decreases and the average separation
of binaries increases with increasing primary mass (Konopacky et al.
2007; Kraus & Hillenbrand 2007; Luhman 2012), the mass range
that will be mainly affected is the low-mass end, which explains the
underestimation of 𝑚 𝑓 in the sub-solar regime. If a few of the sink
particles in the mass range 0.01–0.1 M⊙ were actually binaries if we
had higher numerical resolution, then the increase in the multiplicity
fraction would balance the underestimation in the VLMS or BD
regime, which would bring the simulations closer to the observations
in the sub-solar mass regime.

Fig. 11 shows the fraction of singles, binaries, triples and quadru-
ples at SFE = 5%. The fraction of singles is 0.66 and is the highest,
i.e., most of the sink particles that formed in our simulations are not
part of a higher-order multiple system (the fraction of single objects
for the NOWIND model is quoted in Tab. 1 for reference). Adopting
the multiplicity fraction derived by Delfosse et al. (2004) for M-
dwarfs and that by Duquennoy & Mayor (1991) for stars earlier than
M-dwarfs, Lada (2006) estimated the single-star fraction (SSF) to be
0.66 by assuming a Muench et al. (2002) form of the IMF and 0.67
for a Miller & Scalo (1979) IMF. Our value of the fraction of single
objects agrees with their estimates, but the exact match between the
values is coincidental. Observational investigations do not well con-
strain the IMF or the multiplicity fraction of different spectral types.
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Figure 10. Multiplicity fraction (𝑚 𝑓 ) as a function of primary mass. The
circular markers represent the average 𝑚 𝑓 , obtained from all our 10 simula-
tions, in the mass interval represented by the width of the patch enclosing the
marker. The height of the patch shows the standard deviation of 𝑚 𝑓 across the
10 simulations. The centre of the crosses represent the value of 𝑚 𝑓 obtained
in different observational surveys, with the horizontal and vertical error bars
corresponding to the mass range of study and the uncertainties, respectively.
The observational data are (from left to right), from Fontanive et al. (2018),
Todorov et al. (2014), Basri & Reiners (2006), Close et al. (2003), Todorov
et al. (2014), Winters et al. (2019) (not corrected for undetected companions),
Delfosse et al. (2004), Fischer & Marcy (1992), Raghavan et al. (2010) and
Duquennoy & Mayor (1991). The multiplicity fraction of high-mass stars is
relatively poorly understood. The lower limit of 𝑚 𝑓 in the mass range of
1.5–5 M⊙ is ∼ 0.5–0.6 (Chini et al. 2012; Duchêne & Kraus 2013). Massive
stars are expected to have 𝑚 𝑓 ∼ 1 (Mason et al. 2009; Sana & Evans 2011;
Sana et al. 2017; Lee et al. 2020).

Therefore, the SSF estimate of Lada (2006) would vary depending
on the study they choose to derive the multiplicity fraction and the
number fraction of M-dwarfs. Further, Lada (2006) only considered
stars of spectral type M and earlier, whereas we also include the very
low-mass stars and brown dwarfs. The actual value of SSF could
be slightly lower than what we calculated because of the possibility
of unresolved binaries in our simulations. It is also plausible that
we are somewhat underestimating the fraction because, with further
evolution of the cloud, some of the higher-order systems may decay
and lead to an increase in the number of single stars.

5.2 Specific angular momentum of dense cores and stars

Previous studies estimate the specific angular momentum ( 𝑗) of
dense molecular cloud cores (diameter ∼ 0.1 pc) to be greater than
1021 cm2 s−1 (Goodman et al. 1993; Burkert & Bodenheimer 2000;
Caselli et al. 2002). The range of 𝑗 value of class 0/I envelopes and bi-
nary systems is 1017–1021 cm2 s−1 (Simon 1992; Ohashi et al. 1997;
Yen et al. 2015a), whereas that of T-Tauri stars is 1016–1017 cm2 s−1

(Hartmann et al. 1986). The angular momentum of the sink particles
(spin) in our simulations (see §2.3) can be directly obtained from
the simulation output. We plot the specific angular momentum dis-
tribution of all the sink particles that formed in the 10 simulations
of the OUTFLOW model in Fig. 12. The range of specific angular
momentum of the sinks (∼ 1017–1020 cm2 s−1) spans the regime of
protostellar envelopes and binaries, with a few sinks having 𝑗 values
typical of T-Tauri stars. The average specific angular momentum of
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Figure 11. Fraction of single stars and multiple systems (binaries, triples,
and quadruples), using the same data as for Fig. 10. The fraction of single
objects is 0.6–0.7 in our simulations, which agrees well with the estimates of
the single-star fraction of observed stars by Lada (2006).

all the sinks is 𝑗mean = 1.5 × 1019 cm2 s−1. Yen et al. (2015b) report
the 𝑗 value of the class 0 protostar B335 to be 1.3 × 1019 cm2 s−1 at
a scale of ∼180 AU, which agrees well with the 𝑗mean from the sink
particles in our simulations (having an accretion radius of 250 AU).
Gaudel et al. (2020) infer that the 𝑗 value of class 0 protostellar en-
velopes is relatively constant, at around 1020 cm2 s−1, from a scale
of ∼1600 AU to 50 AU. Jappsen & Klessen (2004) performed hydro-
dynamic simulations of the collapse of supersonic turbulent clouds
and calculated 𝑗mean = 8× 1019 cm2 s−1 for their sink particles with
a radius of 560 AU. We note that 𝑗mean = 1.2 × 1020 cm2 s−1 for
the NOWIND model, which is almost an order of magnitude higher
than that for the OUTFLOW model. This is because, based on ob-
servational and numerical works, our SGS outflow module removes
90% of the accreted angular momentum from the sink particles and
re-distributes it to the jet/outflow components (see §2.5.2).

Fig. 13 presents the distribution of the ratio of rotational to gravita-
tional energy𝐸rot/𝐸grav of the sink particles. We calculate𝐸rot/𝐸grav

by assuming solid-body rotation of a uniform density sphere,

𝐸rot

𝐸grav
=

(1/2)𝐼𝜔2

(3/5)𝐺𝑀2
sink

/𝑟sink

, (18)

where 𝐼 = (2/5)𝑀sink𝑟
2
sink

is the moment of inertia, 𝜔 = 𝑗𝑀sink/𝐼

is the angular velocity, and 𝐺 is the gravitational constant.
We can roughly estimate the number of sink particles that repre-

sent unresolved binaries by looking at their 𝐸rot/𝐸grav values. The
sink particles with 𝐸rot/𝐸grav < 0.01 tend to be stable against frag-
mentation while those with 𝐸rot/𝐸grav > 0.01 are likely to fragment
into binaries (Boss 1999; Jappsen & Klessen 2004). We observe
that, out of the total 449 sink particles from the 10 simulations,
92 sinks have 𝐸rot/𝐸grav > 0.01. However, the multiplicity fraction
would only be affected by the fragmentation of the stellar objects
that are not already a part of a higher-order system (i.e., single sink
particles). For example, out of the 449 total, there are only 7 sink
particles with masses less than 0.1 M⊙ that are simultaneously single
and have 𝐸rot/𝐸grav > 0.01. Since the number of singles decreases
with increasing primary mass, we expect that the 𝑚 𝑓 estimates dis-
cussed above would not deviate much from the current value in the
higher-mass range.
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Figure 12. Specific angular momentum 𝑗 of the sink particles (𝑟sink =

250 AU) from the OUTFLOW simulations (green histogram), with the solid
line marking the mean value of 𝑗. The dashed line shows the 𝑗 value measured
for the class 0 protostar B335 at ∼180 AU by Yen et al. (2015b), and the dash-
dotted line denotes the mean value of 𝑗 obtained in the numerical simulations
of Jappsen & Klessen (2004) with a sink particle radius of 560 AU.
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Figure 13. The distribution of the ratio of rotational to gravitational energy
(𝐸rot/𝐸grav) of the sink particles formed in our simulations. The black dashed
line marks 𝐸rot/𝐸grav = 0.01, above which fragmentation into binaries is
likely (Boss 1999; Jappsen & Klessen 2004). Thus, only a relatively small
fraction of our sink particles (92/449 = 20%) would have likely fragmented
further, if we had higher numerical resolution.

6 CAVEATS

6.1 Numerical resolution

Our sink mass distribution matches well with the form of the ob-
served system IMFs. Despite the overall good agreement, higher
numerical resolution might lead to a slight increase in fragmenta-
tion (c.f. Fig. 13), and thus, may result in a mass distribution that
matches the individual-star IMF or may produce the observed IMF
peak mass better (currently overestimated by factor ∼ 2; c.f. Fig. 7).
Here our sink particles have radii of 𝑟sink = 250 AU, and the high
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computational cost of these simulations currently prevents us from
going higher in numerical resolution, because at the same time, we
want to produce a statistically converged sample of stars (here built
up from 10 independent simulations with different random seeds
of the turbulence). Recent studies by Hennebelle et al. (2019) and
Colman & Teyssier (2020) suggest that the origin of the peak of
the IMF may lie in the tidal screening of the first hydrostatic core
or the Larson core. The characteristic mass of the IMF would then
be determined by the typical mass within the radius in which the
tidal force by the Larson core prevents formation of any fragments,
in which case a resolution of ∼ 10–20 AU would be necessary to
obtain the peak mass. The multiplicity of stars can also be affected
by the limitation in resolution. The current simulations do not re-
solve all the stars, particularly, the close binaries, which is why we
somewhat underestimate the 𝑚 𝑓 in the sub-solar range (c.f. Fig. 10).
Very low-mass binaries generally have separations of < 20 AU, and
therefore, sufficiently high-resolution simulations would be required
to resolve such binaries. Nevertheless, we believe that the multiplicity
fraction estimates in the mass range > 0.1 M⊙ are relatively robust
as discussed above. It is reassuring that state-of-the-art simulations
are now being developed that can simultaneously follow the collapse
from the scales of GMCs down to the disc scales and also include all
the primary mechanisms involved in star cluster formation (Grudić
et al. 2020).

6.2 Use of sub-grid models

The sub-grid models that we use for incorporating the effects of
jets and outflows (Federrath et al. 2014) and stellar radiative heating
(Mathew & Federrath 2020) have been calibrated and well tested.
However, they are dependent on parameters that are based on pre-
vious observational and numerical studies. Guszejnov et al. (2020a)
find that the characteristic mass of the IMF somewhat depends on
the choice of the parameter that decides the amount of momentum
injection by their outflow model. Therefore, variations in the mass-
loss factor 𝑓m or the normalisation jet speed (100 km s−1) used to
define the outflow velocity profile might cause the peak of our sink
mass distribution to deviate from the current position. In addition,
the fact that the polar heating model we use calculates the extinction
of stellar radiation by assuming a fixed dust/disc density distribution
can cause discrepancies. In order to accurately model jets or the ex-
tinction of stellar radiation by dust, the inner regions of the accretion
disc have to be resolved. Achieving such high resolution generally
comes at the expense of statistical significance because only one or a
few simulations can be performed or the outer scale of the simulation
box has to be reduced (smaller cloud size) to reduce the computa-
tional cost. Therefore, employing sub-grid models is necessary to
obtain statistically conclusive and quantitatively accurate results in a
cost-efficient way.

7 CONCLUSIONS

We carry out an array of simulations of the collapse of turbulent,
magnetized molecular clouds including stellar heating and mechan-
ical feedback. We investigate the impact of jets/outflows on the IMF
and the evolution of different dynamical quantities by comparing
10 simulations with different turbulence seeds incorporating outflow
feedback with another set of 10 simulations in the absence of the
outflow feedback. We observe that the outflow feedback reduces the
star formation rate by a factor of ∼ 2 and increases the number of
stars formed (see details in Tab. 1). Jets/Outflows disturb the direct

accretion flow onto a star and lower the efficiency of stellar heat-
ing (as a result of the mass loss) in suppressing fragmentation, and
thereby promote star formation in nearby over-dense regions. We find
that including outflow feedback does not generally affect the overall
shape of the IMF, but results in a shift of the IMF to lower masses
by a factor of 2.0 ± 0.2.

We find that the IMF obtained from our simulations broadly agrees
with different functional forms of the observational IMF, although
the peak mass is higher by a factor of ∼ 2 (see discussion in Sec. 6).
We also show that three different theoretical models of the IMF based
on turbulent fragmentation (Padoan & Nordlund 2002; Hennebelle
& Chabrier 2008; Hopkins 2012) broadly predict the shape of our
IMF in the high-mass and low-mass range, but underestimate the
number of very low-mass objects (< 0.1 M⊙). Indeed, the fraction of
sub-stellar objects produced in our simulations agrees well with the
observed fraction. Therefore, our current set of simulations suggests
that some modification of the gravo-turbulent theoretical models is
required to account for the population of very low-mass stars (see
also Thies et al. 2015).

We also compare our simulation IMF with the Bate & Bonnell
(2005) model, which is based on accretion and dynamical ejections,
and see that it matches well with our simulation IMF. Further, the Bate
& Bonnell (2005) model reflects our very low-mass range better than
the gravo-turbulent models. It is interesting to see that the IMF can be
reproduced directly on the basis of the accretion and ejection history
of the young stars. The Bate & Bonnell (2005) model only uses
information about the stars and their evolution inside the cluster. On
the other hand, the gravo-turbulent models only use the gas properties
of the cloud to derive an IMF, not taking into account any information
about the dynamical evolution of the stars when they have already
formed. Therefore, the nature of the two classes of model (relying
primarily on stellar versus gas properties) is fundamentally different.
For example, Nam et al. (2021) find that the high-mass tail of the
IMF is significantly influenced by the velocity power spectrum of the
turbulence in the parent molecular cloud. Therefore, we suggest that
both turbulent gas properties and the accretion and ejection history of
the young stars play key roles in controlling the IMF, with a tendency
of the high-mass end being controlled by turbulent gas properties,
and the low-mass end being controlled by dynamical ejections and
radiation feedback.

We find that the multiplicity fraction of the stellar systems in our
simulations is an increasing function of the primary mass, consistent
with other numerical studies and with observational surveys. Our
multiplicity fractions compare well with observational estimates for
different spectral types, although we are slightly underestimating the
multiplicity fraction in the very low-mass range. This underestima-
tion is mainly because our simulations do not fully resolve very close
binaries.

The range of the specific angular momentum ( 𝑗) of our sink parti-
cles can be directly compared to the 𝑗 values in protostellar envelopes
and binaries. We find that the average specific angular momentum
of the sink particles, 𝑗mean = 1.5 × 1019 cm2 s−1, matches the value
of specific angular momentum from observational measurements at
a scale similar to the size of our sink particles.
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APPENDIX A: COLUMN DENSITY AND TEMPERATURE

MAPS OF SIMULATIONS WITH DIFFERENT RANDOM

SEEDS FOR THE TURBULENCE

Fig. A1 is a non-weighted version of the column density and temper-
ature maps in Fig. 2. It is evident from comparing both the figures
that the contrast between the densest regions and the surrounding
medium is lower in Fig. A1.

Fig. A2 is similar to Fig. 3, but for the T1 simulations. This further
demonstrates that the additional sink particles in the OUTFLOW
simulations form in over-densities created by turbulent flows, which
do not collapse in the NOWIND simulations. The figure shows that
at 𝑡 = 0.40 Myr (first snapshot), there are two sink particles in both
NOWIND and OUTFLOW. Near the sink particle on the left in the
OUTFLOW model, a new sink particle forms at 𝑡 = 0.42 Myr (second
snapshot) and another one forms at 𝑡 = 0.55 Myr (last snapshot). The
particular over-densities in which these two sinks form also exist in

the NOWIND simulation, but there, they do not collapse to form
stars.

Fig. A3 and Fig. A4 present the evolution of a clump and the
formation of VLM objects in the T3 and T4 simulations, respectively.
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Figure A1. Same as Fig. 2, but with no mass-weighting.
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Figure A2. Same as Fig. 3, but for the T1 simulation.

Figure A3. Same as Fig. 9, but for the T3 simulation, showing the formation of sub-stellar objects.
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Figure A4. Same as Fig. 9, but for the T4 simulation.
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