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Abstract

We review recent advances in the numerical modeling of turbulent flows and

star formation. An overview of the most widely used simulation codes and

their core capabilities is provided. We then examine methods for achieving

the highest-resolution magnetohydrodynamical turbulence simulations to date,

highlighting challenges related to numerical viscosity and resistivity. State-of-

the-art approaches to modeling gravity and star formation are discussed in

detail, including implementations of star particles and feedback from jets, winds,

heating, ionization, and supernovae. We review the latest techniques for radia-

tion hydrodynamics, including ray tracing, Monte Carlo, and moment methods,

with comparisons between the flux-limited diffusion, moment-1, and variable

Eddington tensor methods. The final chapter summarizes advances in cosmic-

ray transport schemes, emphasizing their growing importance for connecting

small-scale star formation physics with galaxy-scale evolution.
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1 Introduction

Star formation is a critical component of many astrophysical phenomena: the life
cycle of stars drives the formation and evolution of galaxies, regulates the abundance
and distribution of metals in the Universe, and sets the initial conditions for planet
formation. Despite being governed by fundamentally ‘classical’ physics processes —
magnetized gas dynamics, gravity, thermodynamics, and radiation — the complex,
nonlinear interactions defy analytic description. Star formation also spans vast spatial
scales, from the kpc interstellar medium (ISM) down to stellar radii, and occurs across
regimes ranging from ultra-low densities, approaching laboratory vacuum limits, to
stellar densities. Observations are further limited by resolution, sensitivity, and opti-
cal depth effects. Consequently, numerical simulations powered by high-performance
computing have become indispensable tools for studying star formation.

Over the past decade, numerical developments have greatly expanded the scope
of star formation studies by extending dynamic range, improving computational
efficiency, and introducing new methods. Modern codes now routinely resolve gas
dynamics across many orders of magnitude in scale while incorporating key physical
processes. This has yielded important insights into how these processes shape central
metrics such as the star formation rate (SFR) and the initial mass function (IMF).
Despite these advances, major challenges remain. Current simulations still fall short
of achieving the physical parameters associated with magnetized turbulence, or of
spanning the full range of scales required to capture both individual star formation
and the impact of stellar feedback. The long timescales (> Myr) and stochastic nature
of star formation demand large computational domains evolved over many timesteps.
Moreover, the interplay between large and small scales calls for holistic approaches
in which physics and chemistry across wide ranges are modeled simultaneously, with
minimal sensitivity to initial and boundary conditions.

Numerical advances over the past decade have focused on developing magneto-
hydrodynamical (MHD) methods (Sect. 2) that robustly capture high-Mach number
turbulence — a cornerstone of the star-formation process (Sect. 3). A second fun-
damental requirement is modeling the gravity of gas and stars (Sect. 4). Despite
significant progress, simulations still rely heavily on prescriptions for unresolved
physics, so-called sub-resolution models1. These encompass treatments of dissipation
and unresolved turbulence, star formation itself (Sect. 5), and a variety of stellar
feedback processes — stellar evolution, protostellar jets and outflows, heating, winds,
ionization, and supernovae. Such models often depend on ad-hoc parameters and
remain among the least benchmarked areas of development (Sect. 6). Other important
advances include more accurate radiative transfer methods coupled to MHD, which
can capture shadows and remain valid across the difficult transition between optically
thin and thick regimes (Sect. 7). Finally, growing recognition of the role of cosmic
rays has driven the development of cosmic-ray transport (CRT) methods (Sect. 8).

In this review we present new approaches to modeling turbulence, gravity, star
formation, feedback, radiation, and cosmic rays, with a particular focus on code capa-
bilities, their numerical treatments, and parameterizations. We assess the strengths

1Sometimes referred to as ‘sub-grid’ models; however, the term ‘sub-resolution’ is more general and
includes particle-based methods.
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and weaknesses of these methods and highlight current limitations. The remainder of
the Introduction lists the codes most widely applied in turbulence and star-formation
studies (Sect. 1.1) and highlights recent advances in code optimization and parallel
scaling (Sect. 1.2).

1.1 Numerical codes for turbulence and star formation

Over the past two decades, more than a dozen powerful codes for turbulence and
star-formation applications have been developed and continuously refined. Table 1
summarizes the most widely used codes and their capabilities. These methods can be
broadly divided into two categories: grid methods, which discretize flows by volume,
and particle methods, which discretize flows by mass. Grid-based approaches typically
model hydrodynamics using elements fixed in the reference frame of a stationary
observer, while particle-based approaches adopt a Lagrangian framework, with mass
elements moving with the fluid. Hybrid approaches, such as moving-mesh and mesh-
less finite mass/volume methods, aim to combine the strengths of both.

Most of these codes have publicly available versions, promoting transparency and
broad community use. Links to the available releases are provided in the Table notes.
However, not all features listed in Table 1 are implemented in the public versions.

1.2 Parallel scalability and code optimization

Although physical and numerical accuracy are paramount, efficient parallel scaling
to large core counts is also essential to perform high-resolution simulations within
practical computational budgets. Strong scaling tests evaluate the time-to-solution
for fixed problem sizes: the total amount of calculation ‘work’ remains constant as
the number of cores is increased. Weak scaling tests increase the problem size and
resolution proportionally with the number of compute cores, i.e., the amount of work
per core is fixed. Good strong and weak scaling performance are both essential for
advancing astrophysical applications, while also ensuring environmentally responsible
use of supercomputing resources. Continuous code optimization and scaling improve-
ments are therefore indispensable, for example, through the development of optimized
techniques for load balancing (e.g., dispatch; see Nordlund et al. 2018).

Figure 1 highlights some of the recent developments in code optimization and
weak scaling in three of the codes listed in Table 1. Good weak scaling performance
is particularly relevant for turbulence and star-formation simulations, where higher
resolution, and thus larger problems, is always desired. Because the tests in Fig. 1
involve different setups, physics, and machines, only the relative speed-up for a given
code can be directly compared.

Overall, all three codes show excellent parallel efficiency up to thousands or
even tens of thousands of cores. For pure MHD, both athena++ and flash retain
efficiencies above 90% up to 104–105 cores, i.e., very close to ideal scaling. Even
the more challenging arepo tests, which combine hydrodynamics, self-gravity, and
radiation transport (RT) (Zier et al. 2024), achieve 60–70% efficiency up to nearly
5,000 cores — impressive given the inherently non-local nature of gravity (Sect. 4) and
RT (Sect. 7).

5



Table 1 Popular astro-simulation codes used for turbulence and star formation modeling.

Name Type Hydro Self-Gravity Feedback Radiation CRT
(1) (2) (3) (4) (5) (6) (7)

arepo1 MM NI TPM R/S M1/RT/MC ✓

art2 AMR H FFT/MG R/W/S OT-VET ✓

athena3 UG/SMR NI FFT/MG ✗ M1/RT ✗

athena++4 AMR NI FFT/MG ✗ VET ✓

enzo5 AMR I FFT/MG R/S FLD/RT ✓

flash6 AMR NI FFT/MG/TPM O/R/S FLD/M1/VET/RT/MC ✓

gadget7 SPH I TPM R/S OT-VET/RT ✓

gizmo8 MLFMV NI TPM O/R/W/S FLD/M1/OT-VET/RT ✓

idefix9 UG NI MG ✗ ✗ ✗

nirvana10 AMR NI MG ✗ ✗ ✗

orion11 AMR I MG O/R/W FLD/RT ✗

pencil12 UG NI FFT S RT ✓

phantom13 SPH NI TPM R/W/S FLD/MC ✗

pluto14 AMR NI ✗ ✗ M1/RT ✓

quokka15 AMR H MG S M1 ✗

ramses16 AMR NI MG O/R/W/S M1 ✓

seren17 SPH H TPM R/S FLD/RT ✗

torus18 AMR H MG R/W/S MC ✗

zeus19 UG NI ✗ ✗ VET ✗

Notes: Column 1: code name. Column 2: code type: UG = uniform grid, SMR = static
mesh refinement, AMR = adaptive mesh refinement (Berger and Colella 1989) (includes
UG capability), SPH = smoothed particle hydrodynamics (e.g., Benz 1988; Monaghan 1988;
Price et al. 2018), MM = moving mesh, MLFMV = mesh-less finite mass/volume (Hopkins
2013a). Column 3: type of gas dynamics: H = hydrodynamics, I = ideal MHD (includes H
capability), NI = non-ideal MHD (Ohmic dissipation, ambipolar diffusion, Hall effect; or all
three; includes I capability). Column 4: self-gravity treatment: FFT = fast Fourier transform
(Sect. 4.4.1), MG = multi-grid (Sect. 4.4.2), TPM = tree particle-mesh (Sect. 4.4.3). Col-
umn 5: feedback processes: O = protostellar outflows (Sect. 6.2), R = radiative feedback in
the form of pressure, ionization and/or heating (Sect. 6.3), W = stellar winds (Sect. 6.4, 6.5),
and S = supernova feedback (Sect. 6.6). Column 6: radiation transfer methods: FLD = flux
limited diffusion (Sect. 7.4.3), M1 = moment-1 (Sect. 7.4.4), VET = variable Eddington ten-
sor (Sect. 7.4.5), OT-VET = optically-thin VET, RT = ray tracing (Sect. 7.3), MC = Monte
Carlo (Sect. 7.5). Column 7: cosmic ray transport (CRT; Sect. 8). A ✓ indicates availability
of a certain functionality (without specifying further details), while ✗ indicates miss-
ing functionality. References/Links: 1https://gitlab.mpcdf.mpg.de/vrs/arepo (Springel 2010),
2https://bitbucket.org/cartamr/cart/src/master (Kravtsov et al. 1997, 2002; Rudd et al. 2008),
3https://princetonuniversity.github.io/Athena-Cversion, 4https://www.athena-astro.app (Stone

et al. 2020), 5 https://github.com/enzo-project (Bryan et al. 2014), 6https://flash.rochester.edu/

site/flashcode (Fryxell et al. 2000; Dubey et al. 2008), 7https://wwwmpa.mpa-garching.mpg.

de/gadget4, 8https://github.com/pfhopkins/gizmo-public(Hopkins 2015), 9 https://github.com/

idefix-code/idefix (Lesur et al. 2023), 10https://gitlab.aip.de/ziegler/NIRVANA(Ziegler 2008),
11Li et al. (2021), 12Pencil Code Collaboration et al. (2021), 13https://phantomsph.github.io

(Price et al. 2018), 14https://plutocode.ph.unito.it, 15https://github.com/quokka-astro/quokka

(Wibking and Krumholz 2022), 16https://github.com/ramses-organisation/ramses (Teyssier

2002), 17Hubber et al. (2011a,b), 18Harries et al. (2019), 19https://www.astro.princeton.edu/
∼jstone/zeus.html (Stone and Norman 1992).
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Fig. 1 Weak-scaling tests for three codes: arepo (diamonds), comparing CPU (turquoise) and
GPU (blue) implementations of radiation transport (RT) in simulations including hydrodynamics
and gravity, run on the ‘Raven’ system; athena (circles), comparing athena 4.2 (orange) with the
modernized athena++ (red) for pure MHD on a Cray XC50; and flash (stars), comparing the
public version (black) with an optimized hybrid-precision version (magenta; Sect. 3.5.2) for MHD
turbulence on ‘SuperMUC-NG’. For each code, the two modes shown are directly comparable (but
not across different codes). Substantial performance gains are evident: GPU acceleration (arepo),
code modernization (athena), and hybrid precision (flash).

The individual comparisons further illustrate substantial performance gains from
recent developments. Accelerating RT in arepo with GPUs (see also Sect. 3.5.3 below)
yields an overall speed-up of 3–4×, with the RT component itself running ∼ 15×
faster on GPUs. Modernization of athena improves performance by ∼ 2.3× from
version 4.2 to athena++ (Stone et al. 2020). In flash, switching from the public
version to an optimized hybrid-precision implementation (see details in Sect. 3.5.2
below) produces a ∼ 3.3× speed-up for MHD turbulence, while retaining efficiency to
more than 105 cores.

These results demonstrate how continuous algorithmic and implementation
improvements translate directly into higher scientific throughput. Such efforts are crit-
ical not only for enabling frontier simulations but also for maximizing the efficient and
sustainable use of supercomputing resources. Future updates of this living review will
include controlled scaling benchmarks for additional codes listed in Table 1, extending
earlier comparative studies (Kitsionas et al. 2009; Price and Federrath 2010; Kritsuk
et al. 2011).

2 Hydrodynamics and boundary conditions

Here we introduce the basic set of MHD equations (Sect. 2.1), which provide the
foundation for the remainder of the review, and we discuss challenges associated with
the choice of initial and boundary conditions for star-formation simulations (Sect. 2.2).
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2.1 Magnetohydrodynamics (MHD)

Astrophysical fluids generally have magnetic fields. While magnetic fields couple only
to charged particles, even phases of the ISM such as molecular clouds (where stars
form), composed almost entirely of neutral gas, retain a small degree of ionization (ion-
ization fraction ∼ 10−7). This is sufficient to generate electric currents, and through
frequent collisions the ions strongly couple to the neutrals, making magnetic fields a
critical component of the gas dynamics. Magnetic fields introduce additional physical
processes, including magnetic pressure, tension, MHD waves, and resistive dissipation.
Owing to this complexity, many early star-formation simulations neglected magnetic
fields, but their crucial role is now widely recognized, and most current simulations
include them.

A fully self-consistent description of magnetized systems requires kinetic theory
and particle-in-cell (PIC) simulations (e.g., St-Onge and Kunz 2018; Rincon et al.
2016; Chirakkara et al. 2024). This can, however, be reduced to a coupled set of fluid
equations in which electrons, ions (protons, atomic and molecular ions), and neutrals
(e.g., H, H2, CO) are treated as separate fluids — the framework usually referred to as
‘non-ideal MHD’2. Some studies follow this so-called ‘multi-fluid’ approach (Li et al.
2008, 2012; Burge et al. 2016; Tritsis et al. 2022, 2025a,b). More commonly, however,
strong ion-neutral coupling is assumed, yielding the ‘ideal MHD’ limit, which is well
justified on cloud and core scales, though it breaks down in dense accretion disks (see
e.g., Xu and Kunz 2021a,b; Mauxion et al. 2024).

Unlike most turbulence studies, star-formation simulations, to the best of current
knowledge, consistently neglect explicit dissipation. By contrast, MHD turbulence
studies frequently include viscosity and at least Ohmic resistivity, as we do in the
following equations. Even studies that omit explicit viscosity and resistivity inevitably
introduce effective small-scale viscosity and resistivity through numerical diffusion,
leading to partial ion-neutral decoupling. We will examine these effects in detail in
Sect. 3. With these foundations, we can now introduce the standard set of MHD
equations.

2.1.1 MHD equations

The standard compressible MHD equations including viscous and resistive dissipation
terms can be written as

∂ρ

∂t
= −∇ · (ρv), (1)

∂(ρv)

∂t
= −∇ ·

(

ρvv −
1

4π
BB

)

− ∇p + ∇ · (2ρνS) , (2)

∂(ρe)

∂t
= −∇ ·

[

(ρe + p) v −
1

4π
(B · v) B

]

2Non-ideal MHD is commonly divided into three categories: (i) Ohmic resistivity, (ii) ambipolar diffusion,
and (iii) the Hall effect. In this review, we include only Ohmic resistivity in the MHD equations. For a
comprehensive review of non-ideal MHD methods relevant to star formation, see Teyssier and Commerçon
(2019). We further note that non-ideal MHD effects are tied to magnetic reconnection events, where codes
primarily rely on numerical diffusion to approximate physical reconnection (see discussion in the review by
Lazarian et al. 2020)
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+∇ ·

[

2ρνSv +
1

4π
B × (η∇ × B)

]

, (3)

∂B

∂t
= ∇ × (v × B) + η∇2B, (4)

∇ · B = 0. (5)

Here, ρ, v, p = pth + |B|2/(8π), B, and ρe = ρeint + ρ|v|2/2 + |B|2/(8π) denote
the gas density, velocity, pressure (thermal + magnetic), magnetic field, and total
energy density (internal + kinetic + magnetic), respectively. Physical shear viscosity
(kinematic viscosity ν) in Eqs. (2) and (3) is included via the traceless rate-of-strain
tensor,

S =
1

2

(

∇v + (∇v)
T

)

−
1

3
(∇ · v) I, (6)

where I is the identity matrix. In index notation, the components of S are Sij =
(1/2)(∂ivj + ∂jvi) − (1/3)(∂kvk)δij . The product ρν appearing in Eqs. (2) and (3) is
commonly referred to as the ‘dynamic viscosity’.

The evolution and diffusion of B are governed by the induction equation (Eq. 4),
where the magnetic diffusivity is η = 1/(4πσ) with σ the electric conductivity. Finally,
we note that Eqs. (2) and (3) only include the shear viscosity ν, while the bulk viscosity
is usually assumed to vanish — see Sect. 3.3 for further discussion.

2.1.2 Thermodynamics and equation of state

The MHD equations are closed with an equation of state (EOS). Most commonly this
is the ideal gas EOS,

pth = ρeint(γ − 1) =
ρkBT

µmH
, (7)

where T is the temperature, kB the Boltzmann constant, mH the mass of a hydrogen
atom, µ the mean particle mass in units of mH, and γ the adiabatic index. The
latter is given by γ = 1 + 2/f , where f is the number of degrees of freedom excited
for a given particle type (electrons, atoms/ions, or molecules), which always includes
translational modes, and may include rotational or vibrational modes for molecules
(if they are excited; see e.g., Sharda et al. 2019). The sound speed is

cs =

(

∂pth

∂ρ

)1/2

s

=

(

γkBT

µmH

)1/2

, (8)

where the subscript s denotes that the derivative is taken at constant entropy.
For simplicity, fundamental studies of MHD turbulence often assume an isothermal

EOS, pth = ρc2
s , with a constant cs fixed in space and time. This is a good approxima-

tion for molecular cloud turbulence and for the early stages of dense core formation
(Wolfire et al. 1995; Omukai et al. 2005; Pavlovski et al. 2006; Glover and Mac Low
2007a,b; Glover et al. 2010). More sophisticated treatments include heating and cool-
ing via radiative transfer (RT; Sect. 7), which is crucial to capture the transition to
optically thick gas at number densities n = ρ/(µmH) ≳ 1010 cm−3, where the gas
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heats up and fragmentation is suppressed (Jappsen et al. 2005; Guszejnov et al. 2016;
Federrath et al. 2017; Guszejnov et al. 2018; Mathew and Federrath 2020; Hennebelle
et al. 2020, 2022).

Intermediate approaches lie between assuming an isothermal EOS and solving full
RT. One common choice is a polytropic EOS of the form pth = KρΓ (Passot and
Vázquez-Semadeni 1998; Li et al. 2003), with polytropic index Γ and coefficient K.
These can be specified as piecewise functions to approximate the heating of gas as it
becomes optically thick (see eqs. 3 and 4 in Federrath et al. 2014b). In this case the
energy equation (Eq. 3) can be omitted, since the MHD system is closed without it.
Other strategies include incorporating approximations for stellar heating (Sect. 6.3)
or adding heating/cooling terms to Eq. (3) from pre-computed tables (Koyama and
Inutsuka 2002; Vázquez-Semadeni et al. 2007; Mandal et al. 2020).

2.2 Initial and boundary conditions

A recurring issue in simulations of star formation is the interconnection of physi-
cal processes across vastly different scales. This coupling operates in both directions:
large-scale dynamics can strongly influence the evolution of star formation on small
scales, while feedback from stars can in turn affect the large-scale environment. This
poses a severe challenge, as we would ideally like to include all relevant length and
time scales in order to solve the star formation problem self-consistently — that is,
starting from a much larger scale (e.g., the scale of an entire galaxy, or at least a sig-
nificant patch thereof) than the one we ultimately wish to resolve, such as a forming
star cluster, while simultaneously capturing the effects of the galactic environment
and feedback from nearby star-forming regions. Achieving this at the maximum pos-
sible resolution to ensure numerical convergence and robustness of the results remains
elusive with current numerical methods and supercomputing capabilities. Therefore,
all calculations must adopt approximations, both in terms of the initial conditions
and the boundary conditions.

Popular techniques for initializing a star formation simulation include placing a
uniform sphere of gas with a chosen radial density profile (e.g., Bate et al. 2003; Fed-
errath et al. 2010a; Girichidis et al. 2011, 2012b,a) in a box with isolated boundary
conditions for hydrodynamics and gravity, and adding a turbulent velocity field at the
start to promote the formation of structure reminiscent of molecular clouds. Another
common approach models a sub-volume of a molecular cloud with periodic bound-
ary conditions and drives turbulence with an idealized energy injection mechanism
(Klessen et al. 2000; Jappsen et al. 2005; Federrath and Klessen 2012; Krumholz et al.
2012; Guszejnov et al. 2022; Mathew et al. 2023, e.g.,). Both techniques have advan-
tages and disadvantages: although real molecular clouds are neither truly periodic nor
completely isolated from the surrounding ISM, some approximation in boundary con-
ditions is unavoidable. Moreover, since turbulence decays on roughly a crossing time
(Stone et al. 1998; Mac Low 1999), some form of continuous driving is required to
sustain realistic turbulent motions.

A recent method combines the advantage of continuous turbulence driving with the
ability to use isolated gas and gravity boundaries by imposing an external gravitational
potential that confines the cloud during the driving phase (Lane et al. 2022). This
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and the aforementioned idealized approaches allow for controlled parameter studies,
as properties such as the sonic Mach number, mean density, and size of the target
cloud or region can be set explicitly via the initial conditions. However, these methods
still suffer from artificial boundary and initial conditions3.

Finally, a method that avoids the use of artificial turbulence driving altogether
involves initializing the simulation on a much larger scale than the ultimate scale of
interest, and then ‘zooming in’ on that region by selectively adding higher resolu-
tion elements or by re-simulating an extracted subdomain. This technique has been
employed for both large-scale cloud simulations of star formation (e.g., Zamora-Avilés
and Vázquez-Semadeni 2014; Seifried et al. 2017; Ibáñez-Mej́ıa et al. 2017; Kim and
Ostriker 2017; Grisdale et al. 2018; Vázquez-Semadeni et al. 2019; Haid et al. 2019;
Zhao et al. 2024; Hopkins et al. 2024; Pillsworth et al. 2025), as well as for smaller-
scale simulations of individual accretion disks (e.g., Offner et al. 2009; Kuffmeier et al.
2017; Bate 2018; Lebreuilly et al. 2021; He and Ricotti 2023; Yang and Federrath
2025; Mayer et al. 2025). Ideally, once the zoom-in region is sufficiently refined, the
scales of interest are far enough removed from the numerical boundaries of the parent
simulation that boundary effects are negligible within the region of interest, allowing
for re-simulation of this subregion. In the case of zoom-ins, the high-resolution region
is no longer treated as isolated and it continues to exchange mass and energy with the
larger environment via accretion and feedback effects as it evolves. Likewise, the initial
conditions are more ‘natural’ in this approach, as they emerge self-consistently from
the larger-scale flows in the parent simulation, such as from the formation of the dense,
collapsing part of the cloud itself. While this is certainly a more realistic approach
to initializing a star-formation simulation, it comes at the cost of making parameter
studies considerably harder, as there is little direct control over the cloud parameters,
apart from selecting different zoom-in regions from the larger parent simulation.

3 Turbulence

Turbulence is a fundamental ingredient of star formation, with its properties shaping
the structure and dynamics of molecular clouds, the birthplaces of stars (Scalo and
Elmegreen 2004; Elmegreen and Scalo 2004; Mac Low and Klessen 2004; McKee and
Ostriker 2007; Hennebelle and Falgarone 2012; Padoan et al. 2014). The statistical
nature of turbulent gas, including MHD (e.g., Beresnyak and Lazarian 2019), its
density probability distribution function and power spectra, provides essential input
for theories of the star formation rate (SFR) (Krumholz and McKee 2005; Padoan and
Nordlund 2011; Hennebelle and Chabrier 2011; Federrath and Klessen 2012; Burkhart
2018; Hennebelle et al. 2024) and the stellar initial mass function (IMF) (Padoan and
Nordlund 2002; Hennebelle and Chabrier 2008, 2009, 2011, 2013; Hopkins 2012, 2013b;
Guszejnov et al. 2017; Lee et al. 2020). Capturing turbulence is therefore critical for
numerical simulations of star formation, and we begin this review by examining the
main challenges and current state-of-the-art in turbulence modeling.

3Periodic boundary conditions may appear particularly unrealistic, but given the large spatial extent of
the ISM in a galaxy, a cloud patch of a few parsecs in size can be regarded as a specific realization of a
much larger turbulent medium. In this sense, periodic boundaries can be viewed as mimicking the tidal
effects and gas flows induced by surrounding, similar cloud regions.
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3.1 Challenges in modeling turbulent flows

Using NRe = 1.5 and pRe = 4/3–3/2, we find Re ∼ (2.7–5.4)×102, (8.5–17)×103, and
(1.2–5.4)×105 for N = 100, 1,000, and 10,000, respectively. Thus, fully turbulent flows
with Re ≳ 1,000 require N ≳ 270. Much higher resolution is necessary, however, to
establish a turbulent cascade with sufficient dynamic range to measure inertial-range
statistics such as scaling exponents and correlation functions.

The primary challenge in modeling supersonic turbulence lies in capturing the
dynamic range required to achieve fully-developed turbulent flows — that is, to repro-
duce the self-similar characteristics and statistics of turbulence across the relevant
density, velocity, and spatial scales. For molecular clouds, the turbulence spans more
than six orders of magnitude in scale, from the cloud size of ∼ 10–100 pc down to the
dissipation scale around ∼ 1 AU inside protostellar accretion disks. Importantly, this
may not be a single universal ‘cascade’ (or spectrum) — although often approximated
as such — because different energy injection mechanisms can drive turbulence on dif-
ferent scales within molecular clouds. Turbulence continues to play a crucial role in
fragmentation and in shaping the dynamics of accretion disks.

The difficulty can be quantified by the Reynolds number, a dimensionless param-
eter measuring the ratio of advective transport to viscous diffusion. It is defined as

Re =
Ldriv vturb

ν
, (9)

where vturb is the characteristic turbulent velocity at the largest scale (here, the cloud
scale Ldriv), and ν is the kinematic viscosity (cf. Sect. 2.1). For Re ≲ 10, flows remain
laminar. At Re ∼ 100, a Kármán vortex street appears, marking the transition toward
turbulence, which becomes fully developed for Re ≳ 1,000 (Frisch 1995).

In the ISM, Re typically ranges from ∼ 105 to 1010, confirming that it is in a state
of ubiquitous, fully developed turbulence. However, even the most powerful current
supercomputers only achieve simulations with effective Re ∼ 105 (see below). The
challenge is the enormous dynamic range required, which demands either extremely
high grid resolution or, in particle-based methods, very large numbers of particles.

As discussed in detail in Sect. 3.4.1 below, for grid-based codes, Re depends on
the linear grid resolution N , as Re = (N/NRe)pRe , where NRe is the number of grid
cells resolving the viscous scale (where Re = 1), and pRe = 1 + ζ is determined by the
scaling of the turbulent velocity dispersion with size ℓ. In general, vturb(ℓ) ∝ ℓζ , with
ζ = 1/3 and pRe = 4/3 for Kolmogorov (incompressible) turbulence (Kolmogorov
1941), and ζ = 1/2 and pRe = 3/2 for Burgers (shock-dominated) turbulence (Burgers
1948). Intuitively, one expects NRe ∼ 1, since eddies smaller than a grid cell cannot
be resolved. Early numerical studies suggested NRe ∼ 0.5 (Benzi et al. 2008), but
more recent, higher-resolution simulations indicate NRe ∼ 1.5 for subsonic and ∼ 3
for supersonic turbulence (Shivakumar and Federrath 2025).

The current state of the art has reached resolutions of ∼ 10,0003. For example,
Ishihara et al. (2020) achieved 12,2883 grid cells in incompressible hydrodynamic
turbulence. Dong et al. (2022) ran subsonic MHD turbulence with 10,000 × 10,000 ×
5,000 grid cells to study magnetic reconnection in the cascade, while Kempski et al.
(2025) reached 10,2403 for subsonic MHD turbulence. Such extreme resolutions are
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Fig. 2 Zoom into the magnetic current structures (top panels) and into the gas density (bottom
left), together with the power spectrum of the magnetic-to-kinetic energy ratio Emag/Ekin (bottom
right) in a supersonic MHD turbulence simulation with 10,0803 grid cells from Beattie et al. (2025a).
Supersonic turbulence produces density contrasts spanning several orders of magnitude and intricate
current structures across scales, ultimately forming strongly magnetized plasma structures on small
scales. Accurately modeling these requires powerful numerical schemes and extreme resolution. A key
finding is that while the magnetic field has only a modest impact on large scales (low k), magnetic
energy always approaches equipartition with kinetic energy on small scales (k > keq). Numerical
convergence of the energy content below keq requires resolutions ≳ 5,0003. Adapted from Figs. 1 and
2, and Suppl. Fig. 3 in Beattie et al. (2025a).

required to capture the geometry of magnetic current sheets at the smallest scales. In
the supersonic regime relevant for molecular clouds and star formation, Federrath et al.
(2021) and Beattie et al. (2025a) performed turbulence simulations with ≳ 10,0003

grid cells to resolve the transition from supersonic to subsonic turbulence. This ‘sonic
scale’ may be a critical ingredient for star formation (Vázquez-Semadeni et al. 2003;
Krumholz and McKee 2005; Federrath and Klessen 2012) and filament formation
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(Arzoumanian et al. 2013; Federrath 2016; Federrath et al. 2016; Arzoumanian et al.
2018). A visualization of the Beattie et al. (2025a) simulation is shown in Fig. 2. A
critical outcome of this is that the magnetic field always tends to be at least as strong
as the kinetic field on sufficiently small scales, likely associated with the transition
from supersonic to subsonic turbulence.

3.2 Turbulence initialization and driving

Since there is no closed-form description of turbulence, simulations must begin with
an initialization phase to establish a fully-developed turbulent state with the correct
statistical properties of density, velocity, and magnetic fields, and their correlations.
This is achieved through ‘turbulence driving’, in which energy and momentum are
injected until the statistical properties converge to a quasi-equilibrium state.

Turbulence is typically driven by applying an external acceleration field F to the
MHD system, as source terms ρF and ρF ·v on the RHS of Eqs. (2) and (3). The field
F is usually generated via a stochastic Ornstein-Uhlenbeck (OU) process (Eswaran
and Pope 1988; Schmidt et al. 2009; Federrath et al. 2010b; Price and Federrath
2010), which evolves smoothly in space and time. Its auto-correlation time is set to
the turbulent (eddy) turnover time, tturb = Ldriv/(Mcs), on the largest (integral)
scales, where Ldriv = L/2 is the driving scale, L the domain size, and M the sonic
Mach number defined by vturb = Mcs.

The driving is usually constructed in Fourier space, injecting kinetic energy at
the lowest wave numbers, 1 < |k|L/2π < 3, with the peak at k = 2 (the L/2 scale).
While different driving spectra can be used, a good choice is a driving amplitude that
declines parabolically toward k = 1 and k = 3, confining direct driving to a narrow
band of scales and allowing turbulence to develop naturally on k ≥ 3. Some works have
explored alternative injection scales, with spectra peaking at k = 3–4 or 7–8 (Klessen
2001; Walch et al. 2012; Koch et al. 2019), or even across an entire power-law spectrum
(Nam et al. 2021), to study the role of the driving scale in turbulence statistics, the
emergence of inverse cascades (Brandenburg et al. 2023), and implications for star
formation and the IMF (Klessen 2001; Bate 2009a; Girichidis et al. 2011; Nam et al.
2021).

By applying a Fourier-space projection, F can be decomposed into solenoidal (∇ ·
F = 0) and compressive (∇ × F = 0) parts via Helmholtz decomposition. In index
notation, the projection operator is

P
ζ
ij(k) = ζ δij + (1 − 2ζ) kikj/|k|2. (10)

This yields a ratio of compressive-to-total driving power of

Fcomp

Ftot
=

(1 − ζ)2

1 − 2ζ + 3ζ2
. (11)

Thus, ζ = 1 produces purely solenoidal driving, while ζ = 0 yields purely compressive
driving. Intermediate ζ values give mixtures, with ζ = 1/2 producing Fcomp/Ftot =
1/3 (‘natural mixture’), equivalent to randomly selecting modes in three dimensions,
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where on average one axis is compressive and two are solenoidal (Federrath et al.
2008). This turbulence-driving module is publicly available as a maintained C++ code
with MHD plugins and Python interfaces on GitHub (Federrath et al. 2022, https:
//github.com/chfeder/turbulence generator).

The effects of the driving mode on structure formation have been widely studied
(e.g., Koch et al. 2017; Mohapatra et al. 2022). In particular, Federrath and Klessen
(2012) and Mathew et al. (2023) show that compressive driving yields ∼ 10× higher
SFR and reduces the IMF characteristic mass by a factor of ∼ 2 compared to solenoidal
driving.

3.3 Physical shear and bulk viscosity

The traceless rate-of-strain tensor Sij = (1/2)(∂ivj+∂jvi)−(1/3)δij(∇·v) (Eq. 6), used
in the MHD momentum and energy equations (Eqs. 2 and 3), accounts only for shear
viscosity. More generally, however, viscous stresses are proportional to all components
of the velocity gradient tensor ∇v, and compressible gases therefore exhibit both
shear and bulk (volume) viscosity. Accordingly, the generalized Navier-Stokes equation
includes not only the shear viscosity νshear, but also the bulk viscosity coefficient νbulk,
which becomes relevant for compressible flows where ∇ · v ̸= 0 (Beattie et al. 2025b).
Therefore, writing Eq. (2) (for simplicity omitting magnetic terms), including νshear

and νbulk yields

∂(ρv)

∂t
= −∇ · (ρvv) − ∇pth

+∇ · (2ρνshearS) + ∇ · [ρνbulk(∇ · v)I] . (12)

For monatomic ideal gases, the bulk viscosity is identically zero, as shown by
kinetic theory (Mihalas and Mihalas 1984). In contrast, for polyatomic molecules,
νbulk can be non-zero, but only if relaxation processes occur on timescales comparable
to or longer than typical fluid timescales (Mihalas and Mihalas 1984). The magnitude
of νbulk therefore depends strongly on the composition of the polyatomic gas, and
direct measurements remain uncertain (Tisza 1942). Because turbulence studies have
traditionally focused on incompressible gases, bulk viscosity is often omitted from
the governing equations. However, in compressible gases and plasmas — particularly
relevant for the ISM and star formation — bulk viscosity may play a significant role
and thus warrants further investigation.

A recent parameter study provides new insights into the role of bulk viscosity.
While the relative importance of shear and bulk viscosity depends on gas composi-
tion and remains uncertain due to laboratory measurement challenges, Beattie et al.
(2025b) estimate ratios as high as νbulk/νshear ∼ 1–100 for the molecular phase of
the ISM, where stars form. This implies measurably enhanced kinetic energy dissipa-
tion on small scales, with the strongest impact on the compressible component of the
velocity field. However, Beattie et al. (2025b) also find that bulk viscosity has rela-
tively little influence on magnetic field amplification by the turbulent dynamo. This
is because the dynamo is primarily powered by vorticity, even in highly compressible
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plasmas (Federrath et al. 2011b, 2014b; Achikanath Chirakkara et al. 2021), and the
vortical component of the velocity field is not directly affected by bulk viscosity.

3.4 Sub-resolution models for turbulence

Given the challenges of resolving turbulent flows (see Sect. 3.1), it is essential to
recognize the limitations imposed by finite resolution and to develop methods for
quantifying numerical dissipation. These methods can then be used to model turbu-
lence on unresolved scales and to estimate key physical parameters on the grid scale
in cosmological or galaxy-scale simulations. Such parameters include the turbulent
Mach number, the virial parameter, the effective driving mode of turbulence, and
the plasma beta (in the presence of magnetic fields). These sub-resolution properties
provide crucial inputs for turbulence-based star formation models, for example by reg-
ulating the amount of local stellar feedback to be injected in large-scale simulations.
In this way, sub-resolution turbulence models serve as a critical bridge between small-
scale physics, which cannot be directly resolved, and the global dynamics of galaxies
and star-forming regions, thereby enabling simulations to incorporate the essential
impact of turbulence across vastly different scales.

3.4.1 Numerical viscosity and resistivity

The first step in sub-resolution modeling is to quantify and predict the levels of numer-
ical viscosity and resistivity — specifically, the effective kinetic and magnetic Reynolds
numbers that can be achieved for a given grid or particle resolution. To address this,
Kriel et al. (2022, 2025) conducted an extensive suite of turbulence simulations in
both the subsonic and supersonic regimes, explicitly including physical viscosity and
resistivity terms. By systematically varying ν and η while changing the grid resolu-
tion, they demonstrated that converged results are obtained only above a threshold
resolution Nthresh (where N is the number of grid cells per dimension). If N < Nthresh

for a target Re and/or Rm, then numerical viscosity and/or resistivity dominate over
the explicit terms, such that the effective Re and Rm fall below the intended values.

Using the relations in Kriel et al. (2022, 2025) as a foundation, Shivakumar and
Federrath (2025) conducted a large parameter study with varying N and purely
numerical dissipation, deriving relations between the resolution N and the achievable
Re and Rm,

Re = (N/NRe)
pRe , (13)

Rm = (N/NRm)
pRm , (14)

where the driving scale of turbulence is taken as L/2, with L the domain side length
covered by N resolution elements in each direction. The parameters NRe, pRe, NRm,
and pRm were determined from high-resolution implicit large-eddy simulations (ILES)
spanning N3 = 1443 to 2,5763, using spectral fitting. Figure 3 summarizes the achiev-
able Re and Rm as functions of N based on these relations. Solid lines show the fits
from Shivakumar and Federrath (2025), with shaded regions spanning one order of
magnitude to represent maximum uncertainty. Two sets of relations are displayed:
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Fig. 3 Kinetic Reynolds number (Re, top) and magnetic Reynolds number (Rm, bottom) as func-
tions of the number of resolution elements (N) along one side of a cubic domain, shown for the
subsonic (left) and supersonic (right) turbulence regimes. Data points represent simulations with
explicit dissipation, i.e., Re and Rm values set by the authors of the respective works (see legend):
GFN02 (Gotoh et al. 2002), SCT+04 (Schekochihin et al. 2004), HB04 (Haugen and Brandenburg
2004), HBD04 (Haugen et al. 2004a), HBM04 (Haugen et al. 2004b), MB06 (Mee and Brandenburg
2006), SIC+07 (Schekochihin et al. 2007), FCS+11 (Federrath et al. 2011b), BR19 (Brandenburg
and Rempel 2019), AFT+21 (Achikanath Chirakkara et al. 2021), SF21 (Seta and Federrath 2021),
KBS+22 (Kriel et al. 2022), GKW+22 (Galishnikova et al. 2022), BFK+23 (Beattie et al. 2023), and
KBF+25 (Kriel et al. 2025) for the subsonic regime, and HBM04, FCS+11, FSB+14 (Federrath et al.
2014a), SF21, and KBF+25 for the supersonic regime. The lines show Re-N and Rm–N relations
derived by Shivakumar and Federrath (2025), with parameters listed in each panel. These relations
provide estimates of the maximum Re and Rm achievable for a given N due solely to numerical dissi-
pation. Shaded regions indicate the associated uncertainties, accounting for methodological variations
as well as differences across 14 numerical schemes, including different grid-based methods and SPH.

black lines fix pRe = pRm = 4/3 for subsonic turbulence and pRe = pRm = 3/2
for supersonic turbulence, consistent with theoretical scaling expectations (Federrath
et al. 2021; Shivakumar and Federrath 2025). Magenta lines, in contrast, allow pRe and
pRm to vary freely. Parameter values are reported in the figure legends. The shaded
bands capture uncertainties from fitting, methodological variations, and code-to-code
differences across a wide range of numerical schemes, including grid-based solvers
(with/without Riemann solvers, flux limiters, etc.) and SPH (Price et al. 2018).

The data points in Figure 3 represent simulations from the literature reporting
target Re and Rm values obtained with explicit viscosity and resistivity in the MHD
equations (Eqs. 1–5). However, even with explicit dissipation included, numerical
dissipation remains present and may dominate depending on N . Simulations lying
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significantly above the SF25 relations are dominated by numerical dissipation, while
those within or below the relations are converged with respect to their chosen Re
and/or Rm.

In practice, this means that simulations cannot reach high Reynolds numbers
simply by lowering the explicit viscosity or resistivity; sufficient resolution is also
essential. For example, the SF25 relations show that at grid resolutions routinely
achievable today (N3 ∼ 1,0243), the effective Re ∼ 103 − 104 for both subsonic and
supersonic turbulence. While this is nominally turbulent, i.e., Re ≳ 1000 (Frisch 1995),
it remains far below the ISM values of Re ∼ 109, which would require N ∼ 106 − 107

depending on turbulence regime and the uncertainties in the SF25 relations. The
largest current simulations (N ∼ 10,000) reach Re ∼ 105 − 106 (Ishihara et al. 2020;
Federrath et al. 2021; Beattie et al. 2025a; Kempski et al. 2025). Further progress
will depend on improved algorithms, continued code optimization, and advances in
supercomputing technology (cf. Sect. 1.2).

3.4.2 Local kinetic energy dissipation rate

To quantify the local viscosity (numerical and, if present, explicit), we need to deter-
mine what the kinetic energy of the system would have been in the absence of
dissipation. Although this may appear elusive, it can be obtained by deriving an evo-
lution equation for the kinetic energy itself4, analogous to the total energy equation.
Applying v · (. . . ) to Eq. (2) yields (see Troccoli and Federrath 2025),

∂Ekin

∂t
= −∇ ·

[

(Ekin + p) v −
1

4π
(B · v) B

]

+ pth(∇ · v), (15)

where Ekin = ρ|v|2/2 is the kinetic energy density, and p = pth + |B|2/(8π) the total
(thermal + magnetic) pressure. Note that the last term only involves pth. Unlike
Eq. (3), explicit viscosity terms are omitted here, since the aim is to track numerical
dissipation and obtain a local, time-dependent measure of it.

Evolving Eq. (15) alongside Eqs. (1)–(5) offers a direct measure of local dissipation.
Denoting post-timestep quantities with a prime, the dissipation-free kinetic energy
from Eq. (15) is E′

kin. In contrast, the kinetic energy from the standard MHD update
is ρ′|v′|2/2, which is dissipative5. The key point is that Eq. (2) updates the velocity
in a momentum-conserving, rather than energy-conserving, manner. The local kinetic
energy dissipation rate is therefore

εkin =
E′

kin − ρ′|v′|2/2

∆t
, (16)

providing a direct measure of the kinetic energy lost through numerical discretization
and solver-specific diffusion (e.g., artificial viscosity or slope limiting).

4By ‘perfectly evolved kinetic energy’ we mean dissipation-free within the order of accuracy and
limitations of the numerical scheme.

5In practice, MHD codes compute the new thermal energy by subtracting ρ′|v′|2/2 from the updated
total energy, effectively adding dissipated kinetic energy to the thermal reservoir.
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This framework also enables estimates of the sub-resolution turbulent velocity,

vturb,unresolved =
(

2E′
kin/ρ′ − |v′|2

)1/2
, (17)

from which one can compute the sub-resolution turbulent Mach number or virial
parameter. These are central inputs to turbulence-regulated star formation models
that determine the star formation rate (Krumholz and McKee 2005; Padoan and Nord-
lund 2011; Hennebelle and Chabrier 2011; Federrath and Klessen 2012; Burkhart and
Mocz 2019; Hennebelle et al. 2024) and the stellar initial mass function (Padoan and
Nordlund 2002; Hennebelle and Chabrier 2008, 2009, 2013; Hopkins 2013b; Gusze-
jnov et al. 2022; Mathew et al. 2025). Coupling such dissipation diagnostics with
turbulence-based star formation prescriptions offers a promising pathway for sub-
resolution star formation models in galaxy and cosmological simulations, where cloud
scales are marginally resolved (e.g., Semenov et al. 2016; Kang et al. 2025). A similar
approach has recently been implemented in Semenov (2024).

3.5 Numerical advances and challenges

3.5.1 Positivity-preserving schemes

A major advance in the development of robust numerical schemes for MHD has been
the introduction of positivity-preserving solvers. Building on the theory of nonlinear
stability for finite-volume methods, Bouchut et al. (2007) formulated a relaxation-
based approximate Riemann solver that guarantees non-negative density and pressure
while remaining consistent with entropy stability. The relaxation framework replaces
the MHD fluxes with a multi-wave system that is easier to control numerically, yet
faithfully represents the full wave structure of MHD. Practical three- and five-wave
implementations (Waagan et al. 2011) demonstrated that this approach provides a
computationally efficient alternative to standard approximate solvers, with the added
benefit of strict positivity preservation — an essential feature for simulations involv-
ing strong shocks, rarefactions, and vacuum-like states, such as those encountered in
supersonic turbulence and star-formation applications. More recent adaptations and
extensions of this include works by Derigs et al. (2016) and Birke et al. (2021), with
the latter allowing accurate solutions with significantly reduced dissipation in flows
with low Mach numbers (see also Leidi et al. 2022; Watt et al. 2025).

For example, in simulations of supersonic turbulence with M ∼ 10 (Lee et al.
2009), even robust solvers such as HLLD (Harten–Lax–van Leer Discontinuities)
(Miyoshi and Kusano 2005) require careful tuning and the use of relatively low CFL
factors (Courant et al. 1928) to maintain stability. By contrast, turbulence simulations
exceeding M ∼ 20 can be evolved stably at high resolution with the positivity-
preserving HLLxR scheme (Harten–Lax–van Leer Relaxation, where the ‘x’ denotes
the 3-wave or 5-wave implementation; see Waagan et al. 2011), even though increas-
ing resolution steepens gradients and amplifies density contrasts in isothermal shocks,
making stability more challenging (Federrath 2013). A similar advantage has been
demonstrated in simulations of jet launching and propagation (e.g., Seifried et al.
2012), where the HLLxR scheme has proven highly effective.
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Fig. 4 Comparison of double-precision, single-precision, and hybrid-precision schemes for supersonic
MHD turbulence. The hybrid scheme (blue line) matches the accuracy of double precision (red dotted
line), conserving gas mass (left) and momentum (right), while single precision (green line) exhibits
significant errors. At the same time, the hybrid scheme provides a computing speed-up and reduces
memory use by a factor of ∼ 2 relative to double precision.

3.5.2 Hybrid precision

A promising way to accelerate future simulations while simultaneously increasing
numerical resolution is to employ a ‘hybrid-precision’ approach. In such schemes, all
hydrodynamical variables are stored in single precision (4 bytes per floating-point
number), while critical operations are performed in double precision (8 bytes per
floating-point number). This design retains the accuracy of full double-precision cal-
culations while reducing memory usage and compute time. Operations that require
double precision — such as summations over large numbers of resolution elements (e.g.,
for volume or mass averages) — are explicitly forced to run in double precision.

For example, Federrath et al. (2021) implemented a hybrid-precision algorithm for
MHD turbulence simulations, achieving performance gains of ∼ 3–4× over the stan-
dard (public) version of the flash code (Fig. 1). Independent of other optimizations,
switching to hybrid precision alone typically yields a ≲ 2× speed-up, provided com-
munication is bandwidth-limited rather than latency-limited — a condition that can
be met by packing MPI messages and thereby reducing communication frequency.
Additional optimizations, such as removing unused 3D fields and inlining the EOS into
the MHD solver, further improved runtime and memory usage, leading to the overall
factor of 3–4 reported in Federrath et al. (2021). Figure 4 compares pure double-
precision and single-precision runs with the hybrid scheme for a standard turbulence
setup. Gas mass (left panel) and momentum (right panel) remain well conserved in
the hybrid scheme, while significant errors appear in pure single-precision mode.

Hybrid-precision methods reproduce high-order statistical moments and power
spectra of turbulence without significant loss of accuracy. They therefore hold strong
promise for enabling very high-resolution simulations while reducing computational
cost and carbon footprint. The method was recently extended to a particle-in-cell
(PIC) code (Chirakkara et al. 2024), demonstrating its potential beyond grid-based
hydrodynamics. Future extensions to other physics modules, such as gravity and
radiation, may provide further benefits. Hybrid-precision schemes are becoming
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increasingly relevant in HPC, particularly with the rise of GPU computing, where lim-
ited working memory and performance constraints often necessitate single-precision
operations6.

3.5.3 GPU acceleration

GPU acceleration has become central to HPC, and more codes are adapting to GPUs
for MHD and other physics capabilities. However, using GPUs well hinges on per-
formance portability across rapidly changing vendor ecosystems. Two community
portability layers are often used: Kokkos7 (templated C++ abstractions target-
ing CUDA/HIP/SYCL/HPX/OpenMP) and AMReX8 (GPU-aware, block-structured
AMR framework). Both address common hotspots: finite-volume loops, Riemann
solves, reconstruction, and divergence control, while exposing GPU-friendly iteration
and memory models. Persistent challenges include bandwidth-bound kernels, AMR
data motion and kernel launch overheads, multi-GPU scaling with overlap of com-
munication/compute, and maintaining numerical reproducibility and stability when
using mixed precision (cf. Fig. 4) or fast-math options.

The athenak, flash-x, and quokka astrophysics codes are a few example
codes supporting GPUs. athenak9 (Stone et al. 2024) is a performance-portable
implementation of the athena++ AMR framework that uses Kokkos to run MHD
on CPUs and GPUs, providing a single code base for heterogeneous systems and
multi-GPU capability via Kokkos backends. Under significant development, flash-

x10 (Dubey et al. 2022; Dhruv et al. 2023) aims to adopt a code-generation–driven
performance-portability strategy and options for Fortran–Kokkos as well as Fortran-
AMReX interoperability layers to offload selected kernels to GPUs while preserving
the long-standing multiphysics architecture provided in flash. quokka11 (Wibking
and Krumholz 2022) targets GPU-resident MHD as well as radiation hydrodynam-
ics with AMR using AMReX, with strong single-GPU throughput and a unified
CPU/GPU code base.

3.6 Summary of challenges and future directions

Turbulence remains one of the fundamental unsolved problems in physics and math-
ematics. Numerical methods are indispensable for advancing our understanding, but
modeling truly turbulent flows, such as those in the ISM, requires Reynolds numbers
of order ∼ 109 — well beyond the reach of current supercomputers. This gap between
physical reality and numerical feasibility remains a central challenge for the field.

Despite these limitations, major progress has been made in recent years. Advances
in code optimization, such as the hybrid-precision method (Sect. 3.5.2), now allow
simulations at resolutions up to 10,0003 grid cells, corresponding to effective Reynolds
numbers of order 105, based on improved understanding of how numerical viscosity

6Even FP64 GPUs typically run at 2× speed in single precision compared to double precision.
7https://github.com/kokkos
8https://amrex-codes.github.io/amrex
9https://github.com/IAS-Astrophysics/athenak
10https://github.com/Flash-X
11https://github.com/quokka-astro
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scales with grid resolution (Sect. 3.4.1). At the same time, many codes are being mod-
ernized for GPU acceleration, opening additional opportunities to push toward higher
effective Reynolds numbers in the near future. Another critical advance has been the
development of positivity-preserving MHD schemes (Sect. 3.5.1), which remain robust
in the presence of strong shocks and discontinuities. These solvers are particularly
important for modeling the highly compressible, supersonic turbulence that domi-
nates the star-forming ISM, enabling both fundamental turbulence studies and more
reliable simulations of star formation.

Further progress has also been made in capturing local dissipation rates. This
includes both numerical and physical dissipation, with extensions beyond the standard
shear viscosity to include bulk viscosity effects (Sect. 3.3). New methods evolve the
kinetic energy equation directly (Sect. 3.4.2) alongside the standard MHD equations
(Sect. 2.1), providing novel ways of estimating sub-resolution turbulent velocity dis-
persions and energies. These quantities are crucial for subgrid star-formation models
and can be applied in galaxy-scale simulations. A promising direction for future work
is to extend these approaches to quantify the local magnetic energy dissipation rate,
providing a more complete view of turbulent energy transfer and its impact on star
formation and ISM dynamics.

4 Gravity

Modeling gravity is a fundamental requirement in star-formation simulations. Once
the the gravitational acceleration g(x, t) is computed, it is incorporated into the MHD
system (Eqs. 1–5) by adding the terms +ρg and +ρv·g to the RHS of Eqs. (2) and (3),
respectively, as source terms, where g = −∇Φ can be written as the negative gradient
of the gravitational potential Φ.

4.1 Discrete mass distributions

To obtain g, ideally, the gravitational acceleration gi of a fluid element and/or mass
particle i at position xi can be determined directly via a sum over the contributions
from all N mass elements mj at positions xj , as

gi = −G
N

∑

j=1

mj
rj

r3
j

K(rj/rsoft), (18)

where G is the gravitational constant, rj = xi − xj and rj = |rj |. The function
K(rj/rsoft) is a cubic-spline softening kernel (Monaghan and Lattanzio 1985; Price
and Monaghan 2007),

K(r̃) =











4r̃2
(

8
3 r̃ − 48

5 r̃3 + 8r̃4
)

for 0 ≤ r̃ < 1
2 ,

4r̃2
(

16
3 r̃ − 12r̃2 + 48

5 r̃3 − 8
3 r̃4 − 1

60 r̃−2
)

for 1
2 ≤ r̃ < 1,

1 for r̃ ≥ 1 ,

(19)
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with the dimensionless radius r̃ = r/rsoft, where rsoft is a user-defined gravitational
softening radius. Gravitational softening is required, because otherwise g → ∞ when
particles approach one another. Using this kernel, we see that K → 0 smoothly when
r → 0, and K = 1 for r ≥ rsoft, such that we recover Newton’s exact acceleration
with Eqs. (18) and (19) outside the softening radius, which is preferred over simpler
softening approaches, such as Plummer softening, where K(r̃) = r̃3(r̃2 +1)−3/2, which
only approaches the exact solution for r ≫ rsoft.

Equation (18) is essentially how a basic N -body method approaches the problem
for discrete point masses and is the most accurate way to compute the gravitational
acceleration. However, direct summation is by definition very slow, so most particle-
based gas dynamics codes solve for the gravitational forces by hierarchically grouping
close neighbors and constructing a tree (e.g., see Sect. 4.4.3).

4.2 Continuous mass distributions

For continuous mass distributions, modeling gravity essentially requires the solution
of the Poisson equation for the gravitational potential, Φ,

∇2Φ = 4πGρ. (20)

There are three main methods to obtain a numerical solution of the Poisson equation,
which are discussed in more detail below (FFT, multi-grid, tree-based), where all
three can be adopted in grid-based codes, while only the third one is usually adopted
in particle-based codes.

4.3 Combining the gravitational effects of gas and stars

Finally, the most common situation for star-formation calculations is that we have
both gas and stars coexisting, in which case we simply add up their contributions to
the total gravitational potential and acceleration,

Φ = ∇Φgas + ∇Φsinks, (21)

g = ggas + gsinks. (22)

A common approach would be to solve Poisson’s equation (Eq. 20) for the gas, and
direct summation for the stars. Indeed, Eq. (18) can be used for the star-particle
method described in detail below (Sect. 5.2), and is efficient as long as the number of
star particles N in a simulation is not exceedingly large, which is problem-dependent.
For typical star-formation simulations, which nowadays have > millions of resolution
elements (grid cells or SPH particles), a direct summation method is efficient for star-
particle counts of the order of a thousand, as the cost of direct summation scales as
N2 in order to compute g for all particles. For continuous mass distributions (i.e., the
gas) we now look into three different basic methods.
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4.4 Methods for solving the Poisson equation

4.4.1 FFT methods

If the system has periodic boundary conditions and can be represented on a uniform
grid, the solution to Poisson’s equation can be obtained via Fourier transformation,
i.e., in wavenumber (k) space12. In this case, ∇2 → −|k|2, and after FFT of ρ → ρk,
Eq. (20) becomes

−|k|2Φk = 4πGρk, (23)

which is algebraically solved for Φk = −4πGρk/|k|2. Ignoring the k = 0 mode (mean
density), because only density fluctuations matter for the potential in a periodic sys-
tem, inverse FFT of Φk yields Φ. While this method is fast (as FFT scales with
N log N), it has the obvious limitation that it only works on a uniform grid, and only
for periodic boundary conditions (although FFT-based methods that also work with
free boundaries have been developed; see Genovese et al. 2006), neither of which are
usually the case for star-formation simulations.

4.4.2 Multi-grid methods

While FFT-based solvers are extremely efficient for periodic systems on a uniform grid,
their applicability is restricted when dealing with non-periodic boundary conditions,
and situations where high dynamic range in resolution is required. In astrophysical
simulations, gravitational potentials often need to be resolved over many orders of
magnitude in density and spatial scale. Multi-grid methods (Briggs et al. 2000; Trot-
tenberg et al. 2001) are particularly suited for this as they employ a hierarchy of
grids at different resolutions. The core idea is to smooth high-frequency error com-
ponents on fine grids and correct low-frequency errors on coarser grids, accelerating
convergence compared with simple relaxation methods.

A key element of multi-grid is that the initial conditions for the iterative solution
of Poisson’s equation on the fine grids is obtained from interpolated solutions on the
respective coarser grids. This hierarchical cycling between grid levels makes multi-
grid solvers among the fastest iterative methods available for elliptic equations such
as Poisson’s equation. However, it should be noted that multi-grid methods therefore
require a relatively low-resolution (coarse) grid on the lowest level of the grid hierarchy,
because the lowest level is where initial guesses are required to initialize the iteration.
This can cause problems if one wants to employ a large (high-resolution) base grid on
the lowest-resolution level, because the initial iteration may take a very long time to
converge. For star-formation applications that use a large molecular cloud as a basis,
where turbulence needs to be resolved on a base grid of at least 2563 cells or more, this
step in the multi-grid solve can become prohibitively expensive. The only solution is to
add ‘ghost’ lower-level grids to artificially extend the multi-grid hierarchy to coarser-
resolution grids. Alternatively, if the system represents a ∼ 1 − 10 pc-sized molecular
cloud, which is always embedded in the larger-scale ISM of the galaxy, then periodic
boundary conditions can be a reasonable approximation (Klessen et al. 2000; Jappsen
et al. 2005; Federrath and Klessen 2012; Krumholz et al. 2016; Mathew et al. 2023,

12In practice one would use a Fast Fourier Transform (FFT) method.
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2025), in which case the coarse-level multi-grid solve can be done via the FFT method
above, followed by the standard multi-grid cycles to finer grids of the AMR hierarchy.

In practice, multi-grid approaches allow localized refinement while still solving the
global problem consistently, making them well suited for self-gravitating astrophysical
flows, adaptive mesh refinement (AMR) frameworks, and different types of bound-
ary conditions. A few examples of multi-grid in astrophysical AMR codes are flash

(Ricker 2008), enzo (Bryan et al. 2014), and ramses (Teyssier 2002) (see Table 1.
These methods provide the flexibility and scalability necessary for modern simulations
of cosmic structure formation and star-forming systems.

4.4.3 Tree-based methods

Another widely used alternative to FFT or multi-grid solvers are tree methods, which
are particularly well suited for N-body simulations of self-gravitating systems. Instead
of mapping the mass density onto a mesh, tree algorithms operate directly on parti-
cle distributions. The essential idea is to hierarchically subdivide the computational
domain into nodes (or cells), forming an octree in 3D or a quadtree in 2D. At each
level of the tree, the mass distribution of a node can be approximated by a multipole
expansion when viewed from sufficiently large distances. This reduces the computa-
tional cost of force evaluation from the brute-force O(N2) scaling to approximately
O(N log N), while retaining controllable accuracy. The Barnes–Hut (BH) method
(Barnes and Hut 1986) is the classic example, introducing a simple opening-angle cri-
terion to decide whether a distant group of particles can be treated as a single node
or whether the tree must be further refined.

In the BH-tree algorithm, the decision to approximate a group of particles by a
single pseudo-particle is governed by the opening-angle criterion,

l

d
< θ, (24)

where l is the size of the node (typically the side length of the cubic cell enclosing the
particles), d is the distance from the particle under consideration to the node’s center
of mass (COM), and θ is a user-chosen tolerance parameter (commonly θ ∼ 0.5 − 0.7,
with lower θ resulting in higher accuracy). If this inequality is satisfied, the node
subtends a sufficiently small angle and its contents are treated as a single body of
mass mnode located at the COM of that node xCOM. The gravitational acceleration
contribution then reduces to the standard point-mass expression, i.e., using Eq. (18)
with mj = mnode and rj = xi − xCOM for each node. If the criterion is not met,
the node is ‘opened’ and the test applied recursively to its children. This adaptive
procedure ensures that distant groups of particles are efficiently approximated, while
nearby or extended structures are resolved in detail, balancing speed and accuracy.

Tree-based methods have proven especially powerful in astrophysical contexts
where mass distributions are highly clustered and the dynamic range is large. Unlike
mesh-based solvers, they naturally adapt to particle positions without requiring a
predefined grid, making them efficient for collisionless dynamics, galaxy formation,
cosmological structure growth, and star-formation simulations. Hybrid approaches
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are also common, for instance the TreePM method (Xu 1995; Bode et al. 2000;
Bagla 2002), which combines a particle–mesh solver for long-range forces with a
tree algorithm for short-range interactions, achieving both speed and flexibility. For
comprehensive introductions, the original Barnes and Hut (1986) paper remains the
canonical reference, complemented by later reviews such as Springel (2005) for the
gadget code family.

While tree-based methods have traditionally been applied in particle-based sim-
ulations, they can also be adapted for grid-based approaches by treating individual
cells as effective point masses. An example is the BH-tree solver implemented in
flash (Wünsch et al. 2018). Moreover, the utility of tree algorithms extends well
beyond solving the Poisson equation. Since the method hierarchically subdivides the
domain into nodes characterized by angular size and distance relative to each evalua-
tion point, it can be repurposed for ray-tracing applications. Prominent examples are
TreeCol (Clark et al. 2012) and TreeRay (Wünsch et al. 2021; Klepitko et al. 2023;
Gaches et al. 2023), which use the tree structure to estimate local column densities
and shielding from external radiation fields. In these applications, the angular domain
is typically discretized using the Hierarchical Equal Area isoLatitude Pixelization of
the sphere (HEALPix; see Górski et al. 2005), which provides an efficient equal-area
tessellation of the sphere and ensures uniform angular coverage.

4.5 Summary of challenges and future directions

Gravitational interactions in simulations can broadly be divided into two categories:
(i) interactions between point masses (e.g., stars) and (ii) interactions of continu-
ous mass distributions (e.g., gas). For point-mass systems, direct N -body summation
with gravitational softening (Sect. 4.1) or tree-based methods (Sect. 4.4.3) are com-
monly employed. Continuous mass distributions, by contrast, require solving Poisson’s
equation. In particle-based approaches such as SPH or mesh-free methods, tree solvers
are often used to approximate the continuous density field. In grid-based methods,
the choice of solver depends on geometry and boundary conditions: FFT solvers
(Sect. 4.4.1) are the most efficient for periodic domains and uniform grids, while
multi-grid methods (Sect. 4.4.2) are best suited for hierarchically refined meshes with
complex boundaries. Tree-based solvers can also be applied in grid codes, where they
demonstrate both accuracy and efficiency. A further advantage of tree methods is
their versatility, as they can be extended to compute column densities via ray-based
techniques that exploit the tree structure.

Overall, gravitational solvers in modern star formation simulations have become
highly robust, yielding accurate solutions when convergence criteria are satisfied (e.g.,
the opening-angle parameter in tree codes or tolerance thresholds in iterative multi-
grid solvers). However, a notable challenge arises in how interactions between gas and
stars are treated. Many codes compute these interactions via the Poisson solver, which
introduces significant effective smoothing of the stellar potential. This can degrade
the accuracy of stellar orbits embedded in dense gas distributions — an crucial regime
in star formation. To avoid such artifacts, direct N -body summation should be con-
sidered for gas–star interactions, even though it comes at higher computational cost.
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This remains an important area for future development, balancing numerical accuracy
with computational efficiency.

5 Star formation

As gravitational collapse proceeds, regions of runaway density enhancement form.
Following collapse to the natural endpoint of star formation calculations — stellar
densities of ∼ 1 g cm−3 — requires a dynamic range of some 20 orders of magnitude
in density. Meanwhile, numerical stability requires significantly reduced time-steps to
treat the evolution of the accompanying small spatial scales as sufficient resolution (see
Sect. 5.1). While calculations of the collapse of isolated dense cores have succeeded
in modeling protostar formation self-consistently (e.g., Tomida et al. 2013), these
are limited to relatively short evolutionary times of O(1) yr, though recent advances
are pushing to later stages of disk formation and evolution (Xu and Kunz 2021a,b;
Mauxion et al. 2024, e.g.,). The cost remains prohibitive for calculations of star cluster
formation, which commence from parsec scales and aim to follow dynamical times of
millions of years.

Consequently, most star formation calculations adopt significantly lower spatial
resolution and instead follow processes in smaller, denser regions using a ‘sub-
resolution model’ attached to a particle that represents an individual star or stellar
group termed a ‘sink particle’ (Bate et al. 1995). Sink particles accrete material from
the gaseous domain (i.e., from the grid or from SPH particles), i.e., they are mass
sinks, but have no internal structure, and thus require no further spatial or tem-
poral resolution. Sophisticated treatments may attach detailed evolutionary models
to the particles that follow time-dependent protostellar evolution and stellar feed-
back. Below we describe different numerical treatments for sink particles (Sect. 5.2),
sub-resolution modeling of stellar evolution (Sect. 6.1), and various forms of stellar
feedback (Sect. 6.2–6.6).

5.1 Jeans resolution criterion

Since stars form in dense, self-gravitating gas, the standard resolution criterion in
simulations of star formation is based on resolving the Jeans length,

λJ =

(

πc2
s

Gρ

)1/2

, (25)

where cs is the sound speed and G is the gravitational constant. Truelove et al. (1997)
demonstrated that λJ must be resolved by at least 4 grid cells to avoid artificial frag-
mentation. Subsequent studies have shown that much higher Jeans resolution (∼ 30
cells) is needed to capture additional physical processes on the Jeans scale, including
convergence of the turbulent solenoidal energy, capturing minimal dynamo amplifica-
tion of magnetic fields, and resolving small-scale density substructure (Turk et al. 2009;
Sur et al. 2010; Federrath et al. 2011b; Turk et al. 2012; Federrath et al. 2014b). An
equivalent resolution criterion can be formulated for particle-based methods such as
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Fig. 5 Jeans resolution study of accretion disk and outflow formation, 1000 yr after the formation of
the protostar, with edge-on slices through the disk. Panels show identical simulations but with Jeans
resolutions of Jres = 2, 4, 8, 16, 32, and 64 cells per λJ. For Jres = 2, artificial fragmentation produces
four sink particles (annotated as Nsink), while only a single star forms for Jres ≥ 4, confirming
the Truelove et al. (1997) criterion. However, disk and outflow structure, as well as the accretion
rate (measured by the fraction of gas accreted, i.e., the star formation efficiency after 1000 yr), only
converge for Jres ≳ 30. Figure adapted from Federrath et al. (2014b).

SPH, moving-mesh, and meshless approaches (see Table 1), by requiring adequate res-
olution of the Jeans mass, MJ = (4π/3)(λJ/2)3ρ, as introduced by Bate and Burkert
(1997).

Most grid-based star formation studies now adopt a Jeans resolution of at least
∼ 8 cells per Jeans length. However, substantially higher resolution may be required
to properly capture turbulence, dynamo action, and core/disk structure on the Jeans
scale. Several studies suggest that at least ∼ 30 cells are needed (Sur et al. 2010;
Federrath et al. 2011b; Turk et al. 2012), which poses a major computational chal-
lenge. Compared to a resolution of 8 cells per λJ, increasing to 30 cells requires
∼ (30/8)3 ≳ 50 times more computational resources in 3D. While this is an enor-
mous cost, the investment may be essential for accurately resolving turbulence and
magnetic-field amplification. Moreover, systematic tests of core and disk formation,
such as those shown in Fig. 5, reveal substantial structural differences with increasing
Jeans resolution — for example, significant disk flaring persists when λJ is resolved
with ≲ 20 cells and only disappears at ∼ 30 cells per λJ.

5.2 Star particles

Since the Jeans resolution criterion (Eq. 25) cannot be upheld indefinitely with rising
density during collapse, star particles have become a crucial tool for modeling collapse,
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accretion, and star formation. This method is often referred to as ‘star particle’ or
‘sink particle’ method (Bate et al. 1995; Krumholz et al. 2004; Federrath et al. 2010a;
Hubber et al. 2013; Bleuler and Teyssier 2014). Any code aiming to capture star-
forming gas over a significant period of time during accretion and fragmentation will
need a sink particle implementation13.

5.2.1 Sink particle formation

Sink particles are designed to represent star-forming gas undergoing gravitational
collapse and accretion. Thus, only bound and collapsing gas should be eligible to form
sink particles and be accreted. To enforce this, a control volume must defined around
each grid cell that exceeds a density threshold,

ρsink =
πc2

s

4Gr2
sink

, (26)

which is obtained from Eq. (25) by setting the Jeans length λJ = 2 rsink and solving
for the density. Here, 2rsink is the chosen sink particle diameter, which is typically set
to 5 grid-cell lengths (corresponding to rsink = 2.5 ∆x) at the maximum refinement
level, in order to avoid artificial fragmentation (cf. Sect. 5.1).

Grid cells that exceed the threshold in Eq. (26) must not immediately form sinks.
Instead, a sequence of additional checks for collapse and gravitational instability is
performed. First, a spherical control volume of radius rsink is defined, centered on the
candidate cell with ρ > ρsink. The total gravitational, thermal, kinetic, and magnetic
energies (Egrav, Eth, Ekin, Emag) are then determined by summation over all cells i
within the control volume, evaluated in the reference frame of the central cell, and
using the gravitational potential provided by the Poisson solver (Sect. 4.4). A sink
particle is only created if the gas within the control volume,

1. lies on the highest refinement level (for grid-based codes),
2. is not within rsink of an existing sink particle,
3. is converging from all directions, i.e., radial velocity vr,i < 0,
4. has a minimum of the gravitational potential at its center,
5. is gravitationally bound (|Egrav| > Eth + Ekin + Emag), and
6. is Jeans-unstable.

Grudić et al. (2021) replace condition (iv) with a tidal stability criterion, while Hubber
et al. (2013) instead employ a Hill-sphere criterion. Both serve the same purpose of
ensuring that the candidate cell lies at the true center of a collapsing region. These
checks ensure that only genuinely collapsing, star-forming gas is converted into sink
particles.

The density threshold in Eq. (26) alone is insufficient, because local density
enhancements can arise in shocks without leading to collapse. Therefore, the cell-by-
cell Jeans criterion alone is inadequate, since it does not guarantee that sufficient mass

13For example, the sink particle method implemented in flash is publicly available on GitHub: https:
//github.com/chfeder/cfflash
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Sink creation checks activated Without sink creation checks

Nsinks = 32 Nsinks = 320SFE = 14.5% SFE = 17.2%

Fig. 6 The importance of sink particle creation checks for identifying truly collapsing regions.
Shown are two identical turbulent cloud collapse simulations forming sink particles (shown as white
circles): the left-hand panel uses the full set of sink creation checks (Sect. 5.2.1), while the right-hand
panel uses only the density threshold criterion in Eq. (26). Without the additional checks, 10× more
sink particles are created (32 sinks vs. 320). The total stellar mass is also overestimated, with an SFE
of 14.5% compared to 17.2%. Figure adapted from Federrath et al. (2010a). An animation of these
simulations is available at https://www.mso.anu.edu.au/∼chfeder/pubs/sinks/sinks.html.

is contained within the entire Jeans volume to become gravitationally bound. Ensur-
ing collapse requires non-local consistency, as the Jeans length must be resolved by
multiple grid cells (see Sect. 5.1).

The implementations by Bate et al. (1995), Federrath et al. (2010a), Hubber et al.
(2013), and Bleuler and Teyssier (2014) all adopt the set of creation checks outlined
above (with slight variations in the details). By contrast, the sink method of Krumholz
et al. (2004) relies solely on the local density criterion ρ > ρsink (Eq. 26) for sink
formation. As discussed in Federrath et al. (2010a), this single-cell condition is insuffi-
cient to ensure that sink-forming gas is both bound and collapsing, and can therefore
lead to spurious sink creation.

Figure 6 illustrates this point with two otherwise identical simulations: one with
the full set of sink creation checks enabled (left-hand panel), and one using only the
density threshold criterion (right-hand panel). In the latter case, the number of sink
particles is overproduced by an order of magnitude (10× more sinks), and the total
accreted mass is also inflated, yielding a star formation efficiency (SFE) of 17.2%
instead of 14.5%. Thus, when adopting the Krumholz et al. (2004) approach, it is
critical to choose a sufficiently high density threshold for sink formation, so that
collapse and boundedness can be assumed implicitly rather than explicitly tested.

5.2.2 Sink particle accretion

In grid/AMR simulations, once a sink particle is created, it can accrete gas from
the grid but only if the gas exceeds the density threshold, is inside the sink particle
accretion radius, is bound to the particle and more bound to it than to any other,
and is collapsing toward it. If all these criteria are fulfilled, the excess mass above
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the density threshold defined by Equation (26) is removed from the MHD system and
added to the sink particle, such that mass, momentum, and angular momentum are
conserved. The mass fraction ∆mi to be accreted from cell i with mass mi and volume
Vi is ∆mi = mi − ρsinkVi. Within the control volume (4π/3)r3

sink of a sink particle,
we gather the mass, center of mass (COM), momentum, and angular momentum of
the material to be accreted,

Mass: Macc =
∑

i ∆mi

Center of mass: Racc =
∑

i ∆miri/Macc

Linear momentum: Pacc =
∑

i ∆mivi

Angular momentum: Lacc =
∑

i ∆miri × vi,

(27)

where ri and vi are the lab-frame position and velocity of the gas in cell i. We
then remove the mass ∆mi from each affected cell and update the sink particle
properties — mass Msink, position Rsink, linear momentum Psink, and angular momen-
tum Lsink — such that the total mass, center of mass (COM), linear momentum,
and angular momentum are conserved. The latter includes both the lab-frame angu-
lar momentum of the sink particle, Lsink, and its intrinsic spin, Ssink. Denoting
post-accretion quantities with a prime, the updated sink properties are

Mass: M ′
sink = Msink + Macc

COM: R′
sink = (MsinkRsink + MaccRacc)/M ′

sink

Linear momentum: P′
sink = Psink + Pacc

Angular momentum: L′
sink = R′

sink × P′
sink

Spin: S′
sink = Ssink + Lacc + Lsink − L′

sink.

(28)

Here, the spin Ssink is required to absorb the excess angular momentum carried by the
accreted material. Importantly, this excess is not simply equal to Lacc, because the
sink position R′

sink and momentum P′
sink — and thus its orbital angular momentum

L′
sink — change during the accretion step. The corrective term Lsink − L′

sink accounts
for this shift, ensuring exact global angular momentum conservation (see Appendix B
in Federrath et al. 2010a).

In SPH codes the accretion criteria are the same (within rsink and bound to the
sink), and additionally satisfies an angular momentum criterion to ensure that it does
not have an orbit that takes it outside rsink (Bate et al. 1995). The mesh-less code
gizmo also requires that the volume element associated with accretion must be smaller
than the spherical volume corresponding to rsink to ensure that it has sufficient spatial
resolution to be accreted. The gizmo sink accretion prescription further introduces
a sub-grid reservoir, where the mass to be accreted is first stored and subsequently
accreted onto the sink according to the local freefall time (Grudić et al. 2021); this
reduces the artifical variability of accreting entire SPH particles of a fixed mass, while
avoiding artificially over-smoothing. This problem does not exist in the grid-based
method described above, where fraction of accreted material always exactly matches
that required to fulfill the Jeans criterion of the collapsing gas. We note that the

31



grid-based accretion method by Krumholz et al. (2004) is different in that it com-
bines Bondi-Hoyle accretion with accretion of all gas cells exceeding ρsink. In practice,
Krumholz et al. (2004) find that the Bondi-Hoyle pathway of accretion is usually
subdominant compared to the direct accretion method of temporarily-created parti-
cles exceeding ρsink, and subsequently merged into the main sink doing the accretion.
Since all gas above ρsink is therefore accreted, without a check for boundedness and
collapse, the accretion rate is somewhat overestimated in the Krumholz et al. (2004)
method (cf. Fig. 6).

Finally, we note that it has been argued that magnetic flux should also be accreted.
Implementing this would require directly modifying the magnetic field whenever a sink
particle is created or gains mass. However, none of the existing sink particle methods
adopt this approach, in order to avoid complications associated with altering the local
magnetic field and the risk of introducing ∇ · B errors. Instead, our method leaves B
unchanged and only accretes mass. The magnetic flux, and thus the associated mag-
netic pressure and tension, remain on the grid. This is in fact a desirable property: if
the magnetic field were accreted, one would need to model its influence on the sur-
rounding gas through sub-resolution prescriptions, which becomes unnecessary when
the field is left intact.

5.2.3 Sink particle dynamics

With sink particles present there are three types of gravitational interactions that
need to be considered:

(i) the force of the gas on the sink particles (gas→sink),
(ii) the force of the sink particles on the gas (sink→gas),
(iii) the force of the sink particles on other sinks (sink↔sink).

Each of these could be treated with distinct methods for calculating the gravitational
acceleration. However, we note that (i) and (ii) should be done with the same method,
which ensures strict symmetry between the two interactions, otherwise violating linear
and angular momentum conservation (Federrath et al. 2011a).

Ideally, all three gravitational interactions are computed by direct N -body sum-
mation (see Sect. 4.1) over all sink particles and grid cells or SPH particles, providing
the most accurate gravitational acceleration. This is the case for example in the flash

code14. Many other codes only use direct summation for the sink↔sink interaction
(iii), while they use the Poisson solver (usually in the form of multi-grid or tree-based;
Sect. 4.4) to compute the gas→sink and sink→gas interactions. Using the Poisson
solver first requires that the sink mass is interpolated onto the grid (or treating the sink
mass as part of the tree-solve in SPH codes or other mesh-less codes like gizmo; see
Grudić et al. 2021), and then solving the Poisson equation for the combined gas+sink

14A detail worth noting is that while the sink↔sink interaction is softened with Eq. (19) to capture
tight sink-sink orbits as accurately as possible, interactions (i) and (ii) are softened with K = (r/rsoft)3 for
r ≤ rsoft and K = 1 for r > rsoft, resulting in a linearly rising gravitational acceleration (Eq. 18) ‘inside’ the
sink particle, as for the purposes of gas→sink and sink→gas interactions, it is reasonable to approximate
the sink as a gaseous object of radius rsink.
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potential (Krumholz et al. 2004; Bleuler and Teyssier 2014). While this has the advan-
tage of speed, i.e., O(N log N) vs. O(N2), and simplicity in that one can use the
existing Poisson solver, it comes at the price of a substantially smoothed acceleration
field in the gas→sink and sink→gas interactions, which can cause inaccuracies in the
gas and sink dynamics, especially in regions close to a sink particle, e.g., in the orbits
of a sink particle around a dense gas accumulation (Federrath et al. 2010a, 2011a).

For time integration of sink particle positions and velocities, a second-order
Leapfrog integrator is commonly employed. This is combined with both velocity- and
acceleration-based timestep constraints, which allow close and highly eccentric orbits
of sink particles to be resolved without introducing errors such as artificial perihelion
shifts. These timestep constraints can, however, become very stringent — particularly
for closely approaching sink particles interacting via mechanism (iii) — and may force
extremely small timesteps. To alleviate this, a sub-cycling method can be used: the
sink↔sink interactions are updated in each sub-cycle, while gas→sink and sink→gas
forces are held fixed until the sub-cycles catch up with the global timestep. The global
timestep itself is limited by the CFL condition together with additional timestep con-
straints, including a gravity-based constraint that accounts only for interactions (i)
and (ii) (see implementation details and orbit tests in Federrath et al. 2010a, 2011a).

5.2.4 Sink particle merging

Sink particle merging is available in some implementations of sink particles. For exam-
ple, in the Krumholz et al. (2004) implementation in orion, sink particle merging is
a key step in modeling sink particle creation and accretion, as their implementation
creates many temporary sink particle fragments that then need to undergo merg-
ing. In the Federrath et al. (2010a) implementation in flash, sink particle merging
is optional, as accretion is handled directly with the gas on the grid (see above). If
merging is activated, sink particles are only allowed to merge, if they are inside the
accretion radii of one another, and if they are gravitationally bound and converging.
The merged particle is moved to the center of mass of the merging particles, and
their linear and angular momenta are assigned to the merged particle. In gizmo, sink
merging only occurs if the pair has a binary semi-major axis less than rsink and the
secondary is at least 10 times smaller than the primary (Grudić et al. 2021).

Merging can be used to model star formation in extremely dense environments,
where stellar merger have been considered a possibility to form massive stars (Zin-
necker and Yorke 2007). Under more normal conditions, however, merging is rather
unlikely, considering that sink particles are often used to represent individual stars,
for which the probability of merging is near zero due to the actual stellar size they
represent and the velocity dispersion between forming stars.

5.3 Summary of challenges and future directions

Achieving sufficient Jeans resolution is computationally demanding, but essential. At
least ∼ 30 cells per Jeans length are required to accurately capture key physical
processes such as the solenoidal turbulent energy content, the minimum amplification
of magnetic fields, and the structure of disks on the Jeans scale (cf. Sect. 5.1).
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Rigorous sink particle creation checks are critical to ensure that only bound,
collapsing gas forms sinks. Without these checks, spurious sinks can form and the
accretion rate may be systematically overestimated (cf. Sect. 5.2.1).

During gas accretion onto sink particles, strict conservation of mass, center of mass,
linear momentum, and angular momentum must be maintained. Careful numerical
implementation is required to guarantee this conservation (cf. Sect. 5.2.2).

Many implementations combine direct N -body summation for sink↔sink interac-
tions with a grid-based Poisson solver (or a tree solver in particle-based methods) for
sink–gas coupling. However, in dense gas systems, resolving accurate orbital dynam-
ics requires direct summation of all three interaction channels: sink↔sink, gas→sink,
and sink→gas (cf. Sect. 5.2.3).

Together, these criteria define the minimum requirements for robust and physically
reliable collapse calculations and sink particle implementations.

Beyond individual star formation, sink (or star) particle methods are also widely
used to represent entire star clusters in large-scale simulations of galaxy formation
and evolution. In this context, sub-resolution prescriptions are employed to model
the properties of the embedded stellar population — including the IMF, chemical
composition, and resulting feedback efficiencies — at varying levels of detail. How-
ever, significant uncertainties remain in these approaches, owing to the many free
parameters involved. We therefore anticipate substantial developments in the coming
years, with increasingly sophisticated, multi-faceted models aimed at bridging the gap
between small-scale star formation physics and galaxy-scale evolution.

6 Stellar feedback

Stars do not only accrete gas, but also eject material, loaded with momentum and
energy, and sometimes with species that can enrich and change the chemical composi-
tion of the ISM. This stellar feedback is a key process for many reasons. Jet feedback
(Sect. 6.2) for instance transports angular momentum away from the accretion disk,
allowing stars to accrete more efficiently through the protostellar disk. Radiation feed-
back in the form of heating (Sect. 6.3) changes the thermodynamic conditions of the
parental cloud, suppressing fragmentation of the gas. Stellar winds (Sect. 6.4), ioniza-
tion (Sect. 6.5), and supernova feedback (Sect. 6.6) can drive powerful outflows and
shocks and change the chemical composition of the gas in their surroundings.

Stellar feedback is generally modeled by adding source terms to the RHS of the
mass, momentum, and energy equations (Eqs. 1–5). Generally, adding the entire
feedback contribution to a single grid cell or particle produces numerical instability,
especially when the equations are very stiff. Various prescriptions have been devel-
oped to distribute the stellar feedback to gas in the vicinity of the emitting star in a
robust and efficient way. Grid-based codes typically add the mass, momentum, and
energy to some number of neighboring cells according to a weighting function cen-
tered on the stellar location (Offner et al. 2009; Cunningham et al. 2011; Federrath
et al. 2014b; Hopkins and Grudić 2019; Mathew and Federrath 2020). Similarly, SPH
methods distribute the radiated energy among the nearby particles that are exposed
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to the stellar radiation, i.e., have a direct sight-line to the source (Jones and Bate
2018) or insert new cells/particles (Grudić et al. 2021).

6.1 Stellar and protostellar evolution

A key requirement for many of these feedback prescriptions is to track the evolution
of the unresolved protostar, in order to estimate the stellar radius and stellar lumi-
nosity, which is required for modeling radiation feedback. Given the accretion rate
(Sect. 5.2.2), the protostar will grow in mass and start deuterium burning, producing
accretion luminosity (Nakano et al. 2000). The protostellar evolution phases can be
summarized and implemented as (Offner et al. 2009):

• Phase 0: Pre-collapse – The gas continues to collapse but the object has not
yet reached stellar densities.

• Phase I: No-burning Contraction – The object is adiabatically contracting
but the central density has not yet reached a temperature of 1.5×106 K, at which
deuterium fusion begins.

• Phase II: Core Deuterium Burning with Fixed Tc – Deuteriun fusion
begins in the core and the protostar enters a convective phase during which the
central core temperature, Tc, remains constant.

• Phase III: Core Deuterium Burning with Variable Tc – The deuterium
in the core is depleted and the protostar contracts further, during which Tc rises.

• Phase IV: Shell Deuterium Burning – Deuterium burning begins in a shell
outside the core, as the center continues to contract.

• Zero Age Main Sequence (ZAMS) – The central temperature reaches 107 K,
at which point hydrogen fusion begins and the protostar becomes a ZAMS star.

Thus, the protostellar evolution model primarily provides the stellar radius and lumi-
nosity during its accretion phase and its main sequence evolution, used for various
feedback processes that we describe next.

6.2 Protostellar jet and outflow feedback

Observations show that jets and outflows are launched from virtually all young pro-
tostar–disk systems, with ALMA now providing unprecedented detail and resolution.
Jets and outflows play a central role in star formation: they help explain the low star
formation rate and efficiency in turbulent molecular clouds, remove angular momen-
tum from the rotating star-forming core/disk, and reduce the characteristic stellar
mass in the IMF by a factor of ∼ 3 (Federrath et al. 2014b; Mathew and Federrath
2021; Guszejnov et al. 2021). In addition, outflows can significantly contribute to driv-
ing and sustaining turbulence in star-forming regions (e.g., Li and Nakamura 2006;
Nakamura and Li 2007; Nakamura et al. 2011; Offner and Chaban 2017; Lebreuilly
et al. 2024), suggesting that star formation may in part regulate itself through outflow
feedback. However, accurately incorporating jets and outflows into numerical simula-
tions of star cluster formation remains a major challenge. To date, only a few codes
include subgrid models for jet feedback (flash, gizmo, orion), each with varying
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levels of detail. Below we summarize how jet feedback can be implemented as a sub-
resolution module, following the methods of Federrath et al. (2014b), and implemented
in flash.

In this implementation, outflows are launched along the sink particle angular
momentum vector once accretion has been calculated, consistent with the modular
design of the code. The accretion and outflow modules are thus separated, with the
outflow module directly depending on the accretion step but not vice versa. This
ensures that in each timestep the system state after accretion is fully determined before
outflow feedback is applied, allowing a prescribed fraction of the accreted material to
be re-inserted and launched in bipolar outflows. Two loops over all sink particles and
their surrounding grid cells (within the outflow radius; see details below) are required:
the first gathers information about the cells that will host outflow injection, and the
second updates the state variables to launch the outflows. In this way, the conservation
of mass, momentum, and angular momentum is strictly maintained.

6.2.1 Geometry of the outflow launching region

Figure 7 illustrates the sub-resolution outflow model of Federrath et al. (2014b), imple-
mented in flash (see Sect. 6.2.5). The outflow is launched through two spherical
sectors of radius rout and opening angle θout, aligned with the spin axis of the sink
particle, Ssink. We refer to these regions as the top and bottom ‘outflow sectors’.

Observations and theoretical models indicate that outflows align with the rotation
axis of the accretion disk (Appenzeller and Mundt 1989). In our model, the sink spin —
acquired through the accretion of angular momentum (see Sect. 5.2.2) — serves as a
proxy for the unresolved disk spin axis. Although the opening angle is, in principle,
a user-defined parameter, adopting θout = 30◦ is consistent with magneto-centrifugal
acceleration of the jet component (Blandford and Payne 1982), and this value is
therefore used as the default in our sub-resolution model.

6.2.2 Outflow mass transfer

The outflow model reinserts a fixed fraction of the accreted mass and launches it away
from the sink particle to represent the outflow+jet component. The outflow mass Mout

inserted in each timestep ∆t is determined by the sink accretion rate Ṁacc,

Mout = fm Ṁacc ∆t, (29)

where fm is a user-defined parameter. Theory, observations, and numerical simula-
tions all suggest fm ∼ 0.1 − 0.4 (Matzner and McKee 2000; Cunningham et al. 2011;
Federrath et al. 2014b, and references therein). In the flash implementation dis-
cussed here, we adopt fm = 0.3 as a reasonable standard value. The results, however,
are largely insensitive to the precise choice of fm, owing to the self-regulating nature
of accretion–outflow coupling: if fm is increased, Ṁacc is temporarily reduced, which
in turn weakens the outflow until accretion resumes, thus establishing a self-regulated
balance.

In practice, after each accretion step the outflow mass Mout is computed, sub-
tracted from the sink particle, and deposited into the gas within the outflow sectors,
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Fig. 7 Schematic (not to scale) of the sub-resolution outflow+jet model by Federrath et al. (2014b),
showing the basic geometry with the sink particle radius rsink, sink spin Ssink, outflow radius rout,
outflow opening angle θout, outflow linear momentum Pout, and outflow angular momentum Lout.
The upper and lower components of the outflow region are shown as the two spherical sectors in blue,
for the which the symmetry axis is defined by Ssink.

ensuring mass conservation. To achieve a smooth transition at the boundary of the
launching region (defined by rout and θout), we apply radial and angular smoothing
functions,

R(r, rout) =

{

sin[π(r/rout)] for r ≤ rout

0 for r > rout

, (30)

Θ(θ, θout) =

{

cosp[(π/2)(θ/θout)] for |θ| ≤ θout

0 for |θ| > θout

, (31)

with p = 1 as the default smoothing power. These functions quickly approach zero
at the edges of the outflow sectors, preventing sharp discontinuities. The resulting
outflow morphology is insensitive to the exact choice of p as long as p ≤ 4. While
the model would in principle function without smoothing, the application of these
functions avoids numerical instabilities near the sector boundaries.
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6.2.3 Outflow momentum transfer

The momentum transferred to each of the two outflow sectors in the rest frame of
the sink particle is Pout = ±Moutvout/2, where Mout is the outflow mass (Eq. 29).
For the radial outflow velocity vout, we adopt the Keplerian speed at the foot-point
of a centrifugally-driven jet, close to the protostellar radius, as suggested by analytic
models (Blandford and Payne 1982; Shibata and Uchida 1985, 1986; Pudritz and
Norman 1986; Wardle and Königl 1993; Königl and Pudritz 2000). The resulting
outflow velocity is

|vout| =

(

GMsink

10 R⊙

)1/2

V(θ/θout) = 100 km s−1

(

Msink

0.5 M⊙

)1/2

V(θ/θout), (32)

which depends on the sink mass Msink and on the two-component jet+outflow profile
V(θ/θout) defined below.

Observations and jet-launching simulations (e.g., Camenzind 1990; Machida et al.
2008; Machida and Basu 2019) consistently show that outflows exhibit two compo-
nents: a fast, collimated jet and a slower, wide-angle outflow. To capture both, we
adopt a normalized velocity profile based on the angular smoothing function Θ(θ/θout)
from Eq. (31),

V(θ, θout) =
3

4
Θ(θ, θout/6) +

1

4
Θ(θ, θout), (33)

where the first term represents the fast collimated jet and the second term the slower
wide-angle outflow. Momentum transfer is implemented symmetrically between the
two sectors to ensure exact global momentum conservation.

6.2.4 Outflow angular momentum transfer

Outflows and jets are observed to rotate (Bacciotti et al. 2002), making them a key
mechanism for transporting angular momentum away from the protostar and its disk,
thereby enabling the star to grow in mass (Uchida and Shibata 1985; Shu et al. 1987;
Königl and Pudritz 2000; Pudritz et al. 2007; Frank et al. 2014). Similar to the mass
transfer described in Sect. 6.2.2, we introduce a fraction fa of the accreted angular
momentum, S′

sink − Ssink (from Eq. 28), which is released along the sink particle’s
rotation axis S′

sink after each accretion event. This fraction of angular momentum is
transferred to the two outflow sectors as

Lout = fa (S′
sink − Ssink)

S′
sink

|S′
sink|

. (34)

Observationally, Bacciotti et al. (2002) used Hubble Space Telescope data of the DG
Tau flow to infer angular momentum fractions of fa = 0.6 − 1.0. This range is consis-
tent with predictions from disk-wind models (Pelletier and Pudritz 1992), which yield
fa ∼ 0.7 − 1.0 for sub- to super-Alfvénic accretion flows. Numerical simulations fur-
ther support these values: Banerjee and Pudritz (2006) and Hennebelle and Fromang
(2008) measured fa ∼ 0.5−2, with a time-averaged value of fa ∼ 0.9. This agrees well
with the observations of Bacciotti et al. (2002). Based on these findings, we adopt
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fa = 0.9 as the standard value in the jet+outflow model in flash, resulting in 90% of
the accreted angular momentum re-injected in the outflow sectors and removed from
the disk-protostar system — a physically reasonable choice for magnetically-driven jets
and outflows (Pudritz et al. 2007). This prescription ensures angular momentum is
consistently removed from the accreting system, in agreement with both observations
and theoretical expectations.

6.2.5 Implementation, code validation, and access

The practical implementation of the outflow module in flash, as described above,
requires two loops over all grid cells, with each loop iterating over all sink particles.
The first grid loop is used to gather information from the cells within the two outflow
sectors and to ‘test-insert’ the outflow mass, momentum, and angular momentum.
In this stage, the state variables of the gas cells and the sink particles are not yet
modified; instead, the collected information is used to ensure that all conservation
laws can be satisfied exactly. The second grid loop then updates the gas cell properties
to inject the outflowing mass, momentum, and angular momentum.

It is worth noting that no additional smoothing of the momentum and angular
momentum injection is required, because both are proportional to the injected mass,
which is already smoothed via Eqs. (30) and (31). Finally, the sink particle properties
are updated to guarantee global conservation. As in the case of accretion, strict con-
servation requires slight repositioning of the sink particles driving outflows in order
to satisfy two major constraints: (i) global conservation of the center of mass (COM),
and (ii) ensuring that the linear momentum components injected into the two outflow
sectors are parallel.

The sink particle outflow module implemented in flash is publicly available on
GitHub15. The module has been calibrated, tested, and validated against dedicated
resolved jet/outflow simulations in Federrath et al. (2014b). Key features of the
method include:

• convergence of fundamental outflow properties (mass, linear and angular momen-
tum, and jet speed) for a sufficiently resolved outflow radius, rout ≳ 16∆x, i.e.,
∼ 32 cells in diameter,

• a systematic quantification of the impact of the default parameter choices for fm

and fa, demonstrating the self-regulation of the outflow–accretion system, and
• built-in adaptivity of the sub-resolution model to changes in the absolute

resolution scale of a simulation.

Adopting the open-source outflow module from flash in other codes is straightfor-
ward, owing to its design, which cleanly separates the accretion and outflow steps. As
a result, the module only requires the sink particle properties after accretion, which
then serve as input for the outflow injection.

15Sink particle jet/outflow module in the flash code: https://github.com/chfeder/cfflash
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6.2.6 Comparison of jet/outflow implementations

The first outflow model applied to star cluster formation was developed by Li and
Nakamura (2006) and Nakamura and Li (2007). In their approach, a Lagrangian
particle was created once the gas density exceeded 100 times the mean density. Twenty
percent of the mass in a cubic region surrounding the particle was then transferred to
it, without modeling subsequent accretion. Their feedback consisted of isotropic, radial
point explosions, later extended by Nakamura and Li (2007) to include a collimated
component with an opening angle of 30◦. In this model, the outflow axis was aligned
with the local magnetic field vector — a choice that may inadvertently couple to the
wound-up toroidal component of the disk field. Angular momentum transfer was not
included.

Wang et al. (2010) and Nakamura and Li (2011) improved on these early models
by adding accretion onto sink particles. However, the outflow axis remained tied to
the local magnetic field, and angular momentum transfer was still omitted. Dale and
Bonnell (2008) studied isotropic and collimated winds in massive star formation using
SPH, but their prescription was not adaptive. In contrast, the model of Cunningham
et al. (2011) launched outflows along the rotation axis of the sink particles, scaling the
outflow mass and momentum with the sink accretion rate. Nevertheless, their model
also neglected angular momentum transfer, likely underestimating the overall outflow
impact.

The outflow model by Federrath et al. (2014b) explicitly includes angular momen-
tum transfer (see Sect. 6.2.4), a process that is highly efficient and likely the dominant
mechanism for removing angular momentum from protostellar disks. It was tested
against fully-resolved simulations of magnetized protostellar collapse and disk for-
mation, with convergence studies demonstrating robustness. The model reproduces
realistic mass, momentum, and energy injection rates, as well as jet velocities, even
at resolutions ∼ 1,000 times lower than would otherwise be required in the absence
of a sub-resolution prescription.

A more recent implementation by Grudić et al. (2021) in the gizmo code adopts
methods broadly similar to Federrath et al. (2014b), but omits angular momentum
injection. Their rationale is that angular momentum must already be shed by the disk
before material accretes onto the star, and thus does not need to be explicitly injected
back into the outflow. However, because the disk is generally unresolved in large-scale
simulations, this argument overlooks part of the physics intended to be captured by
a sub-resolution model. In particular, the Federrath et al. (2014b) scheme returns
angular momentum to larger scales through the jets, while the Grudić et al. (2021)
implementation does not, potentially underestimating feedback effects on cluster-scale
dynamics.

6.3 Protostellar heating feedback

Accreting protostars radiate both through their intrinsic stellar luminosity, powered
by nuclear burning, and through their accretion luminosity, which arises from the
energy released by in-falling material. Most of the accretion luminosity is generated in
shocks at the stellar surface and can be expressed as a function of the instantaneous
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stellar mass M⋆ and radius R⋆,

Lacc = facc
GM⋆Ṁ⋆

R⋆
, (35)

where Ṁ⋆ is the accretion rate and facc is a coefficient of order unity that specifies
the fraction of kinetic energy radiated away rather than expended to drive jets or
retained by the star.

Offner et al. (2009) introduced a detailed one-zone protostellar evolution model
that follows the nuclear state of the star and tracks its radius as a function of mass
and accretion history (cf. Sect. 6.1). When full radiation transfer (RT) is included in a
simulation (Sect. 7), the resulting bolometric luminosity can be incorporated directly
as a source term on the RHS of the RT equation (e.g., Offner et al. 2009; Klassen
et al. 2012; Bate 2012; Grudić et al. 2021; Menon et al. 2022).

A simpler way to model stellar heating, without solving the full RT problem, is to
modify the gas temperature directly. Assuming the protostar radiates as a blackbody,
the heating temperature profile can be written as

T 4
heat(r) =

Lacc

4πσSBr2
, (36)

with σSB the Stefan–Boltzmann constant (Stamatellos et al. 2012). Mathew and Feder-
rath (2020) extended this approach by relaxing the assumption of spherical symmetry
and implementing a sub-resolution model that includes the accretion disk. This cap-
tures the effect of the asymmetric dust distribution on the circumstellar temperature.
The orientation of the sub-resolution disk is aligned with the sink particle spin axis
Ssink, as in the outflow module (cf. Fig. 7). The resulting accretion- and protostar-
induced luminosity yields an effective heating temperature Theat(r, θ) that depends on
both distance from the star r and polar angle θ (Mathew and Federrath 2020)16.

Finally, this heating temperature is incorporated into the EOS (Sect. 2.1.2) of the
MHD system by modifying the thermal pressure (Guszejnov et al. 2016; Federrath
et al. 2017; Mathew and Federrath 2020),

pth →

[

p4
th +

(

ρkBTheat

µmH

)4
]1/4

. (37)

Figure 8 demonstrates how stellar heating alters the IMF17. In the simulations
of Bate (2012), a simple polytropic EOS produces an excess of low-mass objects,
while including RT in the flux-limited-diffusion (FLD) approximation suppresses their

16The protostellar heating method implemented in the flash code is publicly available on GitHub: https:
//github.com/chfeder/cfflash

17Note that the modified Kroupa (2001) and Chabrier (2005) IMFs shown in Fig. 8 are primarily intended
as illustrative guides, not for direct comparison with the simulation data. The low-mass end of the IMF
remains uncertain due to systematics related to binaries, incompleteness, and luminosity-to-mass conver-
sions (Chabrier 2003; Kroupa et al. 2013; Hopkins 2018). Ongoing debate continues regarding the most
appropriate form of the IMF in different environments, with recent reviews and discussions provided by
Kroupa et al. (2026), Gjergo et al. (2025), and Jerabkova et al. (2025).
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Fig. 8 Impact of protostellar heating on the initial mass function (IMF). Left: sink particle mass
distributions from Bate (2012), comparing a polytropic EOS (top) with RT in the FLD approximation
(bottom). Right: simulations from Mathew and Federrath (2020), using the same polytropic EOS
(top), spherical heating feedback (middle), and polar heating feedback (bottom). Without RT, or with
only simple spherical heating, the number of low-mass stars is strongly overestimated. By contrast, RT
and polar heating both suppress spurious low-mass stars. Polar heating provides a computationally
efficient approximation to RT for low-mass star formation, but the IMF peak mass (here ∼ 1–2 M⊙)
remains too high due to the neglect of additional feedback processes, especially jets and outflows.
For clarity, the IMFs of Salpeter (1955), Kroupa (2001), and Chabrier (2005) are shifted to highlight
shape differences.

formation. A similar trend is seen in the simulations of Mathew and Federrath (2020):
spherical heating feedback reduces the overall fragmentation but still overproduces
low-mass stars, whereas polar heating, which accounts for disk shielding, yields an
IMF much closer to the RT case. Nonetheless, the IMF peak mass (∼ 1 − 2 M⊙) is
clearly overestimated, underscoring the importance of additional processes such as jet
and outflow feedback (cf. Mathew and Federrath 2021; Guszejnov et al. 2021, 2022;
Mathew et al. 2023, 2025).
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In summary, the primary impact of stellar heating is the suppression of small-
scale fragmentation, particularly within protostellar accretion disks (Krumholz et al.
2007a; Offner et al. 2010; Jones and Bate 2018). A similar effect can be partially
reproduced by radiative trapping at high densities, even without explicitly modeling
stellar feedback (Bate 2009b, 2012). Episodic accretion, during which intervals of
efficient cooling occur, may mitigate radiative heating and allow disk fragmentation
to proceed (Stamatellos et al. 2012). Nevertheless, the microphysics of disk accretion
remains poorly understood, and direct simulations of turbulent disk dynamics are
currently beyond the resolution limits achievable in star-cluster calculations.

6.4 Stellar wind feedback

Many simulation codes include sub-resolution models for radiatively driven mass loss
from main-sequence (MS) and post-MS stars. Stellar winds from massive stars are
a major source of nuclear-processed heavy elements and, after supernovae, repre-
sent the second most important channel of energy and momentum injection into the
ISM (Smith 2014). In contrast to protostellar outflows, stellar winds are relatively
straightforward to implement: they are intrinsically spherical, contribute little angular
momentum, and can be benchmarked against analytic models of wind-bubble evolu-
tion (Weaver et al. 1977; Koo and McKee 1992; Lancaster et al. 2021a). While some
uncertainty remains regarding the details of the mass-loss process — particularly for
late B- and A-type stars — the general launching mechanisms and the dependence of
wind properties on stellar mass and metallicity are well established (Cure and Araya
2023).

Despite the central role of radiation pressure in driving stellar winds, most numer-
ical prescriptions do not explicitly model radiation transport or radiation pressure.
Instead, mass, momentum, and energy are injected directly into the computational
domain, analogous to the treatment of SNe (see Sect. 6.6). Mass-loss rates, wind
velocities, and temperatures are typically adopted from stellar evolution models or
empirical fits to observational data. In SPH and hybrid methods, winds are imple-
mented by spawning new particles or cells at the source location (Dale and Bonnell
2008; Price et al. 2018; Grudić et al. 2021).

In mesh-based methods, the injected mass, momentum, and energy are deposited
into a spherical region using a predefined stencil (Offner and Arce 2015; Geen et al.
2015b; Gatto et al. 2017; Lancaster et al. 2021b). The injection region must be
sufficiently large to resolve spherical expansion. To model winds more realistically,
Lancaster et al. (2021b) introduced a hybrid thermal/kinetic energy scheme that inter-
polates between thermal energy — dominant near the source — and kinetic energy,
which dominates at the shell edge. In addition, modifications to the CFL timestep
criterion may be required to enhance stability and avoid numerical overshoot in the
amount of injected feedback (Grudić et al. 2021).

Simulations that include stellar winds show that they generate a complex, fractal
ISM structure, which in turn shapes the environment for subsequent SN explosions
(Rogers and Pittard 2013; Walch and Naab 2015; Geen et al. 2015b). Feedback from
winds of intermediate-mass stars contributes to driving and sustaining turbulence
within molecular clouds (Offner and Liu 2018). For massive stars, stellar winds play
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a key role in halting ongoing star formation and dispersing the natal gas reservoirs of
their parent clouds (Guszejnov et al. 2022).

6.5 Ionization feedback

Ionization regulates accretion and strongly shapes the natal environments of massive
stars (Kuiper and Hosokawa 2018). As with stellar winds, ionization feedback is pri-
marily important for high-mass stars. Several methods implement ionization feedback
from star particles by computing the instantaneous ionizing flux they emit (Rosen
et al. 2020). Because the Strömgren radius depends on the local gas number density,
the effects of ionization can be approximated without solving the full RT problem. For
example, Dale et al. (2007) compute the ionization front radius around a source, iden-
tify which nearby SPH particles lie within it, and reset their temperatures to 104 K,
the approximate equilibrium temperature of ionized hydrogen.

More detailed approaches couple ionization feedback to stellar evolution models
(Sect. 6.1), estimating the ionizing photon flux from the stellar spectrum and com-
puting the gas response via ray-tracing or other RT schemes (Peters et al. 2010; Geen
et al. 2015b; Grudić et al. 2021, see Sect. 7). In clustered environments, photoion-
ization may even trigger secondary star formation, although this remains difficult to
confirm observationally (Dale et al. 2013). On larger scales, photoionization plays a
central role in dispersing molecular clouds and in reducing star formation efficiencies
to ≲ 10% (Geen et al. 2016, 2017; Kim et al. 2018, 2021; Grudić et al. 2022; Guszejnov
et al. 2022; Menon et al. 2023). The combined influence of ionizing radiation and jets
has also recently been studied in Verliat et al. (2022), showing that both are crucial
ingredients for massive cluster formation and evolution.

6.6 Supernova feedback

Supernova (SN) explosions are a critical component of star formation and galaxy
evolution. They shape the multi-phase ISM, regulate the rate and efficiency of star
formation (McKee and Ostriker 1977), and are among the dominant drivers of large-
scale ISM turbulence (e.g., Mac Low and Klessen 2004; Tamburro et al. 2009; Padoan
et al. 2016; Pan et al. 2016; Beattie et al. 2025c). Consequently, most star formation
codes include some prescription for SN energy, momentum, and mass injection (see
Table 1). In contrast to many other feedback processes, SN sub-resolution models can
be benchmarked directly, since SNe evolve through a sequence of well-characterized
phases, including the energy-conserving Sedov–Taylor phase (Taylor 1950; Sedov 1959;
Book 1994).

While the underlying physics of the blast wave is well understood, numerical imple-
mentations face several challenges and adopt varying approaches. Most models assume
a fiducial explosion energy of ESN = 1051 erg, with all stars above M⋆ > 8 M⊙ end-
ing their lives as SNe. The relative fractions of thermal and kinetic energy that make
up ESN depend on the evolutionary phase being modeled and, critically, on how well
the injected blast wave is resolved numerically. Energy, momentum, and ejecta mass
are typically deposited within the local region surrounding the explosion, either by
spawning new SPH particles or by distributing mass and energy across a group of grid
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cells with some weighting kernel (Walch and Naab 2015; Haid et al. 2016; Kim and
Ostriker 2017; Hopkins et al. 2018; Grudić et al. 2021).

Special care is required to ensure that the injected feedback converges toward the
analytic Sedov–Taylor solution. If mass and energy are deposited into too large a
region, the explosion is artificially underpowered; if deposited into too small a region,
the injected thermal energy may radiate away before driving expansion (Hu et al.
2016; Hopkins et al. 2018). To maintain numerical stability and load-balancing, some
methods distribute the injection over several timesteps (Grudić et al. 2021). It is also
essential to enforce isotropy, ensuring that the feedback does not introduce spurious
momentum anisotropies or directional biases in the expanding blast wave (Bruls et al.
1999; Hopkins et al. 2018). Accurate SN feedback is therefore central to galaxy-scale
simulations, where it sets the ISM structure and controls star formation efficiencies.

6.7 Summary of challenges and future directions

Star formation feedback relies heavily on sub-resolution modeling. Key ingredients
include protostellar evolution models that track stellar radii and luminosities during
accretion and onto the ZAMS (Sect. 6.1). Outflows and jets must be included in sim-
ulations aiming to converge on the star formation rate (SFR) and the initial mass
function (IMF): without them, both the SFR and the characteristic stellar mass are
overestimated by factors of ∼ 2 − 3. Remarkably, although angular momentum trans-
port via protostellar jets is essential for enabling accretion and likely represents the
primary solution to the angular momentum problem, only one of the three codes that
currently support sub-resolution jet models coupled to dynamic star particles includes
angular momentum injection (Sect. 6.2).

Additional advances have been made in simplified treatments of stellar heat-
ing feedback (Sect. 6.3), which avoid the full radiation transport problem. Such
approaches provide efficient approximations while still suppressing spurious fragmen-
tation. Whereas jets and heating are relevant for stars of all masses, winds (Sect. 6.4),
ionization (Sect. 6.5), and supernova (SN) feedback (Sect. 6.6) primarily affect mas-
sive stars. Wind models are comparatively straightforward due to their spherical
symmetry and relatively well-constrained physical background. Ionization and SN
blast-wave physics are also well understood, but ionization feedback ideally requires
radiation transport (see Sect. 7), while SN feedback remains sensitive to the resolu-
tion scale and to how energy and momentum are partitioned between thermal and
kinetic components.

Future developments aim to improve the robustness and physical fidelity of these
feedback models. For SN feedback in particular, new approaches seek to initialize
profiles based on the analytic Sedov–Taylor solution, while incorporating the correct
timing, expansion phase, and the structure of the surrounding medium. Similarly,
more comprehensive implementations of jet feedback, including angular momentum
transport, and improved sub-resolution treatments of stellar heating will be critical.
These advances are essential not only for realistic star cluster simulations, but also
for bridging the gap to galaxy-scale studies where feedback regulates star formation
and drives the multiphase ISM.
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7 Radiation hydrodynamics

A defining characteristic of stars is that they shine. Forming stars heat their natal
gas, and young massive stars (≳ 8 M⊙) further shape their environment through
ionization and radiation pressure (Rosen et al. 2020). In many regimes, the energy
and momentum carried by radiation are comparable to those of the gas, making
radiation-matter interactions critical for modeling star formation.

Radiation hydrodynamics (RHD), however, remains one of the most difficult areas
of computational astrophysics, both numerically and computationally. All current
simulations rely on approximations of the full equations. Many studies omit radiation
transfer (RT) altogether, replacing it with simplified heating and cooling prescriptions
such as modified equations of state or pre-computed tables. These can be adequate
in some regimes but fail in others — notably in massive star formation, where RT is
essential.

It is useful to distinguish RT from radiation feedback. Radiation transport
describes how photons propagate and interact with matter, while radiation feedback
refers to emission from stars or clusters, which may or may not be coupled to detailed
RHD. In simulations that include RHD, feedback typically enters as a source term for
radiation energy and flux.

In this section, we review RHD methods18 used in star-formation modeling. We
outline the relevant physical regimes, opacity treatments, and the role of laboratory,
co-moving, and mixed frames. We then present the basic RT equations, discuss ray-
tracing, and derive the moment equations with three closures: flux-limited diffusion
(FLD), moment-1 (M1), and variable Eddington tensor (VET). Section 7.5 summa-
rizes advances in Monte Carlo radiation transport (MCRT), and we conclude with a
direct comparison of MCRT, FLD, M1, and VET in Sect. 7.6.

7.1 Optically-thin vs. optically-thick regimes

Consider a system of size ℓ with velocity v and photon mean free path λmf . The hydro-
dynamic flow time is ℓ/v, while the mean time between photon-matter interactions is
λmf/c. The optical depth is τ = ℓ/λmf . In the optically-thin limit, τ ≪ 1 (streaming

limit), radiation propagates freely at ∼ c, decouples from the gas, and escapes, allow-
ing efficient cooling. Here isothermality is often a good approximation, since local heat
(e.g., by shocks or dissipation) is quickly radiated away.

In contrast, for τ ≫ 1 (diffusion limit), gas and radiation are tightly coupled, pho-
tons undergo many scatterings, and radiation propagates diffusively, much slower than
c. Radiation becomes effectively ‘trapped’ in the material, leading to local heating.

The diffusion limit can be subdivided depending on the importance of gas motion
(Mihalas and Mihalas 1984). In the static diffusion limit (βτ ≪ 1, with β = v/c),
radiation and gas are strongly coupled and flows are non-relativistic. In the dynamic

diffusion limit (βτ ≫ 1), radiation is advected with the gas, and terms describing
advection and radiation work dominate over emission and absorption. Even non-
relativistic systems with extreme τ , such as stellar interiors (τ ∼ 1011), can enter

18A recent review on RT methods for star formation is provided by Wünsch (2024).
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this regime. For most star-formation problems — dense cores and accretion disks —
conditions lie in the static diffusion limit (Krumholz et al. 2007b). Jets and outflows,
however, carve low-density polar cavities (cf. Sect. 6.2), making the pure diffusion
approximation inaccurate in those directions.

In present-day star-forming regions (unlike in the primordial Universe), dust domi-
nates the opacity, which depends on frequency and temperature (Semenov et al. 2003).
As a result, mean opacities vary by orders of magnitude: dense cores are typically opti-
cally thick, while diffuse cloud regions remain optically thin. Accurate RT methods
must therefore treat both regimes and, crucially, the transition between them.

7.1.1 Opacities

A central ingredient in radiation transfer is the opacity, κν , which determines how radi-
ation interacts with matter. Opacities are intrinsically frequency-dependent, reflecting
the microphysical absorption and scattering processes relevant at different photon
energies. For practical applications, these frequency-dependent opacities are often
averaged to produce a single effective value. Two of the most common averages are
the Planck mean opacity,

κP(T ) =

∫ ∞

0
κνBν(T ) dν

∫ ∞

0
Bν(T ) dν

, (38)

and the Rosseland mean opacity,

κR(T ) =

∫ ∞

0
∂Bν (T )

∂T dν
∫ ∞

0
κ−1

ν
∂Bν (T )

∂T dν
. (39)

Here Bν(T ) is the Planck function. The Planck mean κP weights the opacity by the
local emissivity spectrum and is most relevant when describing absorption of stellar or
thermal emission. The Rosseland mean κR, by contrast, weights low-opacity windows
more strongly and is appropriate in the diffusion limit, where radiative flux is carried
preferentially through the most transparent frequency channels. Both averages are
widely used in RHD simulations, depending on the physical regime.

In present-day star-forming regions, dust provides the dominant source of opacity.
The effective dust opacity depends on grain size, composition, and shape, and varies
strongly with frequency (Semenov et al. 2003). In practice, many studies employ pre-
computed, tabulated dust opacities as functions of temperature and density (e.g.,
Semenov et al. 2003), which implicitly capture frequency-averaged effects, i.e., they
provide κP(T ) and κR(T ).

Different physical regimes require different opacity prescriptions. For example, in
primordial (Population III) star formation, where metals and dust are absent, the rel-
evant opacities arise from bound-free and free-free transitions and electron scattering.
The main contributors in this case are atomic H, He, and molecular H2 (via ro-
vibrational lines), with Thomson scattering becoming important at high temperatures
(Mayer and Duschl 2005).
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At photon energies above the Lyman limit (hν > 13.6 eV), ionizing radiation
dominates. Here, the key opacity sources are the photoionization cross sections of neu-
tral hydrogen and helium (Verner et al. 1996; Osterbrock and Ferland 2006). These
frequency-dependent cross sections set the structure of ionization fronts and deter-
mine the coupling between radiation and gas in H ii regions around massive stars.
Simulations of reionization and stellar feedback therefore typically adopt tabulated H
and He opacities, augmented by Thomson scattering for the highest photon energies
(Sharda and Menon 2025).

Thus, while dust dominates most present-day star-forming environments, opacity
physics is highly problem-dependent. Accurate modeling requires not only captur-
ing the correct frequency dependence, but also adopting the relevant opacity sources
for the environment under consideration. Moreover, the frequency dependence of the
opacity introduces challenges related to the choice of reference frame in which to
formulate the relevant equations.

7.1.2 Laboratory, co-moving, and mixed reference frames

The difficulty of solving the RT can be reduced both by approximations and by
choosing a suitable frame. In the laboratory frame the observer is at rest, while in the
co-moving frame we move with the fluid. Ideally, RT would be formulated in the lab
frame to remain consistent with the MHD equations (Eqs. 1–5), where conservation
laws are easiest to implement, especially in Eulerian schemes. However, RT involves
frequency-dependent opacities, which in the lab frame require Doppler corrections due
to gas-photon relative motion. In the co-moving frame, opacities can be evaluated
directly.

To balance these advantages, most RHD methods use a mixed-frame formulation:
radiation quantities (energy density, flux, pressure tensor) are defined in the lab frame,
while opacities are computed in the co-moving frame. This simplifies microphysics
but introduces additional source terms that expand in orders of v/c (Mihalas and
Mihalas 1984; Mihalas and Auer 2001). In practice, it is sufficient to retain the leading
terms in v/c, with the required order depending on whether the system is in the
streaming, static, or dynamic diffusion limit. The most general formulation, valid
across all regimes, includes terms up to O(v2/c2) (see tab. 1 in Krumholz et al. 2007b),
which is adequate for the non-relativistic flows relevant to the ISM and star formation,
where v/c ≲ 10−3.

7.2 Basic equations of radiation transfer

7.2.1 Time-dependent radiation transfer

The basic RT equation describes how the radiation intensity changes along a ray. Con-
sider an element of material with length ds, then the infinitesimal difference between
the radiation energy that enters at (x, t) and emerges at a different point in space and
time, (x + ∆x, t + ∆t),

[Iν(x + ∆x, t + ∆t, n) − Iν(x, t, n)] dA dΩ dν dt, (40)
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is produced by emission and absorption along the ray. Here Iν

(erg cm−2 sr−1 Hz−1 s−1) is the radiation intensity at frequency ν, dA is the surface
area perpendicular to the direction of propagation n, dΩ is the solid angle, and dt is
the time. Without scattering19 this can be written as the difference between emission
and absorption along ds,

[jν(x, t, n) − ρκν(x, t, n)Iν(x, t, n)] ds dA dΩ dν dt, (41)

where jν (erg cm−3 sr−1 Hz−1 s−1) and ρκν (cm−1) are the emissivity and extinction
coefficient, respectively, with the opacity κν (cm2 g−1). Substituting dt = ds/c with
the speed of light c, and omitting the explicit dependencies (x, t, n) for compactness,
this expression becomes a PDE in the intensity,

(

1

c

∂

∂t
+ n · ∇

)

Iν = jν − ρκνIν . (42)

This equation depends on seven variables: time, three spatial dimensions, two angular
directions (via n), and photon frequency. Time-dependent RHD calculations must
solve the RT equation at every time step and then couple the result to the MHD
equations (Eqs. 1–5). Altogether this defines a complex, coupled set of PDEs that is
extremely challenging to solve.

7.2.2 Time-independent radiation transfer

A common simplification is the time-independent RT equation, obtained by neglecting
the ∂/∂t term in Eq. (42), valid when the radiation field is in steady state compared
to the hydrodynamic evolution. In this case, the equation reduces to

n · ∇Iν = jν − ρκνIν . (43)

Along a ray parametrized by path length s, this becomes an ordinary differential
equation,

dIν

ds
= jν − ρκνIν = ρκν(Sν − Iν), (44)

with the source function Sν = jν/(ρκν). This has the well-known exponential solution

Iν(s) = Iν(0) e−τν (s) +

∫ s

0

jν(s′) e−[τν (s)−τν (s′)] ds′

= Iν(0) e−τν (s) +

∫ s

0

ρ(s′) κν(s′) Sν(s′) e−[τν (s)−τν (s′)] ds′

= Iν(0) e−τν (s) +

∫ τν (s)

0

Sν(τ ′
ν) e−[τν (s)−τ ′

ν ] dτ ′
ν ,

(45)

19Neglecting direct scattering is often a reasonable approximation in star-formation studies, where true
absorption usually dominates, or scattering can be folded into an ‘effective opacity’.

49



where τν(s) =
∫ s

0
ρ(s′)κν(s′) ds′ is the optical depth along the path. The first term

describes attenuation of the incident radiation, while the second term accounts for
local emission along the ray.

7.3 Ray-based methods

Ray-based methods solve the RT equation (Eq. 42) along characteristics (rays).
Their accuracy and efficiency depend on ray length and angular sampling. Most
star-formation applications use either long characteristics or hybrid long–short charac-
teristics. Long characteristics trace rays with multiple crossings of resolution elements
(grid cells or SPH particles), while short characteristics solve the RT equation by
interpolating between neighboring cells (Abel and Wandelt 2002; Davis et al. 2012).
The former is more accurate but harder to parallelize, since rays cross multiple pro-
cessor domains, requiring intensive communication. Short characteristics are easier to
parallelize but are also more diffusive. Hybrid schemes combine both: long charac-
teristics near sources and short characteristics for long-range propagation, as in the
flash implementation (Rijkhorst et al. 2006; Buntemeyer et al. 2016).

Relative to moment methods (Sect. 7.4), ray-based approaches excel at modeling
radiation from point sources but perform poorly in the diffusion limit unless many
rays are used. Hybrid ray–moment methods address this by splitting the flux into a
direct stellar component and a diffuse (reprocessed) component,

Fr = F⋆ + Freprocessed, (46)

with F⋆ computed by ray tracing and Freprocessed solved via a moment method (e.g.,
Murray et al. 1994).

For F⋆(r), as a function of distance r from the star, neglecting time dependence,
scattering, and in-situ emission, the time-independent RT equation (Eq. 45) with
jν = 0 yields

I(r) = I0 e−τ(r), (47)

where the optical depth is

τ(r) =

∫ r

R⋆

κP(T⋆) ρ(r′) dr′, (48)

with R⋆ the stellar radius and κP(T⋆) the Planck-mean opacity (Eq. 38) at T⋆. The
stellar flux then follows

F⋆(r) = F⋆(R⋆)

(

R⋆

r

)2

e−τ(r) r

r
, (49)

where F⋆(R⋆) = L⋆/(4πR2
⋆) = σSBT 4

⋆ is the stellar surface flux for a star of luminosity
L⋆, and σSB is the Stefan–Boltzmann constant.

The accuracy of ray tracing depends on angular sampling. Long characteristics
oversample near the source but undersample at large radii. HEALPix (Górski et al.
2005) addresses this by dividing the sphere into equal-area elements and enabling
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adaptive ray splitting, maintaining uniform angular resolution and efficient paral-
lelization in AMR and SPH codes (Abel and Wandelt 2002; Wise and Abel 2011;
Buntemeyer et al. 2016; Rosen et al. 2017; Kim et al. 2017).

Hybrid methods following the approach in Eq. (46) are implemented in flash

(Rijkhorst et al. 2006; Buntemeyer et al. 2016; Peters et al. 2010; Menon et al. 2022),
orion2 (Rosen et al. 2017), and pluto (Kuiper et al. 2010; Klassen et al. 2014).
These methods are well suited for massive star formation, where they capture both
direct stellar radiation pressure and dust-reprocessed flux. They regulate accretion,
drive instabilities and outflows, and influence fragmentation (Rosen et al. 2016, 2019;
Menon et al. 2023), potentially setting the final stellar mass (Kuiper and Hosokawa
2018). Adaptive UV ray-tracing methods have also been applied to photoionization
(Kim et al. 2017, 2019, 2021; Menon et al. 2023).

7.4 Moment methods

One of the most widely adopted classes of RHD approaches are moment methods,
which reduce the dimensionality of the RT problem by integrating over angles. This
procedure is analogous to deriving the MHD equations from the Boltzmann equation
via the Chapman–Enskog method. The accuracy of the resulting equations depends
critically on the adopted closure relation. In the following, we derive the moments of
the RT equation and then discuss the three most common closures: the Eddington
approximation (also called flux-limited diffusion, FLD), the Moment-1 (M1) closure,
and the variable Eddington tensor (VET) closure.

By averaging over all angles, low-order closures such as FLD perform well in the
optically-thick, diffusive limit. Higher-order closures like M1 and VET also capture the
transition between optically-thick and optically-thin gas. While all moment methods
average over angles to obtain a mean intensity, M1 and VET additionally retain infor-
mation about the radiation flux, thus preserving directional information. As a class,
moment methods are computationally efficient, with cost scaling as N log N , where
N is the number of resolution elements. Implementation can be challenging, however,
particularly for VET, which requires a preliminary ray-tracing step (cf. Sect. 7.3) to
compute the Eddington tensor before solving the RHD moment equations. The lat-
ter is typically done with solver libraries such as the Portable, Extensible Toolkit for
Scientific Computation (PETSc; Balay et al. 1997), the High Performance Precondi-
tioners package (Hypre; Falgout and Yang 2002), or the Adaptive Mesh Refinement
Exascale library (AMReX; Zhang et al. 2019).

7.4.1 Moments of the radiation transport equation

Equation (42) describes the directional propagation of radiation at frequency ν, sub-
ject to emission and absorption. Solving it in full is prohibitively complex, since
every point in space and time emits and absorbs at multiple frequencies and angles.
To simplify, we adopt the ‘gray’ approximation, integrating over all frequencies (an
assumption that can later be relaxed with multi-frequency bins). We then take angular
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averages of the radiation intensity, defining the moments of the radiation field:

Radiation energy density : Er =

∫

Er,ν dν =

∫
(

1

c

∫

Iν dΩ

)

dν, (50)

Radiation flux : Fr =

∫

Fr,ν dν =

∫
(

∫

Iνn dΩ

)

dν, (51)

Radiation pressure : Pr =

∫

Pr,ν dν =

∫
(

1

c

∫

Iνnn dΩ

)

dν. (52)

Using these definitions, we can derive more tractable equations for the radiation
field by taking successive angular moments of Eq. (42), i.e.,

∫∫

(· · · )nm dΩ dν for
m = 0, 1, . . . . The m = 0 and m = 1 moments describe the evolution of radiation
energy and flux, respectively. As an example, integrating Eq. (42) gives

∫∫
(

1

c

∂

∂t
+ n · ∇

)

Iν dΩ dν =

∫∫

(jν − ρκνIν) dΩ dν

=⇒
∂Er

∂t
+ ∇ · Fr =

∫∫

(jν − ρκνIν) dΩ dν. (53)

This relation is analogous to the hydrodynamic continuity equation: the local change
in Er is set by the net flux divergence, plus emission and absorption terms on the RHS.

If the gas were at rest, the RHS could be written as

∫∫

(jν − ρκνIν) dΩ dν = J − ρκEcEr, (54)

where J = ρκP4σSBT 4 is the emission rate in LTE (via Kirchhoff’s law), with κP the
Planck mean opacity (Eq. 38). The absorption term involves the energy mean opacity,

κE =

∫ ∞

0
κνEr,ν dν

∫ ∞

0
Er,ν dν

. (55)

Similarly, the m = 1 moment introduces the flux mean opacity,

κF =

∫ ∞

0
κν |Fr,ν | dν

∫ ∞

0
|Fr,ν | dν

. (56)

In reality, the gas moves. The LHS operators of Eq. (53) are exact in the lab
frame, but evaluating the RHS is complicated because photons undergo Doppler shifts,
aberration, and advection relative to the comoving frame where opacities are most
naturally defined. Thus, absorption and emission couple differently in lab vs. comov-
ing frames. To treat this consistently, most RHD approaches adopt a mixed-frame
formalism, valid to leading order in v/c (cf. Sect. 7.1.2), which introduces additional
terms involving Er, Fr, and Pr (Mihalas and Auer 2001; Krumholz et al. 2007b; Menon
et al. 2022).
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A fundamental issue is that the hierarchy of moment equations never closes: the
mth moment depends on the (m + 1)th. For example, Eq. (53) for Er depends on Fr,
while Fr depends on Pr, and so forth. Closure is obtained by assuming a relation of
the form

Pr = TEr, (57)

where the Eddington tensor T encodes the angular structure of the radiation field.
The choice of T determines the accuracy of the method. Common closures include:

1. Diffusion limit (flux-limited diffusion; FLD): T = I/3.
2. Free-streaming limit: T = nn, aligning Pr with Fr.
3. Moment-1 (M1) closure: T as a function of the reduced flux |Fr|/(cEr).
4. Variable Eddington tensor (VET): T computed directly from Eqs. (50) and (52)

using Iν from the time-independent RT solution (Eq. 45), typically via ray
tracing.

We will discuss and compare the FLD, M1, and VET closures in detail below.

7.4.2 Complete set of RHD moment equations

Combining the above, the mixed-frame formulation of the RHD moment equations is
(Mihalas and Auer 2001; Menon et al. 2022)

∂(ρv)

∂t
= −∇ · (ρvv) − ∇pth + G, (58)

∂(ρe)

∂t
= −∇ · [(ρe + pth)v] + cG0, (59)

∂Er

∂t
= −∇ · Fr − cG0, (60)

∂Fr

∂t
= −∇ · (c2ErT) − c2G, (61)

with pth and e as defined in Sect. 2.1. The source terms G0 and G represent absorption
and emission of radiation energy and momentum. They appear with opposite sign
in the MHD momentum and energy equations, ensuring self-consistent gas–radiation
coupling.

To leading order in v/c, and assuming a direction-independent flux spectrum
(Krumholz et al. 2007b), these terms are (Mihalas and Auer 2001; Menon et al. 2022)

G0 = ρκEEr −
1

c
ρκP4σSBT 4 + ρ (κF − 2κE)

Fr

c
·

v

c

+ ρ (κE − κF) Er

(

|v|2

c2
+

vv

c2
: T

)

,

G = ρκF

[

Fr

c
− Er(I + T)

v

c

]

. (62)
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The mean opacities κP, κR, κE, and κF are defined in Eqs. (38), (39), (55), and (56),
and are evaluated in the co-moving frame. This choice makes them straightforward
to compute, while the remaining quantities are handled in the lab frame—facilitating
mixed-frame implementation.

In general, solving Eqs. (60) and (61) requires implicit evaluation of κE and κF

through frequency integration over Er and Fr. In practice, useful approximations
exist: κE ≈ κP holds near LTE, while for optically-thick gas (diffusion limit) κF ≈ κR.
These substitutions are widely used, though they may remain reasonable even before
reaching the strict diffusion limit. This system of equations is closed once a choice
for T is specified, with the FLD, M1, and VET closures discussed in the following
subsections.

7.4.3 Flux-limited diffusion (FLD)

FLD is the simplest moment closure, obtained by assuming an isotropic radiation field
in the laboratory frame, so that the Eddington tensor is

T =
1

3
I. (63)

In this limit, one eliminates the radiation momentum equation by prescribing a rela-
tion for the flux in terms of the radiation energy density (a diffusion law), and evolves
only the m = 0 moment (Eq. 60) coupled to the gas via the source terms in Sect. 7.4.2.
This approximation is often accurate in optically-thick regions where gas and radiation
are strongly coupled (e.g., dense star-forming gas; Offner et al. 2012), but it degrades
in optically-thin environments (e.g., cloud outskirts, jet-cleared polar cavities), where
diffusion is a poor description.

To prevent superluminal propagation of radiation fronts in optically-thin regions,
FLD introduces a flux limiter that transitions smoothly between diffusion and free-
streaming. The standard (Levermore and Pomraning 1981) form is

Fr = −
ζc

ρκR
∇Er, ζ =

1

ξ

(

coth ξ −
1

ξ

)

, ξ =
|∇Er|

ρκREr
, (64)

where κR is the Rosseland mean opacity (Eq. 39). In the diffusion limit (ξ → 0),
ζ → 1/3 and

Fr → −
c

3ρκR
∇Er, (65)

while in the streaming limit (ξ → ∞), ζ → 1/ξ and |Fr| → c Er with Fr aligned
antiparallel to ∇Er.

Thus, the FLD system is obtained by inserting Eq. (64) into the general RHD
moment equations from Sect. 7.4.2. This includes radiation pressure through Pr =
(Er/3) I (e.g., relevant for massive star formation), through the mixed-frame source
terms G0 and G with the FLD flux substituted (explicit forms are summarized in
Krumholz et al. 2007b). The incorporation of radiation pressure allows the treatment
of massive star formation, where radiation regulate gas accretion (Rosen et al. 2020).
Simulations of massive star formation with non-axisymmetric geometries, however,
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find that radiation pressure is not sufficient to halt accretion onto the star (Krumholz
et al. 2009; Commerçon et al. 2011).

Gray and multi-group FLD schemes are widely used in star-formation simula-
tions (cf. Table 1). Multi-group extensions, i.e., solving the FLD system for several
frequency bins, improve temperature accuracy across a wide range of optical depths
(Shestakov and Offner 2008; Kuiper and Klessen 2013; González et al. 2015). Nonethe-
less, FLD has well-known limitations: by construction Fr ∥ −∇Er, so it cannot cast
shadows or represent crossing beams, and it can misdirect radiation forces in multi-
source configurations (Hayes and Norman 2003; Jiang et al. 2012; Menon et al. 2022).
These deficiencies motivate higher-order closures, such as M1 and VET (Sect. 7.4.4
and 7.4.5), which retain angular information.

7.4.4 Moment-1 (M1) closure

Some limitations of FLD can be alleviated by retaining partial directional informa-
tion of the radiation field. The M1 closure assumes rotational symmetry around the
radiative flux direction. The Eddington tensor is then a linear combination of I (as
in FLD) and the flux direction tensor F̂rF̂r, where F̂r = Fr/|Fr| (Levermore 1984;
Skinner and Ostriker 2013),

T =
1 − χ

2
I +

3χ − 1

2
F̂rF̂r, (66)

with the Eddington factor χ chosen to ensure flux limiting (Levermore 1984),

χ(fr) =
3 + 4f2

r

5 + 2
√

4 − 3f2
r

, (67)

where fr = |Fr|/(cEr) is the reduced flux. This closure smoothly interpolates
between the diffusion (fr → 0 =⇒ χ → 1/3) and streaming (fr → 1 =⇒ χ → 1)
limits, avoiding the need for an ad-hoc flux limiter.

The M1 system is thus the general RHD moment equations (Sect. 7.4.2) with T

given by Eqs. (66) and (67). While M1 outperforms FLD in optically-thin regions and
can reproduce shadows from a single source, it fails in multi-source configurations
where fluxes can spuriously cancel (Frank et al. 2012; Skinner and Ostriker 2013;
Menon et al. 2022). This limitation arises because the M1 Eddington tensor is defined
purely locally, depending only on Fr and Er.

An advantage is that the M1 system is hyperbolic, allowing radiation to be evolved
like a fluid with wave speed ≲ c. However, explicit timesteps are prohibitively small
(∆t ∝ c−1) compared to the CFL timestep of the MHD system. A common rem-
edy is the reduced speed of light approximation (c → c̃ ≪ c in time-derivative terms
only) (Gnedin and Abel 2001; Skinner and Ostriker 2013; Hopkins and Grudić 2019;
Mignon-Risse et al. 2020). This is accurate if c̃ ≫ vmax, the maximum MHD signal
speed (Rosdahl et al. 2013), with tests showing proper ionization front propagation
for c̃ ≳ 30 km s−1 (Geen et al. 2015a; Grudić et al. 2021). Too small a c̃, however,
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Fig. 9 STARFORGE simulation of a molecular cloud including an M1 multi-bin RHD method
with ionization, radiation pressure, and other stellar feedback processes (Guszejnov et al. 2022). Left

panel: Color map of the 1D line-of-sight velocity dispersion, increasing from purple (0.1 km s−1) to
orange (10 km s−1). Surface density is indicated by brightness (lighter is denser). Kinematic maps
highlight feedback features such as protostellar outflows. Circles mark the locations of sink particles,
with size and color denoting stellar mass. Right panel: Stellar initial mass function (IMF) for
simulations with different physics included, as indicated in the legend. Protostellar jets have the
overall biggest effect (cf. Sect. 6.2), with radiation primarily reducing the formation of very low-mass
stars (cf. Fig. 8).

underestimates radiation pressure in optically-thick gas, relevant to massive star for-
mation. Additional cost reductions can be achieved via radiation sub-cycling (Skinner
and Ostriker 2013).

M1 has been implemented in athena (Skinner and Ostriker 2013), arepo (Kan-
nan et al. 2019), flash (Menon et al. 2022), gizmo (Hopkins and Grudić 2019),
quokka (Wibking and Krumholz 2022; He et al. 2024b,a), and ramses (Aubert and
Teyssier 2008; Rosdahl et al. 2013; Rosdahl and Teyssier 2015; Mignon-Risse et al.
2020). Its strictly local closure, similar to FLD, ensures that the M1 method is indepen-
dent of the number of sources, and that it scales linearly with the number of resolution
elements, as it is usually evolved with explicit time integration, making it well-suited
for large-scale simulations. Applications to star-cluster formation find ionization and
radiation pressure from massive stars significantly regulate efficiencies (Skinner and
Ostriker 2015; Raskutti et al. 2016, 2017; Grudić et al. 2021). Multi-group M1 exten-
sions following distinct radiation bands capture frequency-dependent radiation effects
such as ionizing feedback more realistically (Aubert and Teyssier 2008; Rosdahl et al.
2013; Rosdahl and Teyssier 2015; Geen et al. 2015b,a, 2016, 2017; Guszejnov et al.
2022; He et al. 2024b,a), with results showing cloud dispersal and reduced star forma-
tion efficiencies, and suppression of low-mass star formation through radiation heating
(see Fig. 9).
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7.4.5 Variable Eddington tensor (VET) method

The variable Eddington tensor (VET) method is the most advanced moment-based
approach to RHD (see e.g., Hayes and Norman 2003; Davis et al. 2012; Jiang et al.
2012; Menon et al. 2022). Unlike the M1 closure, the Eddington tensor in VET is not
determined locally but computed directly from angular quadratures of the frequency-
averaged specific intensity Ir via Eqs. (50) and (52). The intensity Ir along path
length s follows the time-independent RT equation (cf. Eqs. 44–45) under the gray
approximation with the Planck mean opacity κP (Eq. 38):

Ir(s) =

∫ ∞

0

Iν(s) dν

≈ Ir(0) e−τ(s) +

∫ s

0

ρ(s′) κP(s′) Sr(s
′) e−[τ(s)−τ(s′)] ds′,

(68)

with

τ(s) =

∫ s

0

ρ(s′)κP(s′) ds′, (69)

and Sr the source function, typically the integrated Planck function for dust emission,
Sr(s) = σSBT 4(s)/π. This expression neglects scattering and O(v/c) terms from the
mixed-frame formulation, which are expected to make only minor contributions to T.

In practice, Eq. (68) is evaluated by ray tracing (Sect. 7.3) along discrete directions
n, producing Ir(n) and thus T via Eqs. (50) and (52). In flash, this is achieved
using the parallel hybrid-characteristics ray tracer of Buntemeyer et al. (2016), with
AMR support, and directions discretized via HEALPix (Górski et al. 2005) into 12,
48, 192, 768, etc. equal-area rays. The resulting T is then inserted into the coupled
RHD system (Eqs. 58–62). Solving this implicit system is done efficiently in parallel
using PETSc (Balay et al. 1997), with additional care at coarse-fine AMR boundaries
(Menon et al. 2022).

The strength of VET is its accuracy across both optically-thin and optically-thick
limits, as well as in the transition regime. It reproduces realistic shadows, radiation
fields, and gas temperature distributions. Accuracy depends on the angular resolution
(Davis et al. 2012): with HEALPix sampling, biases from grid alignment are minimized
by rotating the base orientation between runs. Menon et al. (2022) showed that using
48 rays already yields very good results, with only marginal improvement at 192 rays;
see their fig. B1.

Extension to multi-frequency VET

In Eq. (62) we approximated κE = κP and κF = κR, which ensures consistency with
the steady-state equation for Er (Menon et al. 2022). However, this choice is not
simultaneously consistent with the steady-state equation for Fr. In fact, no single gray
opacity can make both moment equations exact — only frequency-dependent opacities
can achieve full consistency.

To imrpove upon this limitation, Menon et al. (2023) developed a multi-frequency
RHD scheme combining the IR dust-radiation approach described above with an ion-
izing (UV) radiation treatment. The UV component computes the hydrogen ionization
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Fig. 10 Massive star cluster formation and feedback using the combined VET IR and UV scheme
from Menon et al. (2023). Shown are simulations of clouds with increasing surface density. In Milky
Way–like conditions (top left), the UV radiation component drives powerful outflows that disperse the
cloud and limit the star formation efficiency ϵ∗. In contrast, in extreme, dense environments (bottom
right), neither UV nor IR feedback can disperse the cloud, and ϵ∗ remains high. An animation is
available at https://shm-1996.github.io/movies/.

fraction by evaluating the optical depth of ionizing photons along rays. The ioniza-
tion fraction then updates the opacity and iterates to convergence. A natural next
step would be to include Doppler shifts of the ionizing lines, whereas the method of
Menon et al. (2023) currently assumes hydrogen ionization in the rest frame.

Figure 10 demonstrates this IR+UV VET approach in simulations of massive
star-cluster formation. Four clouds of increasing surface density are compared. In
typical Galactic environments, UV feedback disperses clouds via outflows, soon after
cluster formation, significantly reducing the star formation efficiency, ϵ∗. In very dense,
extreme conditions, however, radiative feedback is largely ineffective, and the star
formation efficiency remains high.
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7.5 Monte Carlo radiation transfer

Monte Carlo radiation transfer (MCRT) is analogous to kinetic theory in gas dynam-
ics: instead of explicitly solving the RT equation, MCRT uses a large number of test
particles, or ‘photon packets’, to model the radiation field. These packets sample the
photon phase-space distribution, with each packet’s behavior — including direction of
propagation and the probability of scattering or absorption — determined probabilis-
tically. As in kinetic theory, it is the ensemble behavior rather than individual packets
that matters. With a sufficiently large number of packets, the ensemble accurately
represents the RT process. For a detailed review of MCRT techniques, see Noebauer
and Sim (2019). Here, we summarize the main characteristics of MCRT.

The accuracy of MCRT improves with the number of packets N , but the computa-
tional cost also scales proportionally with N . MCRT parallelizes efficiently, since each
processor can follow an independent subset of packets with minimal communication
(Robitaille 2011). However, the method becomes inefficient in optically-thick regions,
where packets undergo many scatterings, requiring numerous advancement steps to
sample the radiation field across the domain.

MCRT methods naturally incorporate scattering and accurately follow the angu-
lar dependence of the radiation field, but they require a large number of packets
to reach accuracies comparable to moment methods (Davis et al. 2012, see Fig. 11
below). Like all Monte Carlo approaches, MCRT suffers from noise that scales as
N−1/2. For this reason, coupling MCRT directly to MHD simulations has long been
considered prohibitively expensive, and the method has most often been used as a
post-processing tool (e.g., Dullemond and Turolla 2000; Ercolano et al. 2008; Robitaille
2011; Reissl et al. 2016; Haworth et al. 2018; Harries et al. 2019). Recent advances,
however, have led to the development of in-situ MCRT-MHD methods that are com-
petitive in speed and accuracy with moment methods. Implementations now exist in
a number of hydrodynamics codes used for star-formation modeling, including arepo

(Smith et al. 2020), CMacIonize (Vandenbroucke and Wood 2018), flash (Tsang
and Milosavljević 2015), phantom (Petkova et al. 2021), and torus (Harries 2015).

MCRT-MHD provides a powerful tool for problems with complex, high-intensity
radiation fields or multiple scattering events. To make such calculations tractable,
however, several numerical approximations and acceleration techniques are employed,
including continuous absorption, energy deposition, and implicit thermal balance
(Lucy 1999; Bjorkman and Wood 2001), photon weighting and luminosity boosting,
and local packet merging and splitting (Smith et al. 2020).

7.6 Comparison of RT methods

Several studies have carried out detailed comparisons between the FLD, M1, MC,
and VET methods (Davis et al. 2012; Jiang et al. 2012; Menon et al. 2022). Figure 11
provides a direct comparison of all four methods. The top panels, taken from Davis
et al. (2012), show a shearing-box simulation of an accretion disk patch with physical
properties described in Hirose et al. (2006) (density is highest at the bottom and
decreases toward the disk atmosphere at the top). From left to right, the panels
compare FLD, MC, VET with 24 rays, and VET with 168 rays. All panels display the

59



0.4

0.6

0.8

1.0

T
z
z

0.30

0.32

0.34

0.36

0.38

0.40

0.42

T
z
z

FLD MC VET

(24 rays)

VET

(168 rays)

Fig. 11 Comparison of numerical methods for radiation transport (RT). Top panels: Flux-limited
diffusion (FLD, left), Monte Carlo (MC, 2nd panel), variable Eddington tensor (VET) with 24 rays
(3rd panel), and VET with 168 rays (right) for a shearing-box patch of an accretion disc from Hirose
et al. (2006) and Davis et al. (2012). The disk gas density increases from top to bottom in each
panel, with shearing flow along the horizontal direction. The panels show the zz-component of the
Eddington tensor, where the left color map applies for FLD (for which Tzz → 1 in optically-thin
gas, by construction), and the right color map applies for the MC and VET panels. FLD produces
noticeably different structures and magnitudes of Tzz compared to MC and VET, which are largely
consistent. MC shows some small-scale noise but otherwise agrees well with VET using 168 rays.
Even with only 24 rays, VET produces similar results, though a larger number of rays is preferable.
Bottom panels: FLD (left), Moment-1 (M1, middle), and VET with 192 rays (right) in a shadow
test by Menon et al. (2022), where a dense dust cloud is placed at the center of the domain and
two radiation sources are located at 12 and 3 o’clock. Panels show the gas temperature after one
light-crossing time of the domain. VET is the only method that reproduces the correct temperature
distribution, including the correct structure of the shadow behind the cloud. An animation of the
bottom panels is available at https://www.mso.anu.edu.au/∼chfeder/pubs/vettam/vettam.html.

zz-component of the Eddington tensor Tzz. FLD yields a markedly different radiation
field distribution than MC or VET (note also the different color map range, as Tzz

in FLD approaches unity in the optically-thin limit, by construction). The MC result
shows some small-scale noise despite using ∼ 1010 photon packets and requiring ∼
100× the compute time of VET. The close agreement between MC and VET strongly
suggests both methods are accurate. Minor differences are visible between the 24 ray
and 168 ray VET runs, with the latter more closely matching MC (aside from the MC
noise).

The bottom panels of Fig. 11 compare FLD, M1, and VET in a shadow test, where
a dense, high-opacity gas cloud is placed at the center and two radiation sources are
positioned at 12 and 3 o’clock in the computational domain (Menon et al. 2022). The
surrounding medium is optically thin. In FLD, radiation diffuses around the cloud,
producing no shadows. M1 creates directionally dependent solutions with a shadow
behind the cloud, opposite the sources. However, the shadow is weaker along the mid-
plane between the two sources and the radiation field shows spurious maxima and
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minima around the sources. By contrast, VET yields the correct radiation and gas
temperature distribution, including well-defined shadows behind the cloud.

7.7 Summary of challenges and future directions

Although RT is fully understood in theory, solving it numerically is extremely chal-
lenging due to its high dimensionality (time, 3D space, 2 angles, and frequency;
Sect. 7.1 and 7.2). Approximations are therefore essential, including gray (frequency-
integrated) treatments or reduced angular sampling in ray tracing (Sect. 7.3). Monte
Carlo RT (MCRT; Sect. 7.5) is conceptually simple and highly parallelizable, but
requires very large numbers of photon packets to reduce noise. Numerical tricks —
such as packet weighting, splitting/merging, continuous absorption, and luminosity
boosting — have made MCRT increasingly competitive for live RHD rather than just
post-processing.

The most widely used methods remain RHD moment approaches (Sect. 7.4),
which are more efficient and easier to parallelize than full ray tracing. A mixed-frame
treatment is required to handle frequency-integrated transport and mean opacities
(Sect. 7.4.1), leading to the complete set of RHD moment equations (Sect. 7.4.2). Their
accuracy hinges on the closure choice for the Eddington tensor: FLD (Sect. 7.4.3) and
M1 (Sect. 7.4.4) rely on local quantities, while VET (Sect. 7.4.5) requires a formal
RT solution (typically via ray tracing).

Comparisons of FLD, M1, VET, and MCRT (Sect. 7.6) highlight their respec-
tive strengths and weaknesses: FLD performs well only in optically-thick regions and
cannot capture shadows. M1 reproduces single-source shadows but fails with multi-
ple sources due to spurious flux cancellation. VET and MCRT both produce accurate
radiation fields and shadowing; however, MCRT typically requires an order of mag-
nitude more computation to match VET accuracy, though it stands to benefit from
advances in GPU acceleration.

Another area of progress is multi-group RT, which distinguishes broad bands such
as IR and UV. This enables more realistic treatments of feedback, especially from mas-
sive stars. However, incorporating full atomic and molecular line transfer with Doppler
shifts (critical for, e.g., Population III star formation) remains too computationally
demanding for large-scale applications.

Finally, gas dissipation acts as a local radiation source (Sect. 3.3). Since numerical
dissipation is resolution-dependent (Sect. 3.4.1), coupling this heating consistently
into the RHD system is non-trivial. Methods that explicitly track the local dissipation
rate (Sect. 3.4.2) may provide a promising way forward by linking dissipation-driven
heating directly to the radiation source terms.

8 Cosmic-ray hydrodynamics (CRHD)

The importance of cosmic rays (CRs), i.e., charged particles traveling at relativistic
velocities, to the structure of the ISM and galaxy evolution has long been recognized
(Beck 2016). CRs are thought to be primarily produced by diffusive shock acceleration
(first-order Fermi acceleration) in supernova remnants (Bell 2004). Within the ISM,
the CR pressure is comparable to both thermal and magnetic pressures, making CRs
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a key regulator of the star formation rate (Birnboim et al. 2015; Ruszkowski et al.
2017). Bursts of star formation and AGN activity can further accelerate CRs, driving
large-scale galactic winds (Booth et al. 2013; Hanasz et al. 2013; Girichidis et al. 2016;
Ruszkowski et al. 2017).

Most CRHD studies to date have focused on the impact of CRs at galactic scales.
However, their role at smaller scales is equally important. CRs are an important source
of ionization in dense molecular gas, thereby altering chemical abundances and reac-
tion rates (e.g., Jørgensen et al. 2020) and controlling magnetic resistivity in molecular
clouds, cores, and disks. Despite this, very few numerical studies have explicitly mod-
eled CR propagation within molecular clouds; most star formation simulations either
neglect CRs entirely or assume a constant ionization rate.

Recent theoretical and observational studies highlight that CR processes within
star-forming regions cannot be ignored. Protostellar jets, accretion shocks, and
expanding HII regions can accelerate low-energy (≲ 100 GeV) CRs in situ (Padovani
et al. 2020), enhancing the local CR ionization rate with strong consequences for ther-
modynamics and chemistry (Gaches and Offner 2018; Gaches et al. 2019). Elevated
CR ionization increases coupling between gas and magnetic fields, which can either
promote compact disk formation or suppress disks altogether (Zhao et al. 2020).

Motivated by this growing recognition, cosmic-ray transport (CRT) modules have
now been implemented in several hydrodynamic codes (cf. Table 1). The associ-
ated numerical challenges closely parallel those of radiation hydrodynamics (RHD):
high characteristic velocities (v ∼ c), large effective particle numbers, and a broad
dynamic range in energies. As a result, many RHD techniques—gray approxima-
tions, moment methods (e.g., diffusion), reduced-speed-of-light schemes, and flux
limiters—are directly applicable to CRHD. In the following, we review the princi-
pal CRHD methods employed in modern star-formation codes. See also the recent
comprehensive reviews of CRHD by Ruszkowski and Pfrommer (2023) and Hopkins
(2025).

8.1 Uncertainties in CR propagation

In contrast to RHD, where the physics of radiation transfer and radiation–matter
interactions is relatively well understood, CRHD suffers from significant uncertainties,
foremost among them how CRs actually propagate in different physical regimes. These
uncertainties can be divided into two main categories: those concerning the physics
of CR transport and those concerning CR production mechanisms.

CRs primarily stream along magnetic field lines and change direction through
scattering, produced by inhomogeneities in the field (e.g., magnetic mirroring; see
Cesarsky and Volk 1978), ambient MHD turbulence (Yan and Lazarian 2004), or
Alfvén waves resonantly excited by the CRs themselves (i.e., via the streaming insta-
bility; see Skilling 1975). The large uncertainties and complexities in the turbulent
structure and dynamics of the magnetized ISM (cf. Fig. 2), combined with the
anisotropic nature of CR transport, imply that the degree of scattering and the extent
to which CRs diffuse across field lines are uncertain by orders of magnitude. Transport
is therefore often parameterized using diffusion coefficients parallel and perpendicular
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to the bulk magnetic field, typically treated as free parameters constrained empirically
by observations (e.g., Owen et al. 2021).

As they propagate, CRs continuously lose energy through both collisional and
non-collisional interactions with the thermal ISM gas. These energy losses are param-
eterized by a loss function that depends on the ionization state, density, magnetic
field strength, and gas/dust composition. However, due to uncertain interaction cross
sections and microphysics, even the dominant energy-loss mechanism in some regimes
remains debated (e.g., Lazarian and Xu 2022; Gaches et al. 2024; Hopkins 2025).

While there is well-developed theory for the acceleration of CRs at supernova
shocks and their energetics, which is supported by observations (Caprioli 2015), the
details depend on the local conditions (Hu et al. 2022; Xu and Lazarian 2022). Mean-
while, the acceleration efficiency and resulting CR spectra from other sources have
even larger uncertainties. Shock properties (e.g., magnetization, Mach number, and
temperature) are poorly constrained in protostellar accretion, H ii-region, and jet
shocks, and these mechanisms appear to produce CR fluxes far lower than those
from SNe (Krumholz et al. 2023). Consequently, the limited observational constraints
available for CR fluxes within molecular clouds — such as non-thermal synchrotron
emission, gamma-ray emission, and chemical abundances — remain indirect (e.g.,
Rodŕıguez-Kamenetzky et al. 2017; Cabedo et al. 2023; Pineda et al. 2024; Pandey
et al. 2025). Additional sources of CRs, such as re-acceleration by ISM turbulence
(second-order Fermi acceleration) or turbulent reconnection within molecular clouds,
may also be important, but are highly uncertain (Drury and Strong 2017; Gaches
et al. 2021).

Thus, while the numerical methods for CRHD described below are technically
stable and robust, it is important to bear in mind that the fundamental uncertainties
in CR transport physics may outweigh the approximations inherent in any given
methodology.

8.2 Moment methods for CRHD

Ideally, the transport of CRs would be modeled directly by solving for the CR
phase space distribution, e.g., the Fokker-Planck equation derived by applying linear
approximations (Skilling 1975; Schlickeiser 1989):

∂f

∂t
= −v ·∇f +∇·(Dxx∇f)+

1

3
(∇·v)p

∂f

∂p
+

1

p2

∂

∂p

[

p2

(

blossf + Dpp
∂f

∂p

)]

+j, (70)

where f = f(x, p, t) is the isotropic part of the phase-space CR distribution function,
assuming efficient pitch-angle scattering, and Dxx and Dpp are the spatial diffusion
tensor and the momentum diffusion coefficient, respectively. CR momentum losses are
described by bloss(x, p, t) = dp/dt < 0, and j = j(x, p, t) is a CR source term. The
first term on the RHS in Eq. (70) represents CR advection with the gas flow (v),
while the second term describes CR spatial diffusion. The third term models adiabatic
behavior associated with gas expansion and compression. The fourth term describes
both energy losses and second-order Fermi acceleration, i.e., re-acceleration due to
small-scale magnetic turbulence. The last term, j, represents CRs accelerated due to
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first-order Fermi acceleration, i.e., acceleration produced by SNe and/or other shock
processes. Cosmic-ray streaming adds an additional transport channel, in which CRs
drift along magnetic field lines at approximately the Alfvén speed, which is effectively
added to the fluid speed in the Fokker–Planck equation.

Solving the Fokker–Planck equation directly is the approach taken by dedicated
CRT solvers such as galprop (Strong and Moskalenko 1998), picard (Kissmann
2014), dragon2 (Evoli et al. 2017), crest (Winner et al. 2019), and criptic

(Krumholz et al. 2022). However, achieving sufficient accuracy requires resolving a
large number of CR momentum bins, which becomes computationally prohibitive in
full CRHD contexts (e.g., Winner et al. 2019). Consequently, CRHD implementations
in general-purpose hydrodynamic codes adopt a range of approximations, often anal-
ogous to those used in RHD (e.g., gray approximations, diffusion models and flux
limiters).

CRHD frameworks have been implemented in several AMR and mesh-free codes,
including arepo (Thomas et al. 2021), athena (Zhao et al. 2025), enzo (Salem
and Bryan 2014), flash (Girichidis et al. 2014, 2020), gizmo (Hopkins et al. 2021a),
pluto (Mignone et al. 2018), and ramses (Dubois and Commerçon 2016). Owing to
its similarity with RHD, approximate CRT is relatively straightforward to incorporate
into codes that already support RHD solvers. Despite its reduced complexity, this
treatment can effectively model CR-driven galactic winds, CR pressure support in the
ISM, and the role of CRs in SN blast-wave energetics (Salem and Bryan 2014; Dubois
and Commerçon 2016; Girichidis et al. 2016). It also enables parameter studies of the
highly uncertain diffusion coefficients. For example, Commerçon et al. (2019) identified
a critical value of D, below which CRs become effectively ‘trapped’, producing CR
pressure gradients that suppress thermal instability (see Fig. 12a).

8.2.1 One-moment methods

The simplest treatment of CRT assumes that CRs are a single fluid, distinct from
the gas, that behaves diffusively, i.e., the CRs scatter and diffuse due to unresolved
small-scale turbulence. The most basic implementation assumes frequent CR scatter-
ing isotropizes the pitch-angle distribution, leading to an effectively constant diffusion
coefficient (Zweibel 2013). In a slightly more nuanced approach transport is param-
eterized by a (usually constant) diffusion coefficient with components parallel and
perpendicular to the magnetic-field direction to allow for anisotropic scattering. This
is effectively a single-moment approach, similar to that adopted to treat gray FLD
RT (cf. Sect. 7.4.3). In this limit, the CR energy equation is

∂ECR

∂t
= −∇ · (ECRv) − pCR(∇ · v) + ∇ · (D∇ECR) + SCR, (71)

where ECR is the CR energy density, pCR = (γCR − 1)ECR is the CR pressure with
γCR = 4/3 for a relativistic gas, D is the CR diffusion tensor, and SCR represents
CR sources (for a derivation, see Schlickeiser and Lerche 1985). The first two terms
on the RHS represent advection and adiabatic compression/expansion. The third and
fourth terms describe diffusion and sources of CRs, respectively. CRs are coupled to
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10 pc

ECR

Fig. 12 Top panels: Gas number density (left) and CR energy density (right) in a simulation
of magnetized, turbulent ISM gas using a single-moment CRHD scheme (Commerçon et al. 2019).
White arrows denote the velocity field, while streamlines show magnetic field lines. With a parallel
diffusion coefficient D = 1022, cm2, s−1, well within the CR-trapping regime, strong CR energy
inhomogeneities develop. Bottom panels: Gas number density (left) and CR energy density (right)
in a galactic simulation using a two-moment CRHD scheme (Hopkins et al. 2021b). Here, the diffusion
coefficient scales with the damping rate and the streaming velocity is tied to the Alfvén–ion speed.
This model reproduces key observables, including the scattering-rate-weighted effective diffusivity,
gamma-ray luminosity, and mean CR energy density of a Milky Way–like galaxy.

the MHD system of equations (Sect. 2.1) by adding the diffusion term ∇ · (D∇ECR)
to gas energy equation (Eq. 3) to account for thermal energy injected by CR diffusion.
Likewise, the total gas energy density and pressure are updated to include the CR
contributions, i.e., ρe → ρe + ECR, and p → p + pCR.

8.2.2 Two-moment methods

The diffusion approximation for CRT neglects several key processes: the generation
of Alfvén waves by CR streaming, damping of waves through ion–neutral collisions,
and nonlinear Landau damping driven by anisotropic particle distributions (see also
Rincon et al. 2016; St-Onge and Kunz 2018; Achikanath Chirakkara et al. 2024;
Chirakkara et al. 2024). These processes are essential for accurately modeling CR
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transport in the multi-phase ISM (Seta and Federrath 2022) and within molecular
clouds. Moreover, the diffusion approach is effectively ‘gray’, since ECR represents
the spectrum-integrated CR energy density, providing no information on the spectral
evolution or energy-dependent CR behavior.

A more sophisticated treatment is the two-moment (or flux-evolving) approach,
which explicitly evolves the CR flux equation (Zweibel 2017; Jiang and Oh 2018;
Thomas and Pfrommer 2019; Chan et al. 2019; Ruszkowski and Pfrommer 2023).
This method enables a more accurate treatment of CR streaming. Figure 12b illus-
trates a two-moment CRHD simulation of a Milky Way-like galaxy, showing that this
framework can reproduce several expected CR observables.

Despite methodological parallels to RHD, important differences arise. On galactic
scales, one- and two-moment CRT approaches produce very similar bulk outcomes,
such as star formation rates and gamma-ray luminosities (Chan et al. 2019). Thomas
and Pfrommer (2022) demonstrate that, unlike RHD, the CR behavior is relatively
insensitive to the choice of closure. This insensitivity stems from the fact that CR
propagation is dominated by pitch-angle scattering, which tends to isotropize the
distribution and ensures diffusion dominates over directional effects such as shadowing
(cf. Fig.11).

For star-cluster formation, simulations that include all major physics and feedback
processes along with CRT for a typical Galactic CR background recover a standard
IMF (Fitz Axen et al. 2024). In these models, ambient CRs do not have a significant
effect inside dense clouds due to energy losses induced by the streaming instability
(Bustard and Zweibel 2021; Fitz Axen et al. 2024), creating CR pressure gradients
between the cloud interior and exterior. This gradient enhances the final star formation
efficiency. Furthermore, CRT simulations provide tentative evidence that environ-
ments with high CR energy densities — whether from an elevated background or local
CR acceleration — can yield more top-heavy IMFs (Fitz Axen et al. 2024, 2025).

8.3 Multi-bin spectral formalisms

Several recent approaches explicitly follow the evolution of the CR spectrum, including
energy-dependent losses. These methods solve discretized forms of the Fokker–Planck
equation for the CR number and energy densities, in close analogy to multi-frequency
treatments of the RT equation. The first two moments of the Fokker–Planck equation
are defined as

nCR,i =

∫ pi+1/2

pi−1/2

4πp2f(p) dp, (72)

ECR,i =

∫ pi+1/2

pi−1/2

4πp2f(p) T (p) dp, (73)

where p is the CR momentum, nCR,i and ECR,i are the CR number and energy
densities in momentum bin i, and

T (p) =
√

p2c2 + m2
pc4 − mpc2 (74)
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is the CR kinetic energy, with the proton mass mp.
In practice, these methods often assume a piecewise power-law representation of

f(p) within each bin,

f(p) = fi−1/2

(

p

pi−1/2

)−qi

, (75)

with two degrees of freedom per bin: the normalization fi−1/2 and the spectral slope qi.
Continuity of f(p) enforces closure. Using these definitions, the two-moment equations
for the CR number density and energy density in each momentum bin i can be defined
(for details we refer to Girichidis et al. 2020; Hopkins et al. 2022). Cost savings in
multi-bin methods are often achieved by using logarithmically-spaced momentum bins
and adopting a reduced-speed-of-light approximation (e.g., Chan et al. 2019; Hopkins
et al. 2021b).

Spectral CRT methods allow direct comparison with the observed CR spectrum
in the Milky Way and other galaxies (Girichidis et al. 2020; Hopkins et al. 2022).
They show that CR spectra and ionization rates can vary substantially across galactic
environments. These calculations also indicate that turbulent re-acceleration plays
only a minor role, while CRs produced in reverse supernova shocks dominate over
other sources of acceleration (Hopkins et al. 2022).

8.4 Monte Carlo CR transport

In lieu of a continuous fluid approach, CRT may also be modeled discretely by random
sampling from the CR distribution. This is analogous to the MC approach to RT,
where the evolution of the radiation spectrum is modeled by following the interactions
between individual photon ‘packets’ and the gas (see Sect. 7.5). To date, no in situ
MC CRT methods have been implemented in star-formation hydrodynamic codes,
although this is a promising future avenue due to advantages in scalability and spectral
resolution, as well as potential for GPU acceleration.

A few examples of MC CRT have been applied to star-formation problems in
post processing, however. For example, Fitz Axen et al. (2021b) developed a three-
dimensional time-independent MC CRT method that follows the propagation of CR
protons and electrons through a grid of magnetic-field strengths and densities. The
code solves the Boltzmann transport equation, rather than the quasi-linear Fokker-
Planck equation, for each particle step, where the distance traveled is sampled from an
exponential probability distribution (Harding et al. 2016). Scattering is modeled by
sampling a random vector at every particle step, which emulates a turbulent magnetic
field (e.g., Harding et al. 2016). In this way, the code models the sub-resolution tur-
bulent magnetic field as an isotropic field, with a proton-scattering opacity. Fraschetti
et al. (2018) adopts a similar approach to follow the trajectories of CR particles accel-
erated in the stellar wind through the circumstellar disk. Likewise, they decompose
the magnetic field into mean and turbulent components, where the mean component
is given by MHD simulations and pitch-angle scattering produced by the turbulent
component derived from an assumed Kolmogorov (1941) turbulent power spectrum
(see also Fraschetti and Giacalone 2012).

Applications using such approaches suggest that the asymmetric magnetic field
from core to stellar scales produces significant anisotropy in the CR flux that reaches
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the circumstellar disk (Fraschetti et al. 2018; Fitz Axen et al. 2021a). As in the
radiation case, CRs can experience a flashlight effect, in which they preferentially
leak out the outflow cavity due to a combination of lower-energy losses and magnetic
focusing (Fitz Axen et al. 2021a). However, as in other CR approaches, the effective
diffusion coefficient and level of anisotropy is sensitive to assumptions about the sub-
resolution magnetized turbulence (Lazarian and Xu 2021; Zhang and Xu 2023).

8.5 Summary of challenges and future directions

Despite substantial progress in recent years, cosmic-ray hydrodynamics (CRHD) still
faces major open challenges. Unlike radiation hydrodynamics (RHD), the basic trans-
port physics of CRs remains highly uncertain (Sect. 8.1). The degree to which CRs
scatter along or across magnetic fields, the importance of streaming instabilities, and
the impact of damping processes such as ion-neutral and Landau damping are all
poorly constrained, particularly in the multi-phase ISM and in molecular clouds. Simi-
larly, while supernovae are well-established CR accelerators, the efficiency and spectral
properties of CRs from protostellar jets, accretion shocks, or expanding H ii regions
remain uncertain.

On the numerical side, most CRHD methods still rely on simplified one-moment
diffusion or streaming treatments, often with gray approximations that integrate over
the CR spectrum (Sect. 8.2.1). Multi-bin formalisms (Sect. 8.3) now allow explicit
spectral evolution, but at high computational cost. Two-moment methods (Sect. 8.2.2)
improve the modeling of streaming and anisotropy, yet global galaxy simulations often
find little difference in bulk outcomes such as the star formation rate compared to one-
moment methods. Monte Carlo approaches (Sect. 8.4) promise higher accuracy and
natural spectral resolution, but have so far only been applied in post-processing due
to expense. The need for scalable implementations, possibly with GPU acceleration,
is pressing.

Finally, observational constraints on CR transport are largely indirect, relying
on gamma-ray emission, synchrotron radiation, or molecular abundances, which pro-
vide only limited leverage on diffusion coefficients and loss processes. Star-forming
regions in particular show tentative evidence for enhanced CR ionization rates, but
the magnitude and spatial structure of this enhancement remain debated.

Future progress will likely require multi-scale, multi-physics models that couple
CR transport to MHD turbulence, chemistry, and radiative feedback, combined with
hybrid fluid-particle methods that can capture both spectral evolution and anisotropy.
Ultimately, predictive CRHD will depend on tighter synergy between theory, numer-
ical models, and new observational diagnostics from facilities such as ALMA, JWST,
and CTAO.

9 Conclusions

The physics of star formation spans a remarkable range of scales and processes, from
supersonic turbulence to self-gravity, stellar feedback, radiation transfer, and cosmic-
ray dynamics. Each of these ingredients is now modeled with increasing realism in
modern simulation codes (cf. Table 1), yet major challenges remain.
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For turbulence, the fundamental difficulty lies in the enormous Reynolds numbers
of the ISM, Re ∼ 109, which remain far beyond current computational capabilities.
Advances such as positivity-preserving solvers, GPU acceleration, hybrid-precision
techniques, and methods to track local dissipation rates (Sect. 3) are enabling progress,
but bridging the gap to fully realistic turbulence is still a long-term goal. In gravity,
solvers are generally robust (Sect. 4), but the treatment of interactions between gas
and stars remains problematic: accurate stellar orbits embedded in dense gas likely
require more widespread use of direct N -body summation despite its cost.

At the scale of star formation, robust sink particle treatments (Sect. 5) demand
strict checks for gravitational collapse and careful conservation of mass, momentum,
and angular momentum. These criteria are essential to avoid spurious fragmentation
and inaccurate accretion. Stellar feedback (Sect. 6) adds further complexity: jets and
outflows are critical for angular momentum transport and IMF regulation, while heat-
ing, winds, ionization, and supernovae each operate in different mass regimes. Progress
here requires more comprehensive implementations of jet feedback, improved thermal
treatments, and resolution-independent SN feedback models.

Radiation hydrodynamics (Sect. 7) presents perhaps the greatest numerical chal-
lenge due to its high dimensionality. Approximations remain unavoidable, whether
gray moment methods with different closures (FLD, M1, VET) or Monte Carlo (MC)
schemes. Each has strengths and weaknesses, with VET and MC providing the most
accurate solutions but are either hard to implement (VET) or high in cost (MC).
Multi-frequency extensions are now beginning to bridge the gap between idealized
gray schemes and the complexity of real stellar and gas/dust, though full line transfer
remains out of reach.

Cosmic-ray hydrodynamics (Sect. 8) shares some methodological parallels with
RHD but faces even larger physical uncertainties. The propagation of CRs depends
sensitively on poorly constrained scattering, streaming, and damping processes, while
their sources outside supernovae remain uncertain. Numerically, one-moment diffusion
models dominate current applications, though multi-bin spectral and two-moment
approaches are emerging. Monte Carlo methods again offer conceptual simplicity and
high accuracy but are not yet feasible in situ. Observational constraints are similarly
limited, underscoring the need for closer ties between simulations and diagnostics such
as gamma rays, synchrotron emission, and molecular abundances.

Looking forward, the most promising advances will come from methods that
integrate across physics modules. Multi-scale, multi-physics approaches that couple
turbulence, gravity, radiation, feedback, and CR transport will be required to create
the most realistic models of star formation. Continued development of hybrid particle-
fluid methods, combined with the increasing availability of GPU acceleration and
exascale computing, will enable more accurate treatments of both microphysics and
global ISM dynamics. Ultimately, progress in theory and computation must go hand
in hand with improved observational diagnostics, ensuring that simulations remain
grounded in measurable reality while continuing to push toward ever higher fidelity.
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Nordlund Å, Ramsey JP, Popovas A, et al (2018) DISPATCH: a numerical simula-
tion framework for the exa-scale era - I. Fundamentals. Mon Not R Astron Soc
477(1):624–638. https://doi.org/10.1093/mnras/sty599, arXiv:1705.10774 [astro-
ph.IM]

Offner SSR, Arce HG (2015) Impact of Winds from Intermediate-mass Stars on Molec-
ular Cloud Structure and Turbulence. Astrophys J 811(2):146. https://doi.org/10.
1088/0004-637X/811/2/146, arXiv:1508.07008 [astro-ph.GA]

Offner SSR, Chaban J (2017) Impact of Protostellar Outflows on Turbulence and Star
Formation Efficiency in Magnetized Dense Cores. Astrophys J 847(2):104. https:
//doi.org/10.3847/1538-4357/aa8996, arXiv:1709.01086 [astro-ph.GA]

Offner SSR, Liu Y (2018) Turbulent action at a distance due to stellar feed-
back in magnetized clouds. Nature Astronomy 2:896–900. https://doi.org/10.1038/
s41550-018-0566-1, arXiv:1809.03513 [astro-ph.SR]

Offner SSR, Klein RI, McKee CF, et al (2009) The Effects of Radiative Transfer
on Low-Mass Star Formation. Astrophys J 703:131–149. https://doi.org/10.1088/
0004-637X/703/1/131, arXiv:0904.2004 [astro-ph.SR]

95

https://doi.org/10.1086/174842
https://arxiv.org/abs/astro-ph/9405016
https://doi.org/10.1086/517515
https://arxiv.org/abs/astro-ph/0703152
https://doi.org/10.1088/0004-637X/740/1/36
https://doi.org/10.1088/0004-637X/740/1/36
https://arxiv.org/abs/1107.3616
https://doi.org/10.1088/0004-637X/726/1/46
https://arxiv.org/abs/1010.2290
https://doi.org/10.1086/308765
https://doi.org/10.1093/mnras/stab505
https://doi.org/10.1093/mnras/stab505
https://arxiv.org/abs/2102.08564
https://doi.org/10.1007/s41115-019-0004-9
https://arxiv.org/abs/1907.09840
https://doi.org/10.1093/mnras/sty599
https://arxiv.org/abs/1705.10774
https://doi.org/10.1088/0004-637X/811/2/146
https://doi.org/10.1088/0004-637X/811/2/146
https://arxiv.org/abs/1508.07008
https://doi.org/10.3847/1538-4357/aa8996
https://doi.org/10.3847/1538-4357/aa8996
https://arxiv.org/abs/1709.01086
https://doi.org/10.1038/s41550-018-0566-1
https://doi.org/10.1038/s41550-018-0566-1
https://arxiv.org/abs/1809.03513
https://doi.org/10.1088/0004-637X/703/1/131
https://doi.org/10.1088/0004-637X/703/1/131
https://arxiv.org/abs/0904.2004


Offner SSR, Kratter KM, Matzner CD, et al (2010) The Formation of Low-mass
Binary Star Systems Via Turbulent Fragmentation. Astrophys J 725(2):1485–1494.
https://doi.org/10.1088/0004-637X/725/2/1485, arXiv:1010.3702 [astro-ph.SR]

Offner SSR, Robitaille TP, Hansen CE, et al (2012) Observing Simulated Pro-
tostars with Outflows: How Accurate Are Protostellar Properties Inferred
from SEDs? Astrophys J 753:98. https://doi.org/10.1088/0004-637X/753/2/98,
arXiv:1205.0246 [astro-ph.SR]

Omukai K, Tsuribe T, Schneider R, et al (2005) Thermal and Fragmentation
Properties of Star-forming Clouds in Low-Metallicity Environments. Astrophys J
626:627–643. https://doi.org/10.1086/429955, arXiv:astro-ph/0503010

Osterbrock DE, Ferland GJ (2006) Astrophysics of gaseous nebulae and active galactic
nuclei. University Science Books

Owen ER, On AYL, Lai SP, et al (2021) Observational Signatures of Cosmic-Ray
Interactions in Molecular Clouds. Astrophys J 913(1):52. https://doi.org/10.3847/
1538-4357/abee1a, arXiv:2103.06542 [astro-ph.GA]
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Verliat A, Hennebelle P, González M, et al (2022) Influence of protostellar jets and HII
regions on the formation and evolution of stellar clusters. Astron Astrophys 663:A6.
https://doi.org/10.1051/0004-6361/202141765, arXiv:2202.02237 [astro-ph.GA]

Verner DA, Ferland GJ, Korista KT, et al (1996) Atomic Data for Astrophysics. II.
New Analytic Fits for Photoionization Cross Sections of Atoms and Ions. Astrophys
J 465:487. https://doi.org/10.1086/177435, arXiv:astro-ph/9601009 [astro-ph]

Waagan K, Federrath C, Klingenberg C (2011) A robust numerical scheme for
highly compressible magnetohydrodynamics: Nonlinear stability, implementation
and tests. J Comput Phys 230:3331–3351. https://doi.org/10.1016/j.jcp.2011.01.026
[astro-ph.IM]

Walch S, Naab T (2015) The energy and momentum input of supernova explosions in
structured and ionized molecular clouds. Mon Not R Astron Soc 451(3):2757–2771.
https://doi.org/10.1093/mnras/stv1155, arXiv:1410.0011 [astro-ph.GA]

Walch S, Whitworth AP, Girichidis P (2012) The influence of the turbulent
perturbation scale on pre-stellar core fragmentation and disc formation. Mon
Not R Astron Soc 419:760–770. https://doi.org/10.1111/j.1365-2966.2011.19741.x,
arXiv:1109.0280 [astro-ph.GA]

Wang P, Li ZY, Abel T, et al (2010) Outflow Feedback Regulated Massive Star
Formation in Parsec-Scale Cluster-Forming Clumps. Astrophys J 709:27–41. https:
//doi.org/10.1088/0004-637X/709/1/27, arXiv:0908.4129 [astro-ph.SR]

Wardle M, Königl A (1993) The structure of protostellar accretion disks and the origin
of bipolar flows. Astrophys J 410:218–238. https://doi.org/10.1086/172739

Watt J, Federrath C, Birke C, et al (2025) Mitigating numerical dissipation in
simulations of subsonic turbulent flows. Mon Not R Astron Soc

Weaver R, McCray R, Castor J, et al (1977) Interstellar bubbles. II. Structure and
evolution. Astrophys J 218:377–395. https://doi.org/10.1086/155692

Wibking BD, Krumholz MR (2022) QUOKKA: a code for two-moment AMR radiation
hydrodynamics on GPUs. Mon Not R Astron Soc 512(1):1430–1449. https://doi.

105

https://doi.org/10.1086/510771
https://arxiv.org/abs/astro-ph/0608375
https://doi.org/10.1093/mnras/stz2736
https://arxiv.org/abs/1903.11247
https://doi.org/10.1051/0004-6361/202141765
https://arxiv.org/abs/2202.02237
https://doi.org/10.1086/177435
https://arxiv.org/abs/astro-ph/9601009
https://doi.org/10.1016/j.jcp.2011.01.026
https://doi.org/10.1093/mnras/stv1155
https://arxiv.org/abs/1410.0011
https://doi.org/10.1111/j.1365-2966.2011.19741.x
https://arxiv.org/abs/1109.0280
https://doi.org/10.1088/0004-637X/709/1/27
https://doi.org/10.1088/0004-637X/709/1/27
https://arxiv.org/abs/0908.4129
https://doi.org/10.1086/172739
https://doi.org/10.1086/155692
https://doi.org/10.1093/mnras/stac439
https://doi.org/10.1093/mnras/stac439


org/10.1093/mnras/stac439, arXiv:2110.01792 [astro-ph.IM]

Winner G, Pfrommer C, Girichidis P, et al (2019) Evolution of cosmic ray
electron spectra in magnetohydrodynamical simulations. Mon Not R Astron
Soc 488(2):2235–2252. https://doi.org/10.1093/mnras/stz1792, arXiv:1903.01467
[astro-ph.HE]

Wise JH, Abel T (2011) ENZO+MORAY: radiation hydrodynamics adap-
tive mesh refinement simulations with adaptive ray tracing. Mon Not R
Astron Soc 414(4):3458–3491. https://doi.org/10.1111/j.1365-2966.2011.18646.x,
arXiv:1012.2865 [astro-ph.IM]

Wolfire MG, Hollenbach D, McKee CF, et al (1995) The neutral atomic phases of the
interstellar medium. Astrophys J 443:152–168. https://doi.org/10.1086/175510
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