
Astronomy & Astrophysics manuscript no. fed c© ESO 2018
October 22, 2018

Comparing the statistics of interstellar turbulence in simulations

and observations:

Solenoidal versus compressive turbulence forcing

C. Federrath1,2,3, J. Roman-Duval4,5, R. S. Klessen1, W. Schmidt6,7, and M.-M. Mac Low2,3

1 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120
Heidelberg, Germany
e-mail: chfeder@ita.uni-heidelberg.de

2 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
3 Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192,

USA
4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
5 Astronomy Department, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA
6 Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
7 Lehrstuhl für Astronomie, Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074

Würzburg, Germany

Received month day, year; accepted month day, year

ABSTRACT

Context. Density and velocity fluctuations on virtually all scales observed with modern telescopes show that molecular clouds (MCs)
are turbulent. The forcing and structural characteristics of this turbulence are, however, still poorly understood.
Aims. To shed light on this subject, we study two limiting cases of turbulence forcing in numerical experiments: solenoidal
(divergence-free) forcing and compressive (curl-free) forcing, and compare our results to observations.
Methods. We solve the equations of hydrodynamics on grids with up to 10243 cells for purely solenoidal and purely compressive
forcing. Eleven lower-resolution models with different forcing mixtures are also analysed.
Results. Using Fourier spectra and ∆-variance, we find velocity dispersion–size relations consistent with observations and indepen-
dent numerical simulations, irrespective of the type of forcing. However, compressive forcing yields stronger compression at the same
RMS Mach number than solenoidal forcing, resulting in a three times larger standard deviation of volumetric and column density
probability distributions (PDFs). We compare our results to different characterisations of several observed regions, and find evidence
of different forcing functions. Column density PDFs in the Perseus MC suggest the presence of a mainly compressive forcing agent
within a shell, driven by a massive star. Although the PDFs are close to log-normal, they have non-Gaussian skewness and kurtosis
caused by intermittency. Centroid velocity increments measured in the Polaris Flare on intermediate scales agree with solenoidal
forcing on that scale. However, ∆-variance analysis of the column density in the Polaris Flare suggests that turbulence is driven on
large scales, with a significant compressive component on the forcing scale. This indicates that, although likely driven with mostly
compressive modes on large scales, turbulence can behave like solenoidal turbulence on smaller scales. Principal component analysis
of G216-2.5 and most of the Rosette MC agree with solenoidal forcing, but the interior of an ionised shell within the Rosette MC
displays clear signatures of compressive forcing.
Conclusions. The strong dependence of the density PDF on the type of forcing must be taken into account in any theory using the
PDF to predict properties of star formation. We supply a quantitative description of this dependence. We find that different observed
regions show evidence of different mixtures of compressive and solenoidal forcing, with more compressive forcing occurring primar-
ily in swept-up shells. Finally, we emphasise the role of the sonic scale for protostellar core formation, because core formation close
to the sonic scale would naturally explain the observed subsonic velocity dispersions of protostellar cores.
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1. Introduction

Studying the density and velocity distributions of interstellar
gas provides essential information about virtually all physi-
cal processes relevant to the dynamical evolution of the in-
terstellar medium (ISM). Along with gravity, magnetic fields
and the thermodynamics of the gas, supersonic turbulence
plays a fundamental role in determining the density and ve-
locity statistics of the ISM (e.g., Scalo et al. 1998). Thus, su-
personic turbulence is considered a key process for star for-

mation (Mac Low & Klessen 2004; Elmegreen & Scalo 2004;
Scalo & Elmegreen 2004; McKee & Ostriker 2007).

In this paper, we continue our analysis of the den-
sity probability distribution function (PDF) obtained in nu-
merical experiments of driven supersonic isothermal turbu-
lence. Understanding the density PDF and its turbulent ori-
gin is essential, because it is a key ingredient for an-
alytical models of star formation: The turbulent density
PDF is used to explain the stellar initial mass func-
tion (Padoan & Nordlund 2002; Hennebelle & Chabrier 2008,
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2009), the star formation rate (Krumholz & McKee 2005;
Krumholz et al. 2009; Padoan & Nordlund 2009), the star for-
mation efficiency (Elmegreen 2008), and the Kennicutt-Schmidt
relation on galactic scales (Elmegreen 2002; Kravtsov 2003;
Tassis 2007). In Federrath et al. (2008b), we found that super-
sonic turbulence driven by a purely compressive (curl-free) force
field yields a density PDF with roughly three times larger stan-
dard deviation compared to solenoidal (divergence-free) turbu-
lence forcing, which strongly affects the results obtained in these
analytical models. Here, we want to compare our results for
the density PDF to observations of column density PDFs (e.g.,
Goodman et al. 2009).

Moreover, in Federrath et al. (2009) we investigated the frac-
tal density distribution of our two models with solenoidal and
compressive turbulence forcing, which showed that compressive
forcing yields a significantly lower fractal dimension (Df ≈ 2.3)
compared to solenoidal forcing (Df ≈ 2.6). In the present contri-
bution, we consider the scaling of centroid velocity increments
computed for these models, and we compare them to observa-
tions of the Polaris Flare by Hily-Blant et al. (2008). We addi-
tionally used principal component analysis and compared our
results to observations of the G216-2.5 (Maddalena’s Cloud) and
the Rosette MC by Heyer et al. (2006).

Our results indicate that interstellar turbulence is driven by
mixtures of solenoidal and compressive forcing. The ratio be-
tween solenoidal and compressive modes of the turbulence forc-
ing may vary strongly across different regions of the ISM. This
provides an explanation for the apparent lack of correlation be-
tween turbulent density and velocity dispersions found in ob-
servations (e.g., Goodman et al. 2009; Pineda et al. 2008). We
conclude that solenoidal forcing is more likely to be realised
in quiescent regions with low star formation activity as in the
Polaris Flare and in Maddalena’s Cloud. On the other hand, in
regions of enhanced stellar feedback, compressive forcing leads
to larger standard deviations of the density PDFs, as seen in
one of the subregions of the Perseus MC surrounding a central
B star. Moreover, compressive forcing exhibits a higher scaling
exponent of principal component analysis than solenoidal forc-
ing. This higher scaling exponent is consistent with the mea-
sured scaling exponent for the interior of an ionising shell in the
Rosette MC.

In § 2, we explain the numerical setup and turbulence forcing
used for the present study. We discuss our results obtained using
PDFs, centroid velocity increments, principal component analy-
sis, Fourier spectrum functions, and ∆-variance analyses in § 3,
4, 5, 6, and 7, respectively. In each of these sections, we compare
the turbulence statistics obtained for solenoidal and compressive
forcing with observational data available in the literature. In § 8,
we discuss the possibility that transonic pre-stellar cores typi-
cally form close to the sonic scale in a globally supersonic, tur-
bulent medium. Section 9 provides a list of the limitations in our
comparison of numerical simulations with observations. A sum-
mary of our results and conclusions is given in § 10.

2. Simulations and methods

The piecewise parabolic method (Colella & Woodward 1984),
implemented in the astrophysical code FLASH3 (Fryxell et al.
2000; Dubey et al. 2008) was used to integrate the equations
of hydrodynamics on three-dimensional (3D) periodic uniform
grids with 2563, 5123, and 10243 grid points. Since isothermal
gas is assumed throughout this study, it is convenient to define

s ≡ ln
ρ

〈ρ〉 (1)

as the natural logarithm of the density divided by the mean den-
sity 〈ρ〉 in the system. For isothermal gas, the pressure, P = ρc2

s ,
is proportional to the density ρ with the constant sound speed cs.
The equations of hydrodynamics solved here are consequently
given by

∂s

∂t
+ (v · ∇)s = −∇ · v (2)

∂v

∂t
+ (v · ∇)v = −c2

s ∇s + f , (3)

where v denotes the velocity of the gas. An energy equation
is not needed, because the gas is isothermal. The assumption
of isothermal gas is very crude, but may still provide an ad-
equate physical approximation to the real thermodynamics in
dense molecular gas (Wolfire et al. 1995; Pavlovski et al. 2006).
We discuss further limitations of our simulations in § 9. The
stochastic forcing term f is used to drive turbulent motions.

2.1. Forcing module

Equations (2) and (3) have been solved before in the con-
text of molecular cloud dynamics, studying compressible tur-
bulence with either solenoidal (divergence-free) forcing or
with a 2:1 mixture of solenoidal to compressive modes in
the turbulence forcing (e.g., Padoan et al. 1997; Stone et al.
1998; Mac Low et al. 1998; Mac Low 1999; Klessen et al.
2000; Heitsch et al. 2001; Klessen 2001; Boldyrev et al.
2002; Li et al. 2003; Padoan et al. 2004; Jappsen et al. 2005;
Ballesteros-Paredes et al. 2006; Kritsuk et al. 2007; Dib et al.
2008; Kissmann et al. 2008; Offner et al. 2008; Schmidt et al.
2009). The case of a 2:1 mixture of solenoidal to compres-
sive modes is the natural result obtained for 3D forcing, if
no Helmholtz decomposition (see below) is performed. Then,
the solenoidal modes occupy two of the three available spa-
tial dimensions on average, while the compressive modes only
occupy one (Elmegreen & Scalo 2004; Federrath et al. 2008b).
In the present study, the solenoidal forcing case is thus also
used as a control run for comparison with previous studies us-
ing solenoidal forcing. However, we additionally applied purely
compressive (curl-free) forcing and analysed the resulting turbu-
lence statistics in detail. Each simulation at a resolution of 10243

grid cells consumed roughly 100 000 CPU hours. Therefore, we
concentrated on two extreme cases of turbulence forcing with
high resolution: (1) the widely adopted purely solenoidal forc-
ing (∇ · f = 0), and (2) purely compressive forcing (∇ × f = 0).
However, we also studied eleven simulations at numerical res-
olution of 2563 in which we smoothly varied the forcing from
purely solenoidal to purely compressive by producing eleven dif-
ferent forcing mixtures.

The forcing term f is often modelled with a spatially static
pattern, for which the amplitude is adjusted in time following the
methods introduced by Mac Low et al. (1998) and Stone et al.
(1998). This results in a roughly constant energy input on large
scales. Other studies model the random forcing term f such
that it can vary in time and space (e.g., Padoan et al. 2004;
Kritsuk et al. 2007; Federrath et al. 2008b; Schmidt et al. 2009).
Here, we used the Ornstein-Uhlenbeck (OU) process to model
f , which belongs to the latter type. The OU process is a well-
defined stochastic process with a finite autocorrelation timescale.
It can be used to excite turbulent motions in 3D, 2D, and
1D simulations as explained in Eswaran & Pope (1988) and
Schmidt et al. (2006). Using an OU process enables us to control
the autocorrelation timescale T of the forcing. The concept of
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using the OU process to excite turbulence and the projections in
Fourier space necessary to get solenoidal and compressive force
fields are described below.

The OU process is a stochastic differential equation describ-
ing the evolution of the forcing term f̂ in Fourier space (k-
space):

d f̂ (k, t) = f0 (k) P ζ(k) dW(t) − f̂ (k, t)
dt

T
. (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt) , (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ (k) in
Fourier space. In index notation, the projection operator reads

Pζ
i j

(k) = ζ P⊥i j (k) + (1 − ζ)P‖
i j

(k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥
i j
= δi j − kik j/k

2 and

P‖
i j
= kik j/k

2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the total
power of the forcing. The analytical ratio of compressive power
to total power can be derived from equation (6) by evaluating the
norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j

∣∣∣∣
2
= (1 − ζ)2 , (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2 . (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of equations (7) and (8) gives the ratio of
compressive forcing power Flong to the total forcing power Ftot
as a function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2
. (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads
to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while

Fig. 1. Ratio of compressive power to the total power in the
turbulence force field. The solid lines labelled with 1D, 2D,
and 3D show the analytical expectation for this ratio, equa-
tion (9), as a function of the forcing parameter ζ for one-, two-
and three-dimensional forcing, respectively. The diamonds and
squares show results of numerical simulations in 3D and 2D
with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were
run at a numerical resolution of 2563 and 10242 grid points
in 3D and 2D, respectively. The two extreme forcing cases of
purely solenoidal forcing (ζ = 1) and purely compressive forc-
ing (ζ = 0) are indicated as ”sol” and ”comp”, respectively. Note
that in any 1D model, all power is in the compressive component,
and thus Flong/Ftot = 1, independent of ζ.

the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of equation (4) is
a drift term, which models the exponentially decaying corre-
lation of the force field with itself. Thus, the autocorrelation
timescale of the forcing is denoted by T . We set the autocor-
relation timescale equal to the dynamical timescale T = L/(2V)
on the scale of energy injection, where L is the size of the com-
putational domain, V = csM and M ≈ 5.5 is the RMS Mach
number in all runs. The autocorrelation timescale is therefore
equal to the decay time constant in supersonic hydrodynamic
and magnetohydrodynamic turbulence driven on large scales
(Stone et al. 1998; Mac Low 1999). The forcing amplitude f0(k)
is a paraboloid in 3D Fourier space, only containing power on
the largest scales in a small interval of wavenumbers 1 < |k| < 3
peaking at k = 2, which corresponds to half of the box size L/2.
The effects of varying the scale of energy input were investigated
by Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
forcing pattern, which is obtained in the limit T → ∞ in test sim-
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ulations. We have furthermore checked that the particular choice
of Fourier amplitudes did not affect our results by using a band
spectrum instead of a parabolic forcing spectrum. Varying these
parameters did not strongly affect our results. In contrast, chang-
ing ζ from ζ = 1 (solenoidal forcing) to ζ = 0 (compressive forc-
ing) always led to significant changes in the turbulence statistics.

2.2. Initial conditions and post-processing

Starting from a uniform density distribution and zero veloci-
ties, the forcing excites turbulent motions. Equations (2) and (3)
have been evolved for ten dynamical times T , which allows us
to study a large sample of realisations of the turbulent flow.
Compressible turbulence reached a statistically invariant state
within 2 T (Federrath et al. 2009). This allows us to average all
statistical measures over 8 T separated by 0.1 T in the fully de-
veloped regime. We are thus able to average over 81 different
realisations of the turbulence to improve statistical significance.
The 1-σ temporal fluctuations obtained from this averaging pro-
cedure are indicated as error bars for the PDFs, centroid velocity
increments, principal component analysis, Fourier spectra and
∆-variance analyses in the following sections and in all figures
showing error bars throughout this study. The forcing amplitude
was adjusted to excite a turbulent flow with an RMS Mach num-
ber M ≈ 5.5 in all cases. We use the RMS Mach number as
the control parameter, because this dimensionless number deter-
mines most of the physical properties of scale-invariant turbulent
flows and is often used to derive important flow statistics such as
the standard deviation of the density distribution. However, in
the next section we show that the latter depends sensitively on
the turbulence forcing parameter ζ as well.

Figure 2 (top panels) shows column density fields projected
along the z-axis from a randomly selected snapshot at time
t = 2 T in the regime of fully developed, statistically station-
ary turbulence for solenoidal (left) versus compressive forcing
(right). This regime was reached after 2 dynamical times T ,
which is shown in Figure 3 for the minimum and maximum log-
arithmic densities s (top panel) and RMS curl and divergence of
the velocity field (bottom panel) as a function of the dynamical
time. It is evident that compressive forcing produces higher den-
sity contrasts, resulting in higher density peaks and bigger voids
compared to solenoidal forcing.

3. The probability density function of the gas

density

It is interesting to study the probability distribution of tur-
bulent density fluctuations, because it is a key ingredient
for many analytical models of star formation: it is used to
explain the stellar initial mass function (Padoan & Nordlund
2002; Hennebelle & Chabrier 2008, 2009), the star forma-
tion rate (Krumholz & McKee 2005; Krumholz et al. 2009;
Padoan & Nordlund 2009), the star formation efficiency
(Elmegreen 2008), and the Kennicutt-Schmidt relation on galac-
tic scales (Elmegreen 2002; Kravtsov 2003; Tassis 2007).

The probability to find a volume with gas density in the
range [ρ, ρ + dρ] is given by the integral over the volume-
weighted probability density function (PDF) of the gas density:∫ ρ+dρ

ρ
pρ(ρ′) dρ′. Thus, the PDF p describes a probability den-

sity, which has dimensions of probability divided by gas density
in the case of pρ(ρ). By the same definition, ps(s) denotes the
PDF of the logarithmic density s = ln(ρ/ 〈ρ〉).

Figure 4 presents the comparison of the time-averaged
volume-weighted density PDFs ps(s) obtained for solenoidal
and compressive forcing. The linear plot of ps(s) (top panel) dis-
plays the peak best, whereas the logarithmic representation (bot-
tom panel) reveals the low- and high-density wings of the dis-
tributions. Three different fits to analytic expressions (discussed
below) are shown as well.

3.1. The density PDF for solenoidal forcing

In numerical experiments of driven supersonic isother-
mal turbulence with solenoidal and/or weakly compres-
sive forcing (e.g., Vázquez-Semadeni 1994; Padoan et al.
1997; Stone et al. 1998; Mac Low 1999; Nordlund & Padoan
1999; Boldyrev et al. 2002; Li et al. 2003; Padoan et al. 2004;
Kritsuk et al. 2007; Beetz et al. 2008), but also in decaying tur-
bulence (e.g., Ostriker et al. 1999; Klessen 2000; Ostriker et al.
2001; Glover & Mac Low 2007b) it was shown that the density
PDF ps is close to a log-normal distribution,

ps ds =
1√

2πσ2
s

exp

 −
(s − 〈s〉)2

2σ2
s

 ds , (10)

where the mean 〈s〉 is related to the standard deviation σs by
〈s〉 = −σ2

s/2 due to the constraint of mass conservation (e.g.,
Vázquez-Semadeni 1994):
∫ ∞

−∞
exp (s) ps ds =

∫ ∞

0
ρ pρ dρ = 〈ρ〉 . (11)

Equation (11) simply states that the mean density has to be re-
covered. This constraint together with the PDF normalisation,
∫ ∞

−∞
ps ds =

∫ ∞

0
pρ dρ = 1 (12)

must always be fulfilled for any density PDF whether log-normal
or non-Gaussian.

From our simulations, we obtain density PDFs in agreement
with log-normal distributions for solenoidal forcing. The log-
normal fit using equation (10) is shown in Figure 4 as dashed
lines. However, the PDF is not perfectly log-normal, i.e., there
are weak non-Gaussian contributions (see also, Dubinski et al.
1995), especially affecting the wings of the distribution. The
strength of these non-Gaussian features is quantified by com-
puting higher-order moments (skewness and kurtosis) of the dis-
tributions. The first four standardised central moments (see, e.g.,
Press et al. 1986) of a discrete dataset {q} with N elements are
defined as

mean : 〈q〉 = 1
N

N∑

i=1

qi

dispersion : σq =

√〈
(q − 〈q〉)2

〉

skewness : Sq =

〈
(q − 〈q〉)3

〉

σ3

kurtosis : Kq =

〈
(q − 〈q〉)4

〉

σ4
.

(13)

Note that in our definition of the kurtosis (also called flatness),
the Gaussian distribution hasK = 3. We have computed the first
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Fig. 2. Maps showing density (top), vorticity (middle) and divergence (bottom) in projection along the z-axis at time t = 2 T as
an example for the regime of statistically fully developed, compressible turbulence for solenoidal forcing (left) and compressive
forcing (right). Top panels: Column density fields in units of the mean column density. Both maps show three orders of magnitude
in column density with the same scaling and magnitudes for direct comparison. Middle panels: Projections of the modulus of
the vorticity |∇ × v|. Regions of intense vorticity appear to be elongated filamentary structures often coinciding with positions of
intersecting shocks. Bottom panels: Projections of the divergence of the velocity field ∇·v showing the positions of shocks. Negative
divergence corresponds to compression, while positive divergence corresponds to rarefaction.



6 Federrath et al.: Turbulence forcing in simulations and observations

Fig. 3. Top panel: Minimum and maximum logarithmic den-
sity s = ln (ρ/ 〈ρ〉) as a function of the dynamical time T .
Note that compressive forcing yields much stronger compres-
sion and rarefaction compared to solenoidal forcing, although
the RMS Mach number is roughly the same in both cases
(see Federrath et al. 2009, Fig. 2). Bottom panel: RMS vorticity
〈(∇×v)2〉1/2 and RMS divergence 〈(∇·v)2〉1/2 as a function of the
dynamical time. Within the first 2 T , a statistically steady state
was reached for both solenoidal (sol) and compressive (comp)
forcing. This allows us to average statistical measures (prob-
ability density functions, centroid velocity increments, princi-
pal component analysis, Fourier spectra and ∆-variances) in the
range 2 ≤ t/T ≤ 10 to improve statistical significance of our
results and to estimate the amplitude of temporal fluctuations
(snapshot-to-snapshot variations) between different realisations
of the turbulence.

four statistical moments of the volumetric density PDFs shown
in Figure 4. The results are summarised in Table 1. The 1-σ er-
ror given for each statistical moment was obtained by averaging
over 81 realisations of the turbulence as described in § 2.2. Both
solenoidal and compressive forcing yield density PDFs with de-
viations from the Gaussian 3rd order (skewness S = 0) and 4th
order (kurtosisK = 3) moments.

3.2. The density PDF for compressive forcing

Contrary to the solenoidal case, the PDF obtained for compres-
sive forcing is not at all well fitted with the perfect log-normal
functional form (dashed line in Figure 4 for compressive forc-
ing). Due to the constraints of mass conservation (eq. 11) and
normalisation (eq. 12), the peak position and its amplitude can-
not be reproduced simultaneously. The skewness and kurtosis
for the compressive forcing case are also listed in Table 1. Non-
Gaussian values of skewness and kurtosis, i.e., higher-order mo-
ments require modifications to the analytic expression of the log-
normal PDF given by equation (10). A first step of modification

Fig. 4. Volume-weighted density PDFs p(s) of the logarithmic
density s = ln(ρ/ 〈ρ〉) in linear scaling (top panel), which dis-
plays the peak best, and in logarithmic scaling (bottom panel) to
depict the low- and high-density wings. The PDF obtained from
compressive forcing (10243 comp) is significantly wider than the
solenoidal one (10243 sol). The peak is shifted to lower values
of the logarithmic density s, because of mass conservation, de-
fined in eq. (11). The density PDF from solenoidal forcing is
compatible with a Gaussian distribution. However, there are also
non-Gaussian features present, which are associated with inter-
mittency effects. These are more prominent in the density PDF
obtained from compressive forcing, exhibiting statistically sig-
nificant deviations from a perfect log-normal (fit using eq. 10
shown as dashed lines). A skewed log-normal fit (dash-dotted
lines) given by eq. (14) provides a better representation, but still
does not fit the high-density tail of the PDF obtained for com-
pressive forcing. Both the PDF data obtained from solenoidal
and compressive forcing are best described as log-normal distri-
butions with higher-order corrections defined in eq. (17), which
take into account both the non-Gaussian skewness and kurtosis
of the distributions. These fits are shown as solid lines (skew-
kurt-log-normal fit). The first four standardised moments defined
in equations (13) of the distributions in ρ and s are summarised
in Table 1 together with the fit parameters. The grey shaded re-
gions indicate 1-σ error bars due to temporal fluctuations of the
distributions in the regime of fully developed, supersonic turbu-
lence. A total number of 10243×81 ≈ 1011 data points contribute
to each PDF.

is to allow for a finite skewness, which is possible with a skewed
log-normal distribution (Azzalini 1985)

p(s) =
1
πω

exp

[
− (s − ξ)2

2ω2

] ∫ (s−ξ)α/ω

−∞
exp

(
− t2

2

)
dt , (14)
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Table 1. Statistical moments and fit parameters of the PDFs of the volumetric density ρ for solenoidal and compressive forcing
shown in Fig. 4.

Solenoidal Forcing Compressive Forcing
Standardised Moments 〈ρ〉 1.00 ± 0.00 1.00 ± 0.00
of ρ σρ 1.89 ± 0.09 5.86 ± 0.96

Sρ 9.03 ± 1.06 26.7 ± 10.1
Kρ 211. ± 69.8 1720 ± 2000

Standardised Moments 〈s〉 −0.83 ± 0.05 −3.40 ± 0.43
of s = ln (ρ/ 〈ρ〉) σs 1.32 ± 0.06 3.04 ± 0.24

Ss −0.10 ± 0.11 −0.26 ± 0.20
Ks 3.03 ± 0.17 2.91 ± 0.43

Skewed Log-normal Approximation ξ 0.010 ± 0.050 −0.048 ± 0.133
using equation (14) ω 1.562 ± 0.035 4.712 ± 0.193

α −0.911 ± 0.064 −2.163 ± 0.173
4th Order Approximation a0 −1.3664 ± 0.0091 −2.5014 ± 0.0259
(including skewness and kurtosis) a1 −0.4592 ± 0.0064 −0.3437 ± 0.0132
using equation (17) a2 −0.3067 ± 0.0052 −0.0831 ± 0.0030

a3 −0.0073 ± 0.0011 −0.0065 ± 0.0011
a4 −0.0002 ± 0.0005 −0.0004 ± 0.0001

where α, ξ and ω are fit parameters. Defining δ = α/
√

1 + α2,
the first four standardised central moments of the distribution are
linked to the parameters α, ξ and ω, such that

mean : 〈s〉 = ξ + ωδ
√

2/π

dispersion : σs = ω
(
1 − 2δ2/π

)1/2

skewness : Ss =
4 − π

2
(δ
√

2/π)3

(1 − 2δ2/π)3/2

kurtosis : Ks =
2(π − 3)(δ

√
2/π)4

(1 − 2δ2/π)2
.

(15)

Skewed log-normal fits are added to Figure 4 as dash-dotted
lines and the corresponding fit parameters are given in Table 1.
However, for a skewed log-normal distribution, the kurtosis is
a function of the skewness, since the skewness and kurtosis in
equations (15) both depend on the same parameter δ only.

Better agreement between an analytic functional form and
the measured PDF can be obtained, if the actual kurtosis of the
data is taken into account as an independent parameter in the
analytical approach. The fundamental derivation of a standard
Gaussian distribution is given by

ln p(s) = a0 + a1s + a2s2 , (16)

where one parameter is constrained by the normalisation and the
two remaining ones are determined by the mean and the disper-
sion. We can extend this to a modified Gaussian-like distribution
by including higher-order moments:

p(s) = exp
[
a0 + a1s + a2s2 + a3s3 + a4s4 + O(s5)

]
. (17)

Here, the expansion is stopped at the 4th moment. One parameter
is again given by the normalisation, and the remaining four pa-
rameters are related to the mean, dispersion, skewness and kur-
tosis. Fits obtained with this formula are included in Figure 4
as solid lines. The fit parameters are listed in Table 1. This

new functional form is in good agreement with the data from
solenoidal and compressive forcing, fitting both the peak and the
wings very well. They follow the constraints of mass conser-
vation and normalisation given by equations (11) and (12). We
have computed the first four moments of the fitted function and
find very good agreement with the first four moments of the ac-
tual PDFs.

The fitted parameters a3 and a4, which represent the higher-
order terms tend to zero compared to the standard Gaussian pa-
rameters a0, a1 and a2 (see Table 1). This means that the higher-
order corrections to the standard Gaussian are small. However,
we point out that they are absolutely necessary to obtain a good
analytic representation of the PDF data, given the fact that equa-
tions (11) and (12) must always be fulfilled and that the analytic
PDF should return the correct values of the numerically com-
puted moments of the measured distributions.

In the various independent numerical simulations mentioned
above, the density PDFs were close to log-normal distributions
as in our solenoidal and compressive forcing cases. However,
most of these studies also report considerable deviations from
Gaussian PDFs, which affected mainly the low- and high-density
wings of their distributions. These deviations can be associated
with rare events caused by strong intermittent fluctuations during
head-on collisions of strong shocks and oscillations in very low-
density rarefaction waves (e.g., Passot & Vázquez-Semadeni
1998; Kritsuk et al. 2007). The pronounced deviations from the
log-normal shape of the density PDF for compressively driven
turbulence were also discussed by Schmidt et al. (2009). Even
stronger deviations from log-normal PDFs were reported in
strongly self-gravitating turbulent systems (e.g., Klessen 2000;
Federrath et al. 2008a; Kainulainen et al. 2009).

Intermittency is furthermore inferred from obser-
vations, affecting the wings of molecular line profiles
(Falgarone & Phillips 1990), and the statistics of centroid
velocity increments (Hily-Blant et al. 2008). Goodman et al.
(2009) measured column density PDFs using dust extinction
and emission, as well as molecular lines of gas in the Perseus
MC. Using dust extinction maps, Lombardi et al. (2006) ob-
tained the column density PDF for the Pipe nebula. The PDFs
found in these studies roughly follow log-normal distributions.
However, deviations from perfect log-normal distributions are
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clearly present in the density PDFs obtained in these studies.
They typically exhibit non-Gaussian features. For instance,
Lombardi et al. (2006) had to apply combinations of multiple
Gaussian distributions to obtain good agreement with the
measured PDF data.

3.3. Density–Mach number correlation and signatures of
intermittency in the density PDFs

As discussed by Passot & Vázquez-Semadeni (1998), a
Gaussian distribution in the logarithm of the density, i.e.,
a log-normal distribution in ρ is expected for supersonic,
isothermal turbulent flows. The fundamental assumption be-
hind this model is that density fluctuations are built up by
a hierarchical process. The local density ρ(r, t) at a given
position r is determined by a Markov process, i.e., by the
product ρ(tn) = δ(tn−1)ρ(tn−1) = . . . = δ(t0)ρ(t0) of a large
number of independent random fluctuations δ(tn) > 0 in time
(Vázquez-Semadeni 1994). If these fluctuations were indeed
independent, the quantity s = ln(ρ/ 〈ρ〉) would be determined
by the sum of this large number of local fluctuations and the dis-
tribution in s becomes a Gaussian distribution according to the
central limit theorem. Since the equations (2) and (3) are invari-
ant under the transformation s→ s+ s0 for an arbitrary constant
s0, the random variable s(tn) should be independent of the local
Mach number, and independent of the density at previous times
tn−1, tn−2, . . . , t0. As pointed out by Vázquez-Semadeni (1994)
and Passot & Vázquez-Semadeni (1998), this independence
breaks down in strong shocks and density extrema, because
s0 cannot be arbitrarily high due to mass conservation, and
an upper boundary s+ exists. In consequence, if s+ is reached
locally, the density cannot increase anymore by a subsequent
fluctuation, and the next density is not independent of the
previous timestep, causing the fundamental assumption to break
down. This also applies to strong rarefaction waves, because
creating shocks always produces strongly rarefied regions
outside the shock.

When the fundamental assumption breaks down, den-
sity and velocity statistics are expected to become correlated
(Vázquez-Semadeni 1994; Passot & Vázquez-Semadeni 1998;
Kritsuk et al. 2007). Since in isothermal gas, the sound speed is
constant, this translates directly into Mach number–density cor-
relations. The average local Mach number M = v/cs may there-
fore exhibit some dependence on the average local density. For
instance, it is intuitively clear that head-on collisions of strong
shocks produce very high density peaks. In the stagnation point
of the flow, the local velocity and consequently the local Mach
number will almost drop to zero. The time evolution of the max-
imum and minimum density in Figure 3 shows these intermittent
fluctuations (see also, Porter et al. 1992b; Kritsuk et al. 2007).
The intermittent phenomenon corresponds to the situation ex-
plained above, for which s+ might have been reached, and some
dependence of the Mach number on density is expected.

In real molecular clouds, the maximum densities are sim-
ilarly bounded, and cannot reach infinitely high values, either.
This is–unlike the finite resolution constraints in simulations–
because the gas becomes optically thick at a certain density
(ρ & 10−14 g cm−3), and cannot cool efficiently anymore (e.g.,
Larson 1969; Penston 1969; Larson 2005; Jappsen et al. 2005,
and references therein). The gas is not close to isothermal any-
more in this regime, and adiabatic compression induced by tur-
bulent motions remain finite in real molecular clouds. Thus, the
reason for the breakdown of the density–Mach number indepen-
dence is different in simulations and observations, but it might

Table 2. Standard deviations of the density PDFs as a function
of numerical resolution for solenoidal and compressive forcing
shown in Fig. 6.

Grid Res. Solenoidal Forcing Compressive Forcing
σρ σs σρ σs

2563 ... 1.79 ± 0.08 1.36 ± 0.07 5.66 ± 0.79 3.09 ± 0.21
5123 ... 1.89 ± 0.10 1.35 ± 0.05 5.59 ± 0.67 3.15 ± 0.34

10243 ... 1.89 ± 0.09 1.32 ± 0.06 5.86 ± 0.96 3.04 ± 0.24

still be fundamental for the deviations from a log-normal PDF.
Moreover, the existence of a characteristic scale may lead to a
breakdown of the hierarchical model, and thus to a breakdown
of the fundamental assumption. The scale at which supersonic
turbulence becomes subsonic is such a scale. This scale is called
the sonic scale, and is discussed later in § 8.

We have computed the probability distributions for Mach
number–density correlations. Figure 5 shows the volume-
weighted correlation PDFs of local Mach number M ver-
sus density ρ. Although the correlation between density and
Mach number is weak as expected for isothermal turbulence
(Vázquez-Semadeni 1994; Passot & Vázquez-Semadeni 1998),
these two quantities are not entirely uncorrelated, which may ex-
plain the deviations from perfect log-normal distributions. There
is a weak trend for high-density regions to exhibit lower Mach
numbers on average. Power-law estimates for densities above the
mean logarithmic density indicate Mach number–density corre-
lations of the form M(ρ) ∝ ρ−0.06 for solenoidal and M(ρ) ∝
ρ−0.05 for compressive forcing. A similar power law exponent
can be obtained from Kritsuk et al. (2007, Fig. 4).

3.4. Numerical resolution dependence of the density PDFs

The high-density tails of the PDFs in Figure 4 are not perfectly
fit, even when the skewness and kurtosis are taken into account.
This is partly due to non-zero 5th, 6th and higher-order mo-
ments in the distributions, and partly because our numerical res-
olution is insufficient to sample the high-density tail perfectly.
Figure 6 shows that even at a numerical resolution of 10243 grid
points, the high-density tails are not converged in both solenoidal
and compressive forcing and tend to underestimate high den-
sities. This limitation is shared among all turbulence simula-
tions (see, for instance, the turbulence comparison project by
Kitsionas et al. 2009), since the strongest and most intermittent
fluctuations building up in the tails will always be truncated due
to limited numerical resolution (see also Hennebelle & Audit
2007; Kowal et al. 2007; Price & Federrath 2010). However, the
peak and the standard deviation of the PDFs are reproduced quite
accurately at a resolution of 2563. Table 2 shows the values of
the linear standard deviation σρ and logarithmic standard de-
viation σs for numerical resolutions of 2563, 5123 and 10243.
There appears to be no strong systematic dependence of the
standard deviations on the numerical resolution for resolutions
above 2563. The statistical fluctuations are the dominant source
of uncertainty in the derived values of the standard deviations.
It should be noted however that we have tested only the case
of an RMS Mach number of about 5-6 here. There might be a
stronger resolution dependence for higher Mach numbers, due
to the stronger shocks produced in higher Mach number turbu-
lence, which should be tested in a separate study.
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Fig. 5. Volume-weighted correlation PDFs of local Mach number M versus logarithmic density s for solenoidal (left) and compres-
sive forcing (right). Adjacent contour levels are spaced by 0.25 dex in probability density. Density and Mach number exhibit a very
weak, but non-zero correlation in both forcing cases, which provides an explanation for the non-Gaussian features in the density
PDFs of Fig. 4 (Vázquez-Semadeni 1994; Passot & Vázquez-Semadeni 1998; Kritsuk et al. 2007). The two solid lines, intersecting
the maxima of both distributions show the mean Mach number as a function of the logarithmic density s = ln(ρ/ 〈ρ〉). The tendency
for high-density gas having lower Mach numbers on average is indicated as power laws in the high-density parts of the distributions.
This suggests that the Mach number M(ρ) ∝ ρ−0.06 for solenoidal and M(ρ) ∝ ρ−0.05 for compressive forcing.

Fig. 6. Density PDFs at numerical resolutions of 2563, 5123 and
10243 grid cells. The PDFs show very good overall convergence,
especially around the peaks. Table 2 shows that the standard
deviations are converged with numerical resolution. The high-
density tails, however, are not converged even at a numerical
resolution of 10243 grid points, indicating a systematic shift to
higher densities with resolution. This limitation is shared among
all turbulence simulations (see also, Hennebelle & Audit 2007;
Kitsionas et al. 2009; Price & Federrath 2010). The low-density
wings are subject to strong temporal fluctuations due to inter-
mittent bursts caused by head-on collisions of shocks followed
by strong rarefaction waves (e.g., Kritsuk et al. 2007). The inter-
mittency causes deviations from a perfect Gaussian distribution
and accounts for non-Gaussian higher-order moments (skewness
and kurtosis) in the distributions.

3.5. The column density PDFs and comparison with
observations

The strong difference between the statistics of the solenoidal and
compressive forcing cases seen in the PDFs of the volumetric
density shown in Figure 4 is reflected by the corresponding col-

umn density PDFs. The time-averaged and projection-averaged
column density PDFs are shown in Figure 7. Analogous to
Table 1 for the volumetric density PDFs, we summarise the sta-
tistical quantities and fit parameters for the column density PDFs
in Table 3. The main results and conclusions obtained for the
volumetric density distributions also hold for the column density
distributions. Compressive forcing yields a column density stan-
dard deviation roughly three times larger than solenoidal forc-
ing. The relative difference between solenoidal and compres-
sive forcing is thus roughly the same for the volumetric and
the column density distributions. However, the absolute values
are lower for the column density distributions compared to the
volumetric density distributions. The reason for this is that by
computing projections of the volumetric density fields, density
fluctuations are effectively averaged out by integration along the
line-of-sight, and as a consequence, the column density disper-
sions become smaller compared to the corresponding volumetric
density dispersions.

The small inset in the upper right corner of Figure 7 addition-
ally shows the column density PDFs computed along the z-axis
at one single time t = 2 T corresponding to the map shown in
Figure 2. This figure shows the effect of studying one realisation
only, without time- and/or projection-averaging. This is interest-
ing to consider, because observations can only measure column
density distributions at one single time. Improving the statis-
tical significance would only be possible by studying multiple
fields and averaging in space rather than in time invoking the er-
godic theorem as suggested by Goodman et al. (2009). However,
even by studying one turbulent realisation only, the difference
between solenoidal and compressive forcing is recovered from
the dispersions of the distributions. We therefore expect that us-
ing observations of column density PDFs, one can distinguish
purely solenoidal from purely compressive forcing by measur-
ing the dispersion of the column density PDF.

Goodman et al. (2009) provided measurements of the col-
umn density PDFs in the Perseus MC obtained with three dif-
ferent methods: dust extinction, dust emission, and 13CO gas
emission. Although systematic differences were found between
the three methods, they conclude that in general, the measured
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Table 3. Same as Table 1, but for the PDFs of the column density Σ shown in Fig. 7.

Solenoidal Forcing Compressive Forcing
Standardised Moments 〈Σ〉 1.00 ± 0.00 1.00 ± 0.00
of Σ σΣ 0.47 ± 0.05 1.74 ± 0.43

SΣ 1.38 ± 0.38 4.57 ± 1.44
KΣ 6.32 ± 2.20 36.8 ± 24.3

Standardised Moments 〈η〉 −0.10 ± 0.02 −1.00 ± 0.33
of η = ln (Σ/ 〈Σ〉) ση 0.46 ± 0.06 1.51 ± 0.28

Sη −0.04 ± 0.30 −0.17 ± 0.29
Kη 2.97 ± 0.40 2.69 ± 0.45

Skewed Log-normal Approximation ξ 0.180 ± 0.088 0.717 ± 0.102
using equation (14) ω 0.539 ± 0.058 2.392 ± 0.160

α −0.878 ± 0.342 −2.371 ± 0.300
4th Order Approximation a0 −0.1524 ± 0.0451 −1.4547 ± 0.0532
(including skewness and kurtosis) a1 −0.3900 ± 0.1080 −0.2902 ± 0.0417
using equation (17) a2 −2.4643 ± 0.1994 −0.2669 ± 0.0259

a3 −0.1748 ± 0.1469 −0.0370 ± 0.0080
a4 0.0204 ± 0.1239 −0.0035 ± 0.0024

column density PDFs are close to, but not perfect log-normal
distributions, which is consistent with our results. They further-
more provided the column density PDFs and the column den-
sity dispersions for six subregions in the Perseus MC. The dif-
ference between the dispersions measured for these subregions
is not as large as the difference between purely solenoidal and
purely compressive forcing. The largest difference in the col-
umn density dispersions among the six subregions found by
Goodman et al. (2009) is only about 50% relative to the aver-
age column density dispersion measured in the Perseus MC.
This indicates that both purely solenoidal and purely compres-
sive forcing are very unlikely to occur in nature. On the other
hand, a varying mixture of solenoidal and compressive modes
close to the natural mixture of 2:1 can easily explain the 50%
difference in density dispersion measured among the different
regions. In particular, the Shell region (Ridge et al. 2006), which
surrounds the B star HD 278942 exhibits the largest density
dispersion among all the subregions studied by Goodman et al.
(2009), although its velocity dispersion is rather small compared
to the others. This indicates that turbulent motions may be driven
compressively rather than solenoidally within the Shell region.
Goodman et al. (2009) indeed mentioned that the gas in the Shell
is dominated by an ”obvious driver”, skewing the column den-
sity distribution towards lower values compared to the other re-
gions. Due to the constraints of mass conservation (eq. 11) and
normalisation (eq. 12), both the peak position and the peak value
of the PDF skew to lower values, if the density dispersion in-
creases (see Figure 7). Taken together, this suggests that the
Shell in the Perseus MC represents an example of strongly com-
pressive turbulence forcing rather than purely solenoidal forcing.

3.6. The forcing dependence of the density dispersion–Mach
number relation

In Federrath et al. (2008b), we investigated the density
dispersion–Mach number relation (Padoan et al. 1997;
Passot & Vázquez-Semadeni 1998)1,

σρ

〈ρ〉 = bM . (18)

This relation was also investigated in Kowal et al. (2007,
Fig. 11), indicating that the standard deviation of turbulent
density fluctuations, σρ is directly proportional to the sonic
Mach number in the supersonic regime. It must be noted,
however, that it was only directly tested for rather low RMS
Mach numbers, M . 2.5 (Kowal et al. 2007) and M . 3.5
(Passot & Vázquez-Semadeni 1998), compared to typical Mach
numbers in molecular clouds. If additionally a log-normal PDF,
equation (10) is assumed, then equation (18) can be expressed as

σ2
s = ln

(
1 + b2M2

)
, (19)

with the same parameter b (Padoan et al. 1997; Federrath et al.
2008b).

We begin our discussion of the forcing dependence of
the density dispersion–Mach number relation with a prob-
lem raised by Mac Low et al. (2005) and Glover & Mac Low
(2007b). Mac Low et al. (2005) and Glover & Mac Low (2007b)
claimed that the density dispersion–Mach number relation found
by Passot & Vázquez-Semadeni (1998), σs = bM (which is a
Taylor expansion of eq. 19 for small RMS Mach numbers), with
b ≈ 1 did not at all fit their results for pressure and density PDFs,
while equation (19) with b ≈ 0.5 (Padoan et al. 1997) provided a
much better representation of their data. The main difference in
the density dispersion–Mach number relations by Padoan et al.
(1997) and Passot & Vázquez-Semadeni (1998) is the propor-
tionality constant b. It is b ≈ 0.5 and b ≈ 1 in Padoan et al.
(1997) and Passot & Vázquez-Semadeni (1998), respectively.

1 Note that Passot & Vázquez-Semadeni (1998) suffers from a num-
ber of typographical errors as a result of last-minute change of notation.
Please see Mac Low et al. (2005, footnote 5) for a number of correc-
tions.



Federrath et al.: Turbulence forcing in simulations and observations 11

Fig. 7. Same as Figure 4, but the time- and projection-averaged
logarithmic column density PDFs of η = ln(Σi/ 〈Σi〉) are shown.
Σi and 〈Σi〉 denote the column density and the mean column
density integrated along the i = x, y, z principal axes respec-
tively. As for the volumetric PDFs of Fig. 4, the standard de-
viation of the column density PDF obtained from compressive
forcing is roughly three times larger than from solenoidal forc-
ing (see Table 3). The inset in the upper right corner shows the
PDFs of column density computed in z-projection at a fixed time
t = 2 T , corresponding to the snapshots shown in Figure 2. The
density dispersions computed for these instantaneous PDFs are
σΣ = 0.49 and ση = 0.45 for solenoidal forcing, and σΣ = 1.34
and ση = 1.56 for compressive forcing. Although these distribu-
tions are quite noisy, the influence of the forcing is still clearly
discernible. Thus, by studying instantaneous column density
PDFs, which are accessible to observations, one should be able
to distinguish solenoidal from compressive forcing.

Our forcing analysis provides the solution to this apparent dif-
ference, which lies at the heart of the disagreement of the PDF
data analysed in Mac Low et al. (2005) and Glover & Mac Low
(2007b) with the model by Passot & Vázquez-Semadeni (1998).
Passot & Vázquez-Semadeni (1998) used 1D models. In 1D,
only compressive forcing is possible, because no transverse
waves can exist. In contrast, Mac Low et al. (2005) and
Glover & Mac Low (2007b) used a mixture of solenoidal and
compressive forcing in 3D. In this section, we show that the pa-
rameter b in both equations (18) and (19) is a function of the
forcing parameter ζ. Indeed, using the relation σs = bM anal-
ysed in Passot & Vázquez-Semadeni (1998), but with a lower
proportionality constant (b = 0.5 in contrast to b = 1) gives
a very good representation of the PDF data in Mac Low et al.
(2005, Fig. 8). Thus, an investigation of the parameters that con-
trol b seems necessary and important.

Moreover, relations (18) and (19) are key ingredients
for the analytical models of the stellar initial mass func-
tion by Padoan & Nordlund (2002) and Hennebelle & Chabrier

(2008), as well as for the star formation rate model by
Krumholz & McKee (2005) and Krumholz et al. (2009) and for
the star formation efficiency model by Elmegreen (2008). In all
these models, b is assumed to be 0.5, which is an empirical re-
sult from magnetohydrodynamical simulations by Padoan et al.
(1997). On the other hand, Passot & Vázquez-Semadeni
(1998) found b ≈ 1 from 1D hydrodynamical simulations.
Federrath et al. (2008b) resolved this disagreement between
Padoan et al. (1997) and Passot & Vázquez-Semadeni (1998) by
showing that b is a function of the ratio ζ ∈ [0, 1] of compres-
sive to solenoidal modes of the turbulence forcing. However,
Federrath et al. (2008b) only tested the two limiting cases of
purely solenoidal forcing (ζ = 1) and purely compressive forc-
ing (ζ = 0). They approximated the regime of mixtures with a
heuristic model, which had a linear dependence of b on ζ:

b̃ = 1 +

(
1
D
− 1

)
ζ =



1 − 2
3ζ, for D = 3

1 − 1
2ζ, for D = 2

1, for D = 1 .

(20)

Here, we refine this model based on eleven additional sim-
ulations with ζ = [0, 1] separated by ∆ζ = 0.1 for RMS Mach
numbers of 5 in 2D and 3D. These simulations allow us to test
eleven different mixtures of forcing controlled by the param-
eter ζ (see eq. 9). The models were run at a numerical res-
olution of 2563 and 10242 grid points in 3D and 2D, respec-
tively. We use a lower resolution in 3D, because using our stan-
dard resolution of 10243 would be too computationally intensive.
However, as shown in § 3.4, the standard deviation of the density
is fairly well reproduced at 2563, as is the RMS Mach numberM
(Federrath et al. 2009, Fig. 2), which allows a reasonably accu-
rate determination of b. The results are plotted in Figure 8 as dia-
monds for 3D (top panel) and 2D (bottom panel). We used equa-
tion (18) to measure b, because unlike equation (19), this version
of the standard deviation–Mach number relation does not rest on
the assumption of a log-normal PDF. In fact, if equation (19) was
used to derive b for models with ζ < 0.5, b would be overesti-
mated significantly (by up to an order of magnitude for ζ = 0),
because the deviations from the perfect log-normal distribution
are stronger for ζ < 0.5 (cf. § 3.2; see also Schmidt et al. (2009)).

Figure 8 shows that the dependence of b on ζ is non-linear.
For 3D turbulence the parameter b increases smoothly from
b ≈ 1/3 for ζ = 1 to b ≈ 1 for ζ = 0, and for 2D tur-
bulence from b ≈ 1/2 for ζ = 1 to b ≈ 1 for ζ = 0.
However, there is an apparent break at ζ ≈ 0.5, which repre-
sents the natural forcing mixture used in many previous stud-
ies. For ζ & 0.5 the b-parameter remains close to the value
obtained for purely solenoidal forcing, i.e. b ≈ 0.3 − 0.4 in
3D and b ≈ 0.5 in 2D. The flat part of the data in Figure 8
for ζ > 0.5 explains why in previous studies with a natural
forcing mixture (e.g., Mac Low et al. 1998; Klessen et al. 2000;
Li et al. 2003; Kritsuk et al. 2007; Glover et al. 2009), the turbu-
lence statistics were close to the purely solenoidal forcing case
(e.g., Padoan et al. 1997; Stone et al. 1998; Boldyrev et al. 2002;
Padoan & Nordlund 2002; Kowal et al. 2007; Lemaster & Stone
2008; Burkhart et al. 2009). In contrast, b increases much more
strongly for ζ . 0.5, until it reaches b ≈ 1 for purely
compressive forcing (e.g., Passot & Vázquez-Semadeni 1998;
Federrath et al. 2008b; Schmidt et al. 2009).

Equation (20) thus needs to be refined to account for the non-
linear dependence of b on the forcing. Moreover, equation (20)
was based on the analytic expression of the forcing parameter
ζ (cf. § 2.1). However, the numerical estimate of b depends on
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Fig. 8. Diamonds: The proportionality parameter b in the den-
sity dispersion–Mach number relation, eq. (18), computed as
b = σρ/ (〈ρ〉M) for eleven 3D models at numerical resolution
of 2563 grid cells (top panel) and eleven 2D models at numeri-
cal resolution of 10242 grid cells (bottom panel), ranging from
purely compressive forcing (ζ = 0) to purely solenoidal forc-
ing (ζ = 1). The parameter b decreases smoothly from b ≈ 1
for compressive forcing to b ≈ 1/3 in 3D and b ≈ 1/2 in 2D
for solenoidal forcing. Stars: Ratio 〈Ψ〉 = Elong/Etot of longitu-
dinal to total power in the velocity power spectrum (see § 6.1).
This quantity provides a measure for the relative amount of com-
pression induced by the turbulent velocity field, and appears to
be correlated with the standard deviation of the density PDF.
Squares: Same as stars, but multiplied by the geometrical fac-
tor
√

D with D = 3 for the three-dimensional case and D = 2
for the two-dimensional case. The quantity

√
D 〈Ψ〉 provides a

good numerical estimate of the PDF parameter b. The dashed
lines show model fits using equation (23) for D = 3 (top panel)
and D = 2 (bottom panel).

how well the code can actually induce compression through the
build-up of divergence in the velocity field. Thus, different codes
can produce slightly different values of b for the same forcing
parameter ζ. This is because of the varying efficiency of codes
to convert the energy provided by a given forcing into actual ve-
locity fluctuations (e.g. Kitsionas et al. 2009; Price & Federrath
2010). To construct a refined model for b that does not directly
rest on the analytic forcing parameter ζ and that accounts for
the non-linear dependence on the forcing, we recall that b is a
normalised measure of compression. Compression is caused by
converging flows and shocks, which have a finite magnitude of
velocity divergence. A normalised measure of compression is
thus also provided by dividing the power in longitudinal modes
of the velocity field by the total power of all modes in the veloc-
ity field,

〈Ψ〉 =
Elong

Etot
. (21)

We therefore expect a dependence of b on 〈Ψ〉.
Figure 8 shows 〈Ψ〉 as a function of ζ (plotted as stars) for 3D

and 2D turbulence. It is indeed correlated with b, however, 〈Ψ〉
is less than b by a factor of roughly

√
3 in 3D and

√
2 in 2D. The

squares in Figure 8 show
√

3 〈Ψ〉 in 3D and
√

2 〈Ψ〉 in 2D, which
seems to provide a good estimate of b. The factor

√
3 is a geo-

metrical factor for 3D turbulence (the diagonal in a cube of size
unity). It is

√
2 in 2D turbulence (the diagonal in a square of size

unity), and
√

1 in 1D. The latter in particular is trivial, because
in 1D only longitudinal modes can exist, and thus

√
1 〈Ψ〉 = 1

for any value of ζ (cf. Fig. 1). The larger geometrical factors
in 2D and 3D account for the fact that the longitudinal velocity
fluctuations, which induce compression occupy only one of the
available spatial directions (two in 2D and three in 3D) on av-
erage. For the general case of supersonic turbulence in D = 1, 2
and 3 dimensions, these ideas lead to

b̃ =
√

D 〈Ψ〉 , (22)

which is solely based on the ratio of the power in longitudinal
modes in the velocity field to the total power of all modes in the
velocity field, 〈Ψ〉.

In addition to the refined model based on the compressive
ratio 〈Ψ〉 in equation (22), we provide a fit function for b based
on the forcing parameter ζ. The dashed lines in Figure 8 show

b̃(ζ) =
1
D
+

D − 1
D

(
Flong(ζ)

Ftot(ζ)

)3

. (23)

The forcing ratio Flong/Ftot is given by equation 9. The first
summand in equation (23) is the expected ratio of longitudi-
nal modes (compression) in a supersonic turbulent medium for
a purely solenoidal forcing, i.e. a forcing that does not directly
induce compression. The second summand is the contribution
to the compression directly induced by the forcing. The model
equation (23) is similar to equation (20), but with a non-linear
dependence of b on the forcing parameter ζ.

We suggest that the dependence of b on the forcing solves
a puzzle reported by Pineda et al. (2008). They provided mea-
surements of velocity dispersions and 12CO excitation tempera-
tures for the six subregions in the Perseus MC. The molecular
excitation temperatures serve as a guide for the actual gas tem-
perature, from which the sound speed can be estimated. From
these values, the local RMS Mach numbers are computed as the
ratio of the local velocity dispersion to the local sound speed.
Goodman et al. (2009) and Pineda et al. (2008) pointed out that
there is clearly no correlation of the form suggested by equa-
tion (19) for a fixed parameter b across the investigated subre-
gions in the Perseus MC. For instance, the Shell region exhibits
an intermediate to small velocity dispersion derived from 12CO
and 13CO observations, while its density dispersion is the largest
in the Perseus MC. This provides additional support to our sug-
gestion that the Shell in Perseus is dominated by compressive
turbulence forcing for which b takes a higher value compared
to solenoidal forcing. The apparent lack of density dispersion–
Mach number correlation reported by Pineda et al. (2008) and
Goodman et al. (2009) for a fixed parameter b can thus be ex-
plained, because b is in fact not fixed across different subregions
in the Perseus MC.

We plan to measure b in different regions of the ISM in future
studies. However, the main problem in a quantitative analysis of
equation (18) with observational data is that the column density
dispersion is typically smaller than the 3D density dispersion
(compare Tab. 1 and Tab. 3). The relation between the column
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density PDF and the volumetric density PDF is non-trivial and
depends on whether the column density tracer is optically thin
or optically thick and on the scale of the turbulence driving.
However, Brunt et al. (2010) developed a promising technique
to estimate the 3D density variance from 2D observations with
an accuracy of about 10%.

4. Intermittency

Intermittency manifests itself in

i) non-Gaussian (often exponential) wings of PDFs of quan-
tities involving density and/or velocity, its derivatives (e.g.,
vorticity) and combinations of density and velocity (e.g.,
ρ1/2v and ρ1/3v as discussed in Appendix A),

ii) anomalous scaling of the higher-order structure functions of
the velocity field (e.g., Anselmet et al. 1984) and centroid
velocity increments (Lis et al. 1996; Hily-Blant et al. 2008),
and

iii) coherent structures of intense vorticity (∇ × v) (see
Vincent & Meneguzzi 1991; Moisy & Jiménez 2004, for re-
sults of incompressible turbulence), and of strong shocks and
rarefaction waves (∇ · v).

Filamentary coherent structures of vorticity (intermittency
item iii) are indeed observed in our two supersonic models.
In Figure 2 (middle panel), we show the projected vorticity
for solenoidal and compressive forcing, respectively. Most of
the filaments of high vorticity coincide with the positions of
shocks and therefore also with high density and negative di-
vergence in the velocity field (Figure 2, bottom panel). This
is furthermore inferred from observations of the Ursa Majoris
Cloud by Falgarone et al. (1994) and is consistent with the re-
sults of weakly compressible decaying turbulence experiments
by Porter et al. (1992a) and Porter et al. (1994), who concluded
that intense vorticity is typically associated with intermittency.

4.1. The probability distribution of centroid velocity
increments

Since there is evidence of filamentary coherent structures in
the vorticity (intermittency item iii) of our models, and because
there is additional evidence of non-Gaussian tails in the density
PDFs (intermittency item i) discussed in § 3, we now proceed
to examine the PDFs and the scaling of centroid velocity incre-
ments (intermittency item ii) to assess the strength of the inter-
mittency. We compare centroid velocity increments (CVIs) for
solenoidal and compressive forcing and discuss the interpreta-
tion of observations based on that comparison. Following the
analysis by Lis et al. (1996), who discuss CVIs computed for
the turbulence simulation by Porter et al. (1994), and following
the CVI analysis of the Polaris Flare and of the Taurus MC by
Hily-Blant et al. (2008), the centroid velocity increment is de-
fined as

δCℓ(r) = 〈C(r) − C(r + ℓ)〉 , (24)

where the angle average 〈 〉 is computed over all possible di-
rections of the vector ℓ in the plane perpendicular to the line-of-
sight. Thus, δCℓ(r) only depends on the norm of the lag vector
ℓ = |ℓ|, which separates two points r = (x, y) and r + ℓ in the
plane of the sky (x, y). The normalised centroid velocity, C(r) in
equation (24) is defined as

C(r) =

∫
ρ(r, z) vz(r, z) dz
∫
ρ(r, z) dz

. (25)

The variable vz(r, z) denotes the line-of-sight velocity in z-
direction. We have however computed C(r) separately along
each of the three principal lines-of-sight x, y and z of our
Cartesian domain in order to examine the effects of varying the
projection. Also note that we have computed normalised cen-
troid velocities (Lazarian & Esquivel 2003), since we want to
compare to Hily-Blant et al. (2008). Another point to mention
here is that the centroid velocities, C(r) are typically computed
using an intensity weighting instead of a density weighting. This
is because the gas density cannot be measured directly, whereas
the emission intensity is accessible to observations. By using
density weighting we implicitly assume optically thin emission.
For optically thick emission, uniform weighting would be more
appropriate (Lis et al. 1996).

Figure 9 shows the PDFs of δCℓ(r) computed for varying lag
ℓ in units of the numerical cell size ∆ = L/1024. They should
be compared to Hily-Blant et al. (2008, Fig. 4-6). The PDFs
are mainly Gaussian for large lags, whereas for smaller separa-
tions, they develop exponential tails, indicating intermittent be-
haviour. This result is consistent with the numerical simulation
analysed by Lis et al. (1996), and with observations of the ρOph
Cloud, the Orion B and the Polaris Flare by Lis et al. (1998),
Miesch et al. (1999) and Hily-Blant et al. (2008), respectively.

Following the analysis by Hily-Blant et al. (2008), we com-
puted the kurtosis K of the PDFs of CVIs using the definition
in equations (13). Note that K = 3 corresponds to a Gaussian
distribution, and K = 6 corresponds to an exponential function.
The kurtosis of the CVI PDFs is shown in Figure 10 as a function
of spatial lag ℓ, and can be directly compared to Hily-Blant et al.
(2008, Fig. 7). Both forcing types exhibit nearly Gaussian val-
ues of the kurtosis at lags ℓ & 100∆. On the other hand, for
ℓ . 100∆, both forcing types produce non-Gaussian PDFs.
Solenoidal forcing approaches the exponential value K = 6 for
ℓ . 10∆. Compressive forcing yields exponential values already
for lags ℓ ≈ 40∆, while solenoidal forcing has K ≈ 4 on these
scales. This indicates stronger intermittency in the case of com-
pressive forcing. For ℓ . 30∆, compressive forcing yields even
super-exponential values of K . For both solenoidal and com-
pressive forcings, we show later in § 6 that ℓ . 30∆ is in the
dissipation range for numerical turbulence. Compressive veloc-
ity modes dominate in this regime (see Fig. 14), which may re-
sult artificially in extreme intermittency. For ℓ ≈ 30∆, compres-
sive forcing gives K = 6.0 ± 1.0, which is roughly 35% larger
than the Polaris Flare observations at their resolution limit. The
solenoidal case on the other hand gives K ≈ 4.3 ± 0.5, which
is in very good agreement with the IRAM and KOSMA data
discussed by Hily-Blant et al. (2008, Fig. 7). Depending on the
actual lag used for the comparison, both solenoidal and com-
pressive forcing seem to be consistent with the observations.
However, it should be noted that the lags cannot be easily com-
pared for the real clouds and the simulations, because simulated
and observed fields have different spatial resolution. Moreover,
the simulated fields have periodic boundaries, while the true
fields don’t. Nevertheless, the similarity of the observed and the
numerically simulated CVIs indicates that turbulence intermit-
tency plays an important role in both our simulations and in real
molecular clouds.

The Polaris Flare has a very low star formation rate and is
therefore appropriate for studying the statistics of interstellar su-
personic turbulence without contamination by internal energy
sources. In contrast, the Taurus MC is actively forming stars.
Against our expectations, the Taurus MC data display very weak
intermittent behaviour and the kurtosis remains at the Gaussian
values K ≈ 3 in Hily-Blant et al. (2008, Fig. 7). However, the
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Fig. 9. PDFs of centroid velocity increments, computed using equations (24) and (25) are shown as a function of lag ℓ in units of grid
cells ∆ = L/1024 for solenoidal forcing (left) and compressive forcing (right). The PDFs are very close to Gaussian distributions
for long lags, whereas for short lags, they develop exponential tails, which is a manifestation of intermittency (e.g., Hily-Blant et al.
2008, and references therein).

Fig. 10. Kurtosis K of the PDFs of centroid velocity increments
shown in Fig. 9 as a function of the lag ℓ in units of grid cells
∆ = L/1024 for solenoidal and compressive forcing. Note that
a kurtosis value of 3 (horizontal dot-dashed line) corresponds to
the value for a Gaussian distribution. Non-Gaussian values of the
kurtosis are obtained for ℓ . 100∆. The error bars contain both
snapshot-to-snapshot variations as well as the variations between
centroid velocity increments computed by integration along the
x, y and z axes. This figure can be compared to observations of
the Polaris Flare and Taurus MC (see Fig. 7 of Hily-Blant et al.
2008).

Taurus field studied by Hily-Blant et al. (2008) is located far
from star-forming regions in a translucent part of the Taurus MC
(E. Falgarone 2009, private communication). This may explain
why the Taurus field displays only very weak intermittency. It
would be interesting to repeat the analysis of centroid veloc-
ity increments for regions of confirmed star formation, includ-
ing regions with winds, outflows and ionisation feedback from
young stellar objects to see whether these regions indeed display
stronger intermittency.

4.2. The structure function scaling of centroid velocity
increments

In this section, we discuss the scaling of the p th order structure
function of CVIs, defined as

CVISFp(ℓ) = 〈|δCℓ(r)|p〉r . (26)

We have averaged over a large enough sample of indepen-
dent increments δCℓ(r) that increasing the sample size produced
no change in the value of CVISFp(ℓ) for p ≤ 6, which is demon-
strated in Appendix B. Figure 11 shows the CVI structure func-
tions for solenoidal and compressive forcing. The CVI structure
functions were fit to power laws of the form

CVISFp(ℓ) ∝ ℓ ζp (27)

within the inertial range2, defined equivalently to the study in
Federrath et al. (2009). The value for each power-law exponent
is indicated in Figure 11 and summarised in Table 4.

For a direct comparison of CVI structure functions with the
study by Hily-Blant et al. (2008, Fig. 8), we apply the extended
self-similarity (ESS) hypothesis (Benzi et al. 1993), which states
that the inertial range scaling may be extended beyond the iner-
tial range, such that power-law fits can be applied over a larger
dynamic range. The ESS hypothesis is used by plotting the p th
order CVISFp(ℓ) against the 3rd order CVISF3(ℓ) (Benzi et al.
1993). These plots are shown in Figure 12. Indeed, the scaling
range is drastically increased using ESS. All ESS data points are
consistent with a single power law for each CVI structure func-
tion order p ≤ 6. We summarise the scaling exponents with and
without using the ESS hypothesis in Table 4.

Table 4 furthermore provides the ESS scaling exponents ob-
tained for the Polaris Flare (Hily-Blant et al. 2008, Tab. 3), as

2 By its formal definition for incompressible turbulence studies (e.g.,
Frisch 1995), the inertial range is the range of scales for which the tur-
bulence statistics are not directly influenced by the forcing acting on
scales larger than the inertial range, and not directly influenced by the
viscosity acting on scales smaller than the inertial range. The inertial
range is typically very small in numerical experiments, because of the
high numerical viscosity caused by the discretisation scheme, given the
resolutions achievable with current computer technology (see also § 6
and Appendix C).
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Fig. 11. Scaling of the structure functions of centroid velocity increments defined in equation (26) for solenoidal forcing (left) and
compressive forcing (right) up to the 6th order. Scaling exponents obtained using power-law fits following equation (27) within the
inertial range are indicated in the figures and summarised in Tab. 4.

Table 4. Scaling of the structure functions of centroid velocity increments.

Absolute Scaling Exponents ........... ζ1 ζ2 ζ3 ζ4 ζ5 ζ6
CVI SFs (10243 sol) 0.62 1.20 1.73 2.21 2.65 3.05
CVI SFs (10243 comp) 0.62 1.13 1.52 1.82 2.05 2.22
Relative Scaling Exponents ............. ζ̃1 ζ̃2 ζ̃3 ζ̃4 ζ̃5 ζ̃6

CVI SFs using ESS a (10243 sol) 0.36 0.70 1.00 1.27 1.51 1.72
CVI SFs using ESS a (10243 comp) 0.38 0.72 1.00 1.23 1.41 1.56
Polaris Flare b 0.37 0.70 1.00 1.27 1.53 1.77
Polaris Flare c 0.38 0.71 1.00 1.28 1.54 1.80
Intermittency Model SL94 d 0.36 0.70 1.00 1.28 1.54 1.78
Intermittency Model B02 e 0.42 0.74 1.00 1.21 1.40 1.56

a Using extended self-similarity (ESS) (Benzi et al. 1993).
b Measurement of CVI structure functions by Hily-Blant et al. (2008).
c Measurement of CVI structure functions by Hily-Blant et al. (2008) using 12CO(2–1) data by Bensch et al. (2001).
d Intermittency model ζ̃p = p/9 + C

(
1 − (1 − 2/(3C))p/3

)
defined in eq. (28) using a fractal co-dimension C = 2 (She & Leveque 1994), which

corresponds to filamentary structures (D = 1).
e Same as d, but for co-dimension C = 1 (Boldyrev 2002; Boldyrev et al. 2002) corresponding to sheet-like structures (D = 2).

well as the scaling exponents obtained from intermittency mod-
els of the structure function scaling exponents

ζ̃p ≡
ζp

ζ3
=

p

9
+ C

1 −
(
1 − 2

3C

)p/3 (28)

by She & Leveque (1994) (C = 2) and Boldyrev (2002) (C =
1). In these models, the fractal co-dimension C is related to the
fractal dimension of the most intermittent structures D by C =
3 − D. The She & Leveque (1994) model assumes 1D vortex
filaments as the most intermittent structures (D = 1), whereas
the Boldyrev (2002) model assumes sheet-like structures with
D = 2.

For solenoidal forcing, the scaling of the CVI structure func-
tions using ESS is very similar to the She & Leveque (1994)
model. This model is appropriate for incompressible turbulence,
for which the most intermittent structures are expected to be fila-
ments (She & Leveque 1994, D = 1). Interestingly, their model
seems to be consistent with the measurements in the Polaris
Flare by Hily-Blant et al. (2008) and with our solenoidal forc-
ing case. In contrast, the scaling exponents derived for compres-
sive forcing are better consistent with the intermittency model
by Boldyrev (2002, D = 2). This direct comparison indicates

that turbulence in the Polaris Flare observed by Hily-Blant et al.
(2008) behaves like solenoidally forced turbulence. However, it
does not imply that turbulence in the Polaris Flare is close to
incompressible, since our numerical models are clearly super-
sonic in the inertial range (see § 6). It rather means that CVI
scaling is different from the absolute scaling exponents follow-
ing from the intermittency models by She & Leveque (1994) and
Boldyrev (2002). This is mainly because of two reasons: First,
these models do not account for density fluctuations (see how-
ever Schmidt et al. 2008), and second, CVIs are 2D projections
of the 3D turbulence. The statistics derived from CVIs is a con-
volution of density and velocity statistics projected onto a 2D
plane. As shown by Ossenkopf et al. (2006) and Esquivel et al.
(2007), CVI statistics differ significantly from pure velocity
statistics, if the ratio of density dispersion to mean density is
high. This is usually the case in supersonic flows, and is also
the case for both our numerical experiments (see Table 1).
It explains the difference between the structure functions de-
rived from the pure velocity statistics compared to convolved
velocity–density statistics (Schmidt et al. 2008). The deviations
from the Kolmogorov (1941) scaling (̃ζp = p/3) for the 3D
data analysed in Schmidt et al. (2008) are significantly larger
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Fig. 12. Same as Fig. 11, but using the extended self-similarity hypothesis (Benzi et al. 1993), allowing for a direct comparison of
the scaling exponents of centroid velocity increments with the study by Hily-Blant et al. (2008) for the Polaris Flare and Taurus MC
(see Tab. 4).

than those derived via CVI in 2D, revealing a significant loss
in the signatures of intermittency in the projected CVI data
(see also Brunt et al. 2003; Brunt & Mac Low 2004, for a dis-
cussion of projection effects). This also means that direct tests
of the theoretical models will be very difficult to achieve, un-
less a means of relating the CVI-based moments to the 3D mo-
ments is developed. Moreover, the fractal dimension of struc-
tures changes in a non-trivial way upon projection (Stutzki et al.
1998; Sánchez et al. 2005; Federrath et al. 2009), which severely
limits the comparison of CVI statistics with the 3D intermit-
tency models by She & Leveque (1994), Boldyrev (2002) and
Schmidt et al. (2008).

Nevertheless, a direct comparison of CVI structure function
scaling obtained in numerical experiments and observations can
provide useful information to distinguish between different pa-
rameters of the turbulence, as for instance different turbulence
forcings.

5. Principal component analysis

Principal component analysis (PCA) is a multivariate tool
(Murtagh & Heck 1987) introduced by Heyer & Schloerb
(1997) for measuring the scaling of interstellar turbulence. It
has been used for studying the structure and scaling in sev-
eral molecular cloud regions, simulations and synthetic im-
ages (Brunt & Heyer 2002a,b; Brunt et al. 2003; Heyer & Brunt
2004; Heyer et al. 2006). PCA can be used to characterise struc-
ture on different scales. For best comparison with observa-
tions, we choose to work in position-position-velocity (PPV)
space. Since our simulation data are typically stored in position-
position-position (PPP) space, we transformed our PPP cubes
into PPV space prior to PCA. As for the CVIs discussed in the
previous section, we use the approximation of optically thin ra-
diative transfer to derive radiation intensity. This means that we
essentially assume that the emission is proportional to the gas
density. The PPV data therefore represent a simulated measured
intensity T (xi, yi, vz, j) ≡ Ti j at spatial position ri = (xi, yi) and
spectral position vz, j. The indices i and j thus represent the spa-
tial and spectral coordinates respectively. A detailed description
of the PCA technique is given by Heyer & Schloerb (1997) and
Brunt & Heyer (2002a). The most important steps necessary to
derive the characteristic length scales and corresponding veloc-

ity scales using PCA are described below. First, the covariance
matrix

U jk =
1

NxNy

Ti j Tik (29)

is constructed by summation over all spatial points Nx and Ny.
Solving the eigenvalue equation

U u(l) = λ(l) u(l) (30)

yields the l th eigenvalue λ(l) and the l th eigenvector u(l) of the
covariance matrix. The subsequent projection

I
(l)
i
= T

ik
u

(l)
k

(31)

onto the eigenvectors yields the l th eigenimage I
(l)
i

.
Autocorrelation functions (ACFs) are then computed for
each of the eigenimages and eigenvectors. The spatial scale on
which the two-dimensional ACF of the l th eigenimage falls off
by 1/e defines the l th characteristic spatial scale. Following
the same procedure, the corresponding characteristic velocity
scale is determined from the ACF of the l th eigenvector, which
contains the spectral information.

Figure 13 shows our time- and projection-averaged set of
spatial and velocity scales obtained with PCA. We have fitted
power laws to the PCA data, which yielded PCA scaling expo-
nents αPCA for solenoidal and compressive forcing respectively.
For solenoidal forcing we find αPCA = 0.66 ± 0.05 and for com-
pressive forcing we find αPCA = 0.76 ± 0.09 (see Table 5). The
different PCA slopes αPCA derived for solenoidal and compres-
sive forcing suggest that by using PCA, differences in the mix-
ture of transverse and longitudinal modes of the velocity field
can be detected. However, the difference between solenoidal and
compressive forcing is only at the 1-σ level.

Heyer et al. (2006) applied PCA to the Rosette MC and to
G216-2.5 (Maddalenas’s Cloud). These two clouds are quite dif-
ferent in dynamical and evolutionary state, although they ex-
hibit roughly the same turbulence Mach number. Heyer et al.
(2006) measured the Mach number M1pc ≈ 4−5 on a scale of
1 pc for both clouds. The Rosette MC exhibits confirmed mas-
sive star formation, whereas G216-2.5 has a low star formation
rate, similar to the Polaris Flare discussed in the previous sec-
tion. Heyer et al. (2006) measured PCA slopes for both clouds
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Fig. 13. Principal component analysis (PCA) for solenoidal (left) and compressive forcing (right). The PCA slopes obtained for
solenoidal and compressive forcings are summarised and compared with observations by Heyer et al. (2006) in Table 5. The error
bars contain the contribution from temporal variations and from three different projections along the x, y and z-axes. The data were
re-sampled from 10243 to 2563 grid points prior to PCA. The re-sampling speeds up the PCA and has virtually no effect on the
inertial range scaling (see e.g., Padoan et al. 2006; Federrath et al. 2009).

Table 5. Comparison of measured PCA scaling slopes.

10243 sol 10243 comp Rosette Zone I a Rosette Zone II b G216-2.5 c

αPCA ..................................... 0.66 ± 0.05 0.76 ± 0.09
αPCA from 12CO(1–0) ....... 0.79 ± 0.06 0.66 ± 0.06 0.63 ± 0.04
αPCA from 13CO(1–0) ....... 0.86 ± 0.09 0.67 ± 0.12 0.56 ± 0.02

a PCA by Heyer et al. (2006) of the interior of an HII region in the Rosette MC.
b Same as a, but exterior of the HII region.
c PCA by Heyer et al. (2006) for G216-2.5 (Maddalenas’s Cloud).

and additionally provided the PCA slopes in two distinct sub-
regions of the Rosette MC. The first subregion is inside the HII
region (Zone I) surrounding the massive star cluster NGC 22443,
while the other subregion is outside of this HII region (Zone II).
The measured PCA slopes obtained from 12CO and 13CO obser-
vations are summarised in Table 5 together with our estimates
for solenoidal and compressive forcing. The PCA scaling ex-
ponent for solenoidal forcing is very close to the PCA scaling
exponents derived from the 12CO observations in the G216-2.5
(αPCA = 0.63 ± 0.04) and in Zone II of the Rosette MC (αPCA =

0.66±0.06). In contrast, the PCA slope derived from 12CO obser-
vations in Zone I of the Rosette MC (αPCA = 0.79±0.06) is better
consistent with our compressive forcing case. This indicates that
Zone I contains more kinetic energy in compressive modes than
Zone II and G216-2.5. The corresponding 13CO observations
reported in Heyer et al. (2006) yield slightly larger differences
between the PCA scaling exponents derived for Zone I on the
one hand, and Zone II and G216-2.5 on the other hand (see also
Table 5). This supports the idea that Zone I in the Rosette MC,
and Zone II as well as G216-2.5 contain quite different amounts
of compressive modes in the velocity field, which may be the
result of different turbulence forcing mechanisms, similar to the

3 The formation of the star cluster XA in the Rosette MC was likely
triggered by the accumulation of material in the expanding shell sur-
rounding the OB star cluster NGC 2244 (Wang et al. 2008, 2009).
This emphasises the importance of expanding HII regions in triggering
subsequent star formation by compression of gas in expanding shells
(Elmegreen & Lada 1977).

differences obtained in purely solenoidal and compressive forc-
ings.

6. Fourier spectra

6.1. Velocity Fourier spectra

Fourier spectra of the velocity field E(k) are typically used to dis-
tinguish between Kolmogorov (1941) turbulence, E(k) ∝ k−5/3

and Burgers (1948) turbulence, E(k) ∝ k−2. For highly com-
pressible, isothermal, supersonic, turbulent flow, it has been
shown that the inertial range scaling is close to Burgers turbu-
lence. For instance, Kritsuk et al. (2007) found E(k) ∝ k−1.95

and Schmidt et al. (2009) obtained E(k) ∝ k−1.87 from high-
resolution numerical simulations.

The Fourier spectrum of a quantity provides a measure of
the scale dependence of this quantity. Velocity Fourier spectra
are thus defined as

E(k) dk =
1
2

∫
v̂ · v̂∗ 4πk2 dk , (32)

where v̂ denotes the Fourier transform of the velocity field (e.g.,
Frisch 1995). The total Fourier spectrum can be separated into
transverse (k ⊥ v̂) and longitudinal (k ‖ v̂) parts by apply-
ing a Helmholtz decomposition. Note that integrating the trans-
verse energy spectrum yields the kinetic energy in transverse
(rotational) modes, while integration of the longitudinal energy
spectrum yields the kinetic energy in longitudinal (compress-
ible) modes. Furthermore, by integrating the velocity spectrum
from k1 to k2, one obtains the kinetic energy content on length
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scales corresponding to the wavenumber interval [k1, k2]. Since
the mean velocity is zero in our simulations, integration of the
total velocity Fourier spectrum E(k) over all wavenumbers yields
the total variance of velocity fluctuations σ2

v :

∫ kc

1
E(k) dk =

1
2
σ2

v . (33)

The upper bound of the integral is the cutoffwavenumber kc = N
for a cubic dataset with N3 data points. Thus, kc = 1024 for our
standard resolution of 10243 grid cells.

In Figure 14 we show the total velocity Fourier spectra
E(k) as defined in equation (32) together with its decomposition
into transverse Etrans and longitudinal Elong parts for solenoidal
and compressive forcing respectively. The prominent signature
of the different forcings on the main driving scale, k = 2 is
clearly noticeable: Solenoidal forcing excites mostly transverse
modes, whereas compressive forcing excites mostly longitudi-
nal modes in the velocity field at k = 2. However, the forcing
has direct influence only for 1 < k < 3 (see § 2.1). Further
down the cascade, the turbulent flow develops its own statis-
tics as a result of non-linear interactions in the inertial range
5 . k . 15. We emphasise that this scaling range was chosen
very carefully, since turbulence simulations will only provide a
small inertial range even at resolutions of 10243 grid cells (see,
e.g., Klein et al. 2007; Lemaster & Stone 2009). This is mainly
caused by the bottleneck phenomenon (e.g., Porter et al. 1994;
Dobler et al. 2003; Haugen & Brandenburg 2004; Schmidt et al.
2006; Kritsuk et al. 2007), which may slightly affect the Fourier
spectra in the dissipation range. However, the bottleneck phe-
nomenon had no significant impact on the turbulence statistics
in our numerical study for wavenumbers k . 40. This is demon-
strated in Appendix C, where we present the resolution depen-
dence of the Fourier spectra and the dependence on parameters
of the PPM numerical scheme. We conclude that the statistical
quantities derived for wavenumbers k . 40 are not significantly
affected by the numerical scheme or limited resolution applied
in the present study.

We apply power-law fits to the inertial range data with
the resulting slopes indicated in Figure 14 (top panels).
Both solenoidal and compressive forcing yield slopes con-
sistent with size–linewidth relations inferred from observa-
tions (e.g., Larson 1981; Myers 1983; Perault et al. 1986;
Solomon et al. 1987; Falgarone et al. 1992; Miesch & Bally
1994; Ossenkopf & Mac Low 2002; Padoan et al. 2003;
Heyer & Brunt 2004; Padoan et al. 2006; Ossenkopf et al.
2008b; Heyer et al. 2009), and with the results of independent
numerical simulations (e.g., Klessen et al. 2000; Boldyrev et al.
2002; Padoan et al. 2004; Kritsuk et al. 2007; Schmidt et al.
2009). Note that size–linewidth relations of the form σv ∝ lγ

with scaling exponents γ = 0.4−0.5 correspond to Fourier spec-
tra E(k) ∝ k−β with scaling exponents in the range β = 1.8−2.0,
because γ = (β − 1)/2. However, it must be emphasised
that the relation between scaling exponents obtained from
observational maps of centroid velocities (as discussed in § 4.2)
and 3D velocity fields from simulations is non-trivial, because
of projection-smoothing and intensity-weighting. Projection-
smoothing increases the scaling exponents of the 2D projection
of a 3D field such that γ2D = γ3D + 1/2 (e.g., Stutzki et al. 1998;
Brunt & Mac Low 2004). However, Brunt & Mac Low (2004)
showed that the effect of projection-smoothing is compensated
statistically (but not identically) by intensity-weighting of
observed centroid velocity maps. Thus, our measurements of
velocity scaling seem consistent with observations.

It is important to note that the transverse parts Etrans(k) fall
off more steeply than the longitudinal parts Elong(k) for both
forcing types within the inertial range. For solenoidal forcing,
we find Etrans(k) ∝ k−1.89 and Elong(k) ∝ k−1.79, and for com-
pressive forcing, Etrans(k) ∝ k−2.03 and Elong(k) ∝ k−1.87. This re-
sult indicates that longitudinal modes can survive down to small
scales, such that compression may not be neglected anywhere in
the turbulent cascade. Lemaster & Stone (2009, Fig. 9, 10) ob-
tain Etrans(k) ∝ k−2.0 and Elong(k) ∝ k−1.8 for their hydrodynam-
ical model with solenoidal forcing at a resolution of 10243 grid
points in the Athena code. This is consistent with our findings
for the scale dependence of the transverse and longitudinal parts
and shows that the kinetic energy in longitudinal modes must not
be neglected within the inertial range.

In order to quantify the relative importance of compression
over rotation in the turbulent motions, we present plots of the
ratio

Ψ(k) =
Elong(k)

Elong(k) + Etrans(k)
=

Elong(k)

Etot(k)
(34)

in the bottom panels of Figure 14. Solenoidal forcing yields
Ψ≈1/3 in the inertial range. We emphasise that the ratioΨ≈1/3
was expected from the fact that compression can only occur in
one of the three available spatial dimensions on average in the
case of supersonic flow driven by a purely solenoidal force field
(Elmegreen & Scalo 2004; Federrath et al. 2008b). This is the
fundamental idea on which the heuristic model of the density
dispersion–Mach number relation given by equation (20) was
based. For compressive forcing, we find Ψ ≈ 1/2 in the inertial
range as a result of the direct compression induced by compres-
sive forcing. Thus, solenoidal and compressive forcing produce
quite similar amounts of compressive modes in the velocity field
(Ψ ≈ 1/3 versus Ψ ≈ 1/2). This means that even fully compres-
sive forcing can behave very similar to solenoidal forcing in the
inertial range, as far as pure velocity statistics are concerned.
However, we show in the next section that the density statistics
are very different in the inertial range. The same is true for com-
bined density–velocity statistics (see Appendix A).

We also note here that the rise ofΨ at k & 40 for both forcing
types is a numerical effect, which comes from the discretisation
of the velocity field onto a grid with finite resolution. This shows
that energy in rotational modes cannot be accounted for accu-
rately if vortices are smaller than roughly 30 grid cells in each
direction, whereas longitudinal modes (i.e. shocks) may still be
well resolved. As a result, the transverse kinetic energy is un-
derestimated for k & 40 up to the resolution limit kc = 1024.
However, the plateau of almost constant Ψ for k . 40 indicates
that the discretisation had no significant influence on scales with
wavenumbers k . 40. The effect of underestimating the trans-
verse kinetic energy due to the discretisation of fluid variables
is also observed in the ZEUS-3D simulations by Pavlovski et al.
(2006, Fig. 2) for wavenumbers k & 10 at numerical resolu-
tion of 2563 grid cells. In Appendix C, we furthermore demon-
strate that our results for the Fourier spectra are not affected by
the specific choice of parameters of the numerical scheme for
wavenumbers k . 40.

6.2. Logarithmic density Fourier spectra

In analogy to the velocity Fourier spectra E(k), we define loga-
rithmic density fluctuation spectra

S (k) dk =

∫
( ̂s − 〈s〉) ( ̂s − 〈s〉)∗ 4πk2 dk . (35)
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Fig. 14. Top panels: Total, transverse (rotational) and longitudinal (compressible) velocity Fourier spectra E(k) defined in equa-
tion (32) and compensated by k2 for solenoidal (left) and compressive forcing (right). Error bars indicate temporal variations, which
account for an uncertainty of roughly ±0.05 of all scaling slopes reported for the inertial range 5 . k . 15. The inferred inertial
range scaling exponents for both solenoidal and compressive forcing are consistent with independent numerical simulations and with
observations of the size–linewidth relation (see text). Note that the transverse part, Etrans falls offmore steeply than the longitudinal
part, Elong for both forcing types in the inertial range. Bottom panels: Ratio of the energy in longitudinal velocity modes Elong to the
total energy in velocity modes Etot = Etrans+Elong. For solenoidal forcing, we obtain Elong/Etot≈1/3 in the inertial range (horizontal
dash-dotted line), because compression can only occur in one of the three spatial dimensions on average (Elmegreen & Scalo 2004;
Federrath et al. 2008b). For compressive forcing, this ratio is roughly 1/2, which corresponds to an equipartition of longitudinal
and transverse velocity modes. Note however that compressive forcing can compress the gas in all three spatial dimensions directly,
whereas solenoidal forcing can only induce compression indirectly through the velocity field (Federrath et al. 2008b). The excess of
longitudinal modes at high wavenumbers k & 40 stems from numerical dissipation, which is more effectively dissipating transverse
than longitudinal modes on small scales due to the discretisation onto a grid. This suggests that roughly 30 grid cells are needed
to accurately resolve a vortex, while a shock is typically resolved with roughly 3 grid cells using the piecewise parabolic method
(Colella & Woodward 1984). However, for a numerical resolution of 10243 grid cells, we find that wavenumbers k . 40 are almost
unaffected by the discretisation and by the parameters of the numerical scheme (see Appendix C).

We subtract the mean logarithmic density prior to the Fourier
transformation such that S (k) is a measure of density fluctuations
as a function of scale. Therefore, integrating S (k) over all scales
yields the square of the logarithmic density dispersion σs

∫ kc

1
S (k) dk = σ2

s . (36)

Furthermore, integrating S (k) over the wavenumber range
[k1, k2] yields the typical density fluctuations on length scales
corresponding to this range of scales.

Figure 15 (left) shows the logarithmic density fluctuation
spectra S (k) together with the total velocity Fourier spectra E(k)
in one plot. In contrast to the scaling of the velocity E(k), the
scaling of S (k) ∝ k−β is significantly different for solenoidal
(β = 1.56 ± 0.05) and compressive forcing (β = 2.32 ± 0.09)
in the inertial range.

7. ∆-variance of the velocity and density

The ∆-variance technique provides a complementary method
for measuring the scaling exponent of Fourier spectra in the
physical domain using a wavelet transformation (Stutzki et al.
1998). We apply the ∆-variance to our simulation data using the
tool developed and provided by Ossenkopf et al. (2008a). This
tool implements an improved version of the original ∆-variance
(Stutzki et al. 1998; Bensch et al. 2001). The ∆-variance mea-
sures the amount of structure on a given length scale ℓ by filter-
ing the dataset q(r) with an up-down-function

⊙
ℓ (typically a

French-hat or Mexican-hat filter) of size ℓ, and computing the
variance of the filtered dataset. The ∆-variance is defined as

σ2
∆(ℓ) =

〈(
q(r) ∗

⊙
ℓ
(r)

)2
〉

r

, (37)

where the average is computed over all data points at po-
sitions r = (x, y, z). The operator ∗ stands for the convo-
lution. We use the original French-hat filter with a diame-
ter ratio of 3.0 as in previous studies using the ∆-variance
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Fig. 15. Left panel: Fourier spectra of the velocity, E(k) defined in eq. (32) (crosses and diamonds) and Fourier spectra of the
logarithmic density fluctuations, S (k) defined in eq. (35) (triangles and squares) for solenoidal and compressive forcing, respectively.
Both E(k) and S (k) are compensated by k2 allowing for a better determination of the inertial range scaling. The density fluctuation
power spectra differ significantly in the inertial range 5 . k . 15 with S (k) ∝ k−1.56 for solenoidal and S (k) ∝ k−2.32 for compressive
forcing. The scale on which the density fluctuation spectra from solenoidal and compressive forcing cross each other and where the
slope obtained in compressive forcing breaks and approaches the shallower slope of the solenoidal forcing case roughly coincides
with the sonic wavenumber ks (vertical dashed lines) defined in eq. (38). Right panel: Same as left panel, but instead of using Fourier
spectra to determine the inertial range scaling, we use the ∆-variance method to derive the scaling slopes in physical space. Note
that the scaling slopes α obtained with the ∆-variance technique are related to the slopes β of the Fourier spectra by β = α + 1
(Stutzki et al. 1998). Error bars denote 1-σ temporal fluctuations.

technique (e.g., Stutzki et al. 1998; Mac Low & Ossenkopf
2000; Ossenkopf et al. 2001; Ossenkopf & Mac Low 2002;
Ossenkopf et al. 2006).

Figure 15 (right panel) shows that the inertial range scaling
obtained with the ∆-variance technique is in very good agree-
ment with the scaling measured in the Fourier spectra. Note
that the scaling exponents β of Fourier spectra are ideally re-
lated to the scaling exponents α of the ∆-variance by α = β − 1
(Stutzki et al. 1998). The small deviations from this analytical
relation are caused by the finite size of the dataset, the re-
sampling procedure prior to the ∆-variance analysis applied here
and the choice of the filter function (Ossenkopf et al. 2008a).
However, these deviations are on the order of 4% and therefore
smaller than the average snapshot-to-snapshot variations.

For the ∆-variance of the velocity field, σ2
∆

(v, ℓ) ∝ ℓα, we
find scaling exponents α = 0.83 ± 0.05 for solenoidal forc-
ing and α = 0.96 ± 0.05 for compressive forcing. This trans-
lates into size-linewidth relations σ∆(v, ℓ) ∝ ℓγ with scaling
exponents γ = α/2. Thus, we find γ = 0.42 ± 0.03 for
solenoidal forcing and γ = 0.48 ± 0.03 for compressive forc-
ing. Ossenkopf & Mac Low (2002) found a common power-law
slope γ = 0.5 ± 0.04 for the Polaris Flare, ranging over three
orders of magnitude in length scale from about 50 pc down to
roughly 0.05 pc. This scaling exponent is roughly consistent with
both our solenoidal and compressive forcing data, but slightly
better consistent with compressive forcing. Note that the cen-
troid velocity analysis by Ossenkopf & Mac Low (2002) is also
subject to the combined effects of projection-smoothing and
intensity-weighting discussed in Brunt & Mac Low (2004) and
discussed in § 6.1. Thus, the comparison of 3D scaling of the ve-
locity with 2D observations should always be made with the cau-
tion that projection-smoothing and intensity-weighting roughly
cancel each other out in a statistical sense (Brunt & Mac Low
2004).

We are not aware of any observational study considering the
scaling of logarithmic intensity. The use of logarithmic density

is useful in isothermal simulations, because the equations of hy-
drodynamics, equations (2) and (3), are invariant under transfor-
mations in s = ln(ρ/〈ρ〉). In observations however, the inten-
sity, T is measured instead of the density, but the intensity can
be transformed into s′ = ln(T/〈T 〉), which gives a normalised
quantity similar to s = ln(ρ/〈ρ〉). This enables a straightforward
comparison of simulation and observational data (yet with the
limitations listed in § 9). It is also interesting to look at logarith-
mic density and intensity scaling, because this scaling parameter
is used in analytic models of the mass distribution of cores and
stars by Hennebelle & Chabrier (2008, 2009).

Unlike a logarithmic scaling analysis, the scaling of the
linear integrated intensity, σ∆(ρ, ℓ) ∝ ℓγ was analysed by
Stutzki et al. (1998) and Bensch et al. (2001). They found γ ≈
0.5−0.9 for the Polaris Flare, in good agreement with the scal-
ing exponent γ = 0.8 ± 0.1 obtained from solenoidal forc-
ing in Federrath et al. (2009). In contrast, the scaling expo-
nent obtained for compressive forcing is significantly higher
(γ = 1.4 ± 0.3). Bensch et al. (2001) measured scaling expo-
nents γ ≈ 1.0−1.5 in small-scale maps (ℓ . 0.1 pc) of the Polaris
Flare and in Perseus/NGC1333, which are consistent with our
estimates for compressive forcing (Federrath et al. 2009, Tab. 1).
Since both solenoidal and compressive forcings display strong
intermittency at short lags (see Fig. 10), intermittency appears to
be primarily measurable on scales smaller than the turbulence in-
jection scale. Taking together the results by Bensch et al. (2001)
with ours for solenoidal and compressive forcing indicates that
interstellar turbulence is driven primarily on large scales, poten-
tially with a significant amount of compressive modes present
on the forcing scale (see also Brunt et al. 2009).

8. The sonic scale

The velocity Fourier spectra E(k) discussed in § 6.1 can be de-
scribed as power laws E(k) ∝ k−β with negative power-law ex-
ponents, β > 1. This means that the typical velocity fluctuations
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are decreasing when going to smaller scales. The value of the
integral

∫ kc

k1
E(k) dk over a finite range of wavenumbers with k1

as the lower bound and the cutoff wavenumber kc as the upper
bound therefore becomes smaller with increasing k1. Thus, the
turbulent flow is expected to change from a supersonic to a sub-
sonic flow on a certain length scale. This scale separates the su-
personic regime on large scales, where the velocity fluctuations
are supersonic from the subsonic regime, which is located on
smaller scales, where the typical velocity fluctuations are small
compared to the thermal motions of the gas. This transition scale
is called the sonic scale λs. Following Schmidt et al. (2009), the
corresponding sonic wavenumber ks in Fourier space is defined
by solving the equation
∫ kc

ks

E(k) dk ≃ 1
2

c2
s (38)

implicitly for ks. The sonic scale is thus defined as the scale on
which the mean square velocity fluctuations become comparable
to the mean square of the sound speed.

We solved equation (38) for the sonic wavenumbers ks for
both the solenoidal and compressive forcing cases. The sonic
wavenumbers for solenoidal and compressive forcings are in-
dicted in Figure 15 (left) as vertical dashed lines. We find ks = 26
for solenoidal forcing and ks = 27 for compressive forcing. The
corresponding sonic scales λs are also indicated in Figure 15
(right) as vertical dashed lines.

The Fourier spectra S (k) shown in Figure 15 (left) and the
corresponding ∆-variance curves shown in Figure 15 (right) for
solenoidal and compressive forcing cross each other roughly at
the sonic wavenumber and on the sonic scale, respectively. For
compressive forcing S (k) is significantly steeper on scales larger
than the sonic scale (k . ks) compared to scales k & ks. S (k)
for compressive forcing approaches the shallower slope of S (k)
for solenoidal forcing at k ≈ ks. For k & ks there are neither
significant differences between the density spectra S (k) nor the
velocity spectra E(k) for solenoidal and compressive forcings.

The strong break in the logarithmic density fluctuation spec-
tra S (k) for compressive forcing around ks appears to be linked
to the transition from supersonic motions on large scales to sub-
sonic motions on scales smaller than the sonic scale. In order
to quantify this, we estimated the typical density fluctuations on
supersonic scales (k < ks) by evaluatingσ2

s (k<ks) =
∫ ks

1
S (k) dk.

We obtain σs(k< ks)≈ 1.22 for solenoidal and σs(k < ks)≈ 3.05
for compressive forcing, which is on the order of the logarith-
mic density dispersions σs found from the density PDFs (see
Table 1). This means that most of the power in density fluctua-
tions is located on scales larger than the sonic scale. In contrast,
on scales smaller than the sonic scale the typical density fluc-
tuations can be estimated by solving σ2

s(k > ks) =
∫ kc

ks
S (k) dk.

We obtain σs(k > ks) ≈ 0.45 for both types of forcing. This
shows that density fluctuations on scales below the sonic scale
are small compared to the typical density fluctuations in the su-
personic regime at k < ks (see also Vázquez-Semadeni et al.
2003). Moreover, Figure 15 shows that the typical logarithmic
density fluctuations are similar for both solenoidal and compres-
sive forcings on scales smaller than the sonic scale. Note that the
sum of logarithmic density fluctuations on all scales is
[
σ2

s (k<ks) + σ2
s (k>ks)

]1/2
≈ 1.30 (39)

for solenoidal forcing and
[
σ2

s (k<ks) + σ2
s (k>ks)

]1/2 ≈ 3.08 (40)

for compressive forcing. As expected from equation (36), these
values are in excellent agreement with the total logarithmic den-
sity dispersions σs, obtained from the density PDFs shown in
Table 1.

A spatial representation of the structures exhibiting sub-
sonic velocity dispersions is shown in Figure 16 (bottom panel).
These structures are identified in slices through the local Mach
number M as regions with M . 1. Figure 16 (top panel) dis-
plays the corresponding density slices. The density–Mach num-
ber correlations are quite weak, as expected for isothermal turbu-
lence (cf. § 3.6). However, Figure 5 shows that high-density re-
gions exhibit lower Mach numbers on average. In real molecular
clouds, the sonic scale is expected to be located on length scales
λs ≈ 0.1 pc within factors of a few (e.g., Falgarone et al. 1992;
Barranco & Goodman 1998; Goodman et al. 1998; Schnee et al.
2007). For instance, Heyer et al. (2006) found λs ≈ 0.3−0.4 pc for
the Rosette MC and λs ≈ 0.1−0.2 pc for G216-2.5. Furthermore,
the sonic scale may be associated with the transition to coher-
ent cores (Goodman et al. 1998; Ballesteros-Paredes et al. 2003;
Klessen et al. 2005). Recent simulations of turbulent core forma-
tion by Smith et al. (2009) also suggest that star-forming cores
typically exhibit transonic to subsonic velocity dispersions. This
can be understood if cores form close to the sonic scale in a
globally supersonic turbulent medium. Figure 16 suggests that
regions with subsonic velocity dispersions have different shapes
and sizes for both solenoidal and compressive forcings. The
movie (available in the A&A online version) shows that these
structures are transient objects, forming and dissolving in the
turbulent flow (e.g., see also Vázquez-Semadeni et al. 2005). If
we had included self-gravity in the present study, some of these
regions would have likely collapsed gravitationally, because tur-
bulent support becomes insufficient in some of these subsonic
cores (e.g., Mac Low & Klessen 2004).

9. Limitations

As a result of the simplicity of the hydrodynamic simulations
presented in this paper, comparisons with observational data are
limited and should be considered with caution. These limitations
are listed below:

– We assume an isothermal equation of state, so our mod-
els are strictly speaking only applicable to molecular gas
of low enough density to be optically thin to dust cool-
ing. Variations in the equation of state can lead to changes
in the density statistics (e.g., Passot & Vázquez-Semadeni
1998; Li et al. 2003; Audit & Hennebelle 2009). The results
of the present study apply primarily to the dense interstellar
molecular gas for which an isothermal equation of state is an
adequate approximation (Wolfire et al. 1995; Ferrière 2001;
Pavlovski et al. 2006; Glover et al. 2009).

– The numerical resolution of our simulations is lim-
ited. As shown in Figure 6, the high-density tails
of the PDFs systematically shift to higher densities
(see also Hennebelle & Audit 2007; Kitsionas et al. 2009;
Glover et al. 2009; Price & Federrath 2010). However, the
mean and the dispersions are well converged at the numerical
resolutions of 2563, 5123 and 10243 grid points used in this
study. The inertial scaling range is very small even at resolu-
tions of 10243 grid cells. However, the systematic difference
in the inertial range scaling between resolutions of 5123 and
10243 grid points is less than 3% (see Appendix C), which
is less than the typical temporal variations between different
realisations of the turbulent velocity and density fields.
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Fig. 16. z-slices through the local density (top panels) and Mach number fields (bottom panels) at z = 0 and t = 2 T for solenoidal
forcing (left), and compressive forcing (right). Regions with subsonic velocity dispersions (Mach < 1) are distinguished from
regions with supersonic velocity dispersions (Mach> 1) in the colour scheme. The correlation between density and Mach number
is quite weak. However, as shown in Fig. 5, high-density regions exhibit lower Mach numbers on average. Thus, dense cores might
naturally exhibit transonic to subsonic velocity dispersions, because their sizes are expected to be comparable to the sonic scale.
The sonic scale may be the transition scale to coherent cores (e.g., Goodman et al. 1998). Although many of these ‘cores’ here
are transient, some of them are dense enough to become gravitationally bound, and accumulate enough mass to decouple from the
overall supersonic turbulent flow. See the A&A online version for a movie, showing the time evolution of this figure.

– Our simulations adopt periodic boundary conditions. This
implies that our simulations can only be representative of
a subpart of a molecular cloud, for which we study turbu-
lence statistics with high-resolution numerical experiments.
However, we cannot take account of the boundary effects
in real molecular clouds. Simulations of large-scale collid-
ing flows (e.g., Heitsch et al. 2006; Vázquez-Semadeni et al.
2006; Hennebelle et al. 2008; Banerjee et al. 2009) are more
suitable for studying the boundary effects during the forma-
tion of molecular clouds.

– We only analysed driven turbulence. However, there is on-
going debate about whether turbulence is driven or decaying
(e.g., Stone et al. 1998; Mac Low 1999; Lemaster & Stone
2008; Offner et al. 2008). We are aware of the possibility that
turbulence may in fact be excited on scales larger than the

size of molecular clouds (e.g., Brunt et al. 2009), but may be
globally decaying (if not replenished by a mechanism act-
ing on galactic scales). As discussed in § 2.1, this large-scale
decay can however act as an effective turbulence forcing on
smaller scales, because kinetic energy is transported from
large to small scales through the turbulence cascade.

– Centroid velocity and principal component analysis were
applied to PPV cubes constructed from the simulated ve-
locity and density fields assuming optically thin radia-
tion transfer to estimate the intensity of emission lines.
This approximation will of course not hold for optically
thick tracers. A full radiative transfer calculation taking
account of the level population (e.g., Keto et al. 2004;
Steinacker et al. 2006; Pinte et al. 2009; Hauschildt & Baron
2009; Baron et al. 2009) of self-consistently formed and
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evolved chemical tracer molecules (e.g., Glover & Mac Low
2007a,b; Glover et al. 2009) would be needed to advance on
this issue.

– We neglected magnetic fields. In order to test the role of
magnetic fields in star formation (e.g., Crutcher et al. 2009;
Lunttila et al. 2008), we would have to include the effects
of magnetic fields and ambipolar diffusion. For instance, the
IMF model by Padoan & Nordlund (2002) requires magnetic
fields to explain the present-day mass function, while it is
still not clear whether magnetic fields are dynamically im-
portant for typical molecular clouds. However, Heyer et al.
(2008) showed that magnetohydrodynamic turbulence in the
Taurus MC may lead to an alignment of flows along the field
lines.

– The present study did not include the effects of self-
gravity, because we specifically focus on the pure turbu-
lence statistics obtained in solenoidal and compressive forc-
ings. In a follow-up study, we will include self-gravity and
sink particles (e.g., Bate et al. 1995; Krumholz et al. 2004;
Jappsen et al. 2005; Federrath et al. 2010) to study the in-
fluence of the different forcings on the mass distributions
of sink particles. First results indicate that the sink parti-
cle formation rate is at least one order of magnitude higher
for compressive forcing compared to solenoidal forcing.
Vázquez-Semadeni et al. (2003) argue that the star forma-
tion efficiency is mainly controlled by the RMS Mach num-
ber and the sonic scale of the turbulence (cf. § 8). However,
our preliminary results of simulations including self-gravity
show that the star formation efficiency measured at a given
time (i.e., the star formation rate) is much higher for com-
pressive forcing than for solenoidal forcing with the same
RMS Mach number and sonic scale. This provides additional
support to our main conclusion that the type of forcing must
be taken into account in any theory of turbulence-regulated
star formation. This needs to be investigated in future, high-
resolution numerical experiments including self-gravity and
sink particles.

10. Summary and conclusions

We presented high-resolution hydrodynamical simulations of
driven isothermal supersonic turbulence, which showed that the
structural characteristics of turbulence forcing significantly af-
fect the density and velocity statistics of turbulent gas (see also
Schmidt et al. 2009). We compared solenoidal (divergence-free)
forcing with compressive (curl-free) turbulence forcing. Five
different analysis techniques were used to compare our simu-
lation data with existing observational data reported in the liter-
ature: probability density functions (PDFs), centroid velocity in-
crements, principal component analysis, Fourier spectrum func-
tions, and ∆-variances. We find that different regions in the tur-
bulent ISM exhibit turbulence statistics consistent with different
combinations of solenoidal and compressive forcing. Varying
the forcing parameter ζ ∈ [0, 1] in equation (9), we showed
that a continuum of turbulence statistics exists between the two
limiting cases of purely solenoidal (ζ = 1) and purely com-
pressive forcing (ζ = 0). For ζ > 0.5, turbulence behaves al-
most like in the case of purely solenoidal forcing, while for
ζ < 0.5, turbulence is highly sensitive to changes in ζ (cf. 8).
Note that ζ = 0.5 represents the natural forcing mixture used
in many previous turbulence simulations. Because the behaviour
of all forcing mixtures with ζ > 0.5 is similar to that of purely
solenoidal turbulence with ζ = 1 (see 8), turbulence statistics
is biased towards finding solenoidal-like values. However, ob-

servations of regions around massive stars that drive swept-up
shells into the surrounding medium (e.g., the shell in the Perseus
MC and in the Rosette MC) seem better consistent with models
of mainly compressive forcing (ζ < 0.5). Note that expanding
HII regions around massive stars, and supernova explosions typ-
ically create such swept-up shells, which are considered to be
important drivers of interstellar turbulence (Mac Low & Klessen
2004; Breitschwerdt et al. 2009)4. A detailed list of our results is
provided below:

1. The standard deviation (dispersion) of the probability dis-
tribution function (PDF) of the gas density is roughly three
times larger for compressive forcing than for solenoidal
forcing. This holds for both the 3D density distribu-
tions (Figure 4 and Table 1) and the 2D column den-
sity distributions (Figure 7 and Table 3). We extended the
density dispersion–Mach number relations, equation (18)
and (19) originally investigated by Padoan et al. (1997) and
Passot & Vázquez-Semadeni (1998). Based on the varying
degree of compression obtained by solenoidal and compres-
sive forcing, we developed a heuristic model for the pro-
portionally constant b in the density dispersion–Mach num-
ber relation, which takes account of the forcing parame-
ter ζ (Federrath et al. 2008b). In the case of compressive
forcing the proportionality constant b is close to b ≈ 1,
which confirms the result by Passot & Vázquez-Semadeni
(1998). In contrast, solenoidal forcing yields b ≈ 1/3, which
is in excellent agreement with recent independent high-
resolution numerical simulations using solenoidal forcing
(e.g., Beetz et al. 2008).

2. A parameter study of eleven models with varying forcing
parameter ζ = [0, 1], separated by ∆ζ = 0.1 showed that
the heuristic model given by equation (20) can only serve
as a first-order approximation to the forcing dependence of
b (cf. Fig. 8). We showed that b scales with the normalised
power of compressible modes in the velocity field, 〈Ψ〉. A
good approximation for b is given by b ≈

√
D 〈Ψ〉, where

D = 3 in 3D turbulence.
3. We compared the density PDFs in our models with ob-

servations in the Perseus MC by Goodman et al. (2009).
Goodman et al. (2009) obtained the largest density disper-
sion in all of the Perseus MC within a region that they call
the Shell region. This Shell surrounds the massive star HD
278942 suggesting that the Shell is an expanding HII re-
gion. Swept-up shells represent geometries that can be asso-
ciated with compressive turbulence forcing, because an ex-
panding spherically symmetric shell is driven by a fully di-
vergent velocity field. This may explain why the Shell region
in the Perseus MC exhibits the largest density dispersion
among all of the subregions in the Perseus MC investigated
by Goodman et al. (2009). We emphasise that the Shell re-
gion does not exhibit the highest RMS Mach number, but has
an intermediate value among the examined subregions in the
Perseus MC (Pineda et al. 2008). Furthermore, as pointed
out by Goodman et al. (2009) the density dispersion–Mach
number relation of the form given by equation (19) for a
fixed parameter b is not observed for the Perseus MC. This
apparent contradiction with equation (19) for a fixed param-
eter b is resolved, if different turbulence forcing mechanisms
operate in different subregions of the Perseus MC, such that
b is a function of the mixture of solenoidal and compressive
modes ζ as shown in Figure 8.

4 See also Tamburro et al. (2009) for an observational study.
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4. The turbulent density PDF is a key ingredient for the analyt-
ical models of the core mass function (CMF) and the stellar
initial mass function (IMF) by Padoan & Nordlund (2002)
and Hennebelle & Chabrier (2008, 2009), as well as for the
star formation rate models by Krumholz & McKee (2005),
Krumholz et al. (2009) and Padoan & Nordlund (2009), and
the star formation efficiency model by Elmegreen (2008).
We showed that the dispersion of the density probability dis-
tribution is not only a function of the RMS Mach number,
but also depends on the nature of the turbulence forcing. All
the analytical models above rely on integrals over the den-
sity PDF. Since the dispersion of the density PDF is highly
sensitive to the turbulence forcing, we conclude that star
formation properties derived in those analytical models are
strongly affected by the assumed turbulence forcing mecha-
nism.

5. The PDFs ps(s) of the logarithm of the density s = ln(ρ/ 〈ρ〉)
are roughly consistent with log-normal distributions for both
solenoidal and compressive forcings. However, the distri-
butions clearly exhibit non-Gaussian higher-order moments,
which are associated with intermittency. Including higher-
order corrections represented by skewness and kurtosis is
absolutely necessary to obtain a good analytic approxima-
tion for the PDF data, because the constraints of mass con-
servation (eq. 11) and normalisation (eq. 12) of the PDF
must always be fulfilled. Even stronger deviations from
perfect log-normal distributions are expected if the gas
is non-isothermal (e.g., Passot & Vázquez-Semadeni 1998;
Scalo et al. 1998; Li et al. 2003), magnetised (e.g., Li et al.
2008) or self-gravitating (e.g., Klessen 2000; Li et al. 2004;
Federrath et al. 2008a; Kainulainen et al. 2009), which often
leads to exponential wings or to power-law tails in the PDFs.

6. Non-Gaussian wings of the density PDFs are a signature of
intermittent fluctuations, which we further investigated us-
ing centroid velocity increments (CVIs). We find strong non-
Gaussian signatures for small spatial lags ℓ in the PDFs of
the CVIs (Figure 9). These PDFs exhibit values of the kurto-
sis significantly in excess of that expected for a Gaussian (see
Figure 10). Figure 10 can be compared with Hily-Blant et al.
(2008, Fig. 7), who analysed CVIs in the Taurus MC and
in the Polaris Flare. The values of the kurtosis K measured
in the Polaris Flare are consistent with exponential values
(K = 6) for short spatial lags, which is also compatible
with the results of solenoidal forcing. In contrast, compres-
sive forcing yields values of the kurtosis twice as large at
small lags, which indicates that compressive forcing exhibits
stronger intermittency. The scaling of the CVI structure func-
tions supports the conclusion that compressive forcing ex-
hibits stronger intermittency compared to solenoidal forcing
(see Figure 12 and Table 4). The scaling exponents of the
CVI structure functions obtained for solenoidal forcing are in
good agreement with the results by Hily-Blant et al. (2008)
obtained in the Polaris Flare for the CVI structure functions
up to the 6th order using the extended self-similarity hypoth-
esis.

7. We applied principal component analysis (PCA) to our mod-
els. A comparison of the PCA scaling exponents αPCA with
the PCA study in the Rosette MC and in G216-2.5 by
Heyer et al. (2006) showed that solenoidal forcing is consis-
tent with the PCA scaling measured in G216-2.5 and with the
PCA scaling measured in the outside of the HII region (Zone
II) surrounding the OB star cluster NGC 2244 in the Rosette
MC. On the other hand, the PCA scaling inside this HII re-
gion (Zone I) is in good agreement with the PCA scaling ob-

tained for compressive forcing (Table 5). Similar to the Shell
region in the Perseus MC, the HII region in the Rosette MC
(Zone I) displays signatures of mainly compressive forcing.
Recent numerical simulations by Gritschneder et al. (2009)
also show that ionisation fronts driven by massive stars can
efficiently excite compressible modes in the velocity field.

8. The Fourier spectra of the velocity fluctuations showed that
they follow power laws in the inertial range with E(k) ∝
k−1.86±0.05 for solenoidal forcing and E(k) ∝ k−1.94±0.05 for
compressive forcing. Both types of forcing are therefore
compatible with the scaling of velocity fluctuations inferred
from observations and independent numerical simulations.
The Fourier spectra of the logarithmic density fluctuations
scale as S (k) ∝ k−1.56±0.05 for solenoidal forcing and S (k) ∝
k−2.32±0.09 for compressive forcing in the inertial range.

9. The inertial range scaling of the velocity and logarithmic
density fluctuations inferred from the Fourier spectra was
confirmed using the ∆-variance technique.

10. We computed the sonic scale by integrating the velocity
Fourier spectra. The sonic scale separates supersonic tur-
bulent fluctuations on large scales from subsonic turbu-
lent fluctuations on scales smaller than the sonic scale. We
found a break in the density fluctuation spectrum S (k) for
compressive forcing roughly located on the sonic scale.
The typical density fluctuations computed by integration
of S (k) over scales larger than the sonic scale are consis-
tent with the logarithmic density dispersions derived from
the probability density functions for solenoidal and com-
pressive forcings. On the other hand, the typical density
fluctuations on scales smaller than the sonic scale are sig-
nificantly smaller for both forcing types, which may re-
flect the transition to coherent cores (e.g., Goodman et al.
1998). Indeed, observations show that cores typically have
transonic to subsonic internal velocity dispersions (e.g.,
Benson & Myers 1989; André et al. 2007; Kirk et al. 2007;
Ward-Thompson et al. 2007; Lada et al. 2008; Foster et al.
2009; Friesen et al. 2009; Beuther & Henning 2009). This
can be understood if cores form near the sonic scale at the
stagnation points of shocks in a globally supersonic turbu-
lent ISM (cf. § 8).

11. We found that the correlations between the local densi-
ties and the local Mach numbers are typically quite weak
(Figures 5 and 16). However, this weak correlation shows
that the local Mach number M decreases with increasing
density as M(ρ) ∝ ρ−0.06 for solenoidal forcing and M(ρ) ∝
ρ−0.05 for compressive forcing for densities above the mean
density. This means that dense gas tends to have smaller ve-
locity dispersions on average, consistent with observations
of dense protostellar cores.
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Appendix A: Fourier spectra and ∆-variance scaling

of the combined quantities ρ1/2v and ρ1/3v

In this section we present the Fourier spectra and ∆-variance re-
sults for the combined quantities ρ1/2v and ρ1/3v. Usually, the
pure velocity scaling is considered without density weighting.
However, for highly supersonic turbulence it is interesting to in-
vestigate the scaling of combinations of density and velocity.
Note that CVIs (§ 4) and PCA (§ 5) also analyse convolutions
of density and velocity statistics. Figure .1 (top panel) shows
a repetition of Figure 15 (scaling of v) together with the scal-
ing of ρ1/2v (middle panel) and ρ1/3v (bottom panel) for direct
comparison. Since Fourier spectra and ∆-variance analyses al-
ways represent the mean squares of these quantities, ρ1/2v corre-
sponds to the scaling of the kinetic energy density ρ v2. As shown
by Kritsuk et al. (2007) (see also Henriksen 1991; Fleck 1996),
ρ1/3v corresponds to a constant energy flux within the inertial
range. This idea was first proposed by Lighthill (1955). Using
the eddy turnover time tℓ as the typical evolution timescale of a
turbulent fluctuation on scale ℓ, the constancy of energy flux in
the inertial range is defined as

ρv2

tℓ
∝ ρv

2

ℓ/v
∝ ρv

3

ℓ
∝ const , (A.1)

which leads to the original Kolmogorov (1941) scaling (but now
including density variations),

ρ1/3v ∝ ℓ1/3 (A.2)

for the quantity ρ1/3v. Using the extended self-similarity hy-
pothesis (Benzi et al. 1993), we showed in Schmidt et al. (2008)
that the relative scaling exponents of ρ1/3v provide a more uni-
versal scaling compared to the velocity scaling without density
weighting. Figure .1 (bottom panel) shows that the absolute scal-
ing inferred from the Fourier spectra of ρ1/3v is indeed close to
the Kolmogorov (1941) scaling (scaling proportional to k−5/3)
for solenoidal forcing, which is in agreement with the results
obtained in Kritsuk et al. (2007). However, compressive forc-
ing yields significantly steeper scaling (also for ρ1/2v), which is
close to Burgers (1948) turbulence (scaling proportional to k−2).
The corresponding results inferred from the ∆-variance analyses
are compatible with the Fourier spectra to within the uncertain-
ties. Both quantities ρ1/2v and ρ1/3v show breaks in the scaling
close to the sonic wavenumber ks for compressive forcing.

Appendix B: Convergence test for the structure

functions of centroid velocity increments

For an accurate and reliable determination of the structure func-
tion scaling, it must be verified that the number of data pairs used
for sampling the structure functions was high enough to yield
converged results. There is no general rule to determine a priori
the number of data pairs necessary, because the required number
of data pairs depends on the underlying statistics of the mea-
sured variable itself and on the desired structure function order.
However, convergence can be tested by increasing the number of
data pairs used for computing the structure functions. Showing
that the computed structure functions do not change significantly
by further increasing the number of data pairs demonstrates con-
vergence. Furthermore, if convergence is verified for the high-
est order under consideration, then the structure functions of
lower order are also converged. This is because the higher-order
structure functions of a variable q reflect the statistics of higher

http://arxiv.org/abs/0907.0248
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Fig. .1. Top panels: Same as Figure 15. Middle panels: Same as top panels, but instead of the Fourier spectra and ∆-variances of v,
the Fourier spectra and ∆-variances of the density-weighted velocity ρ1/2v are shown. The quantity ρ1/2v has physical reference to
kinetic energy. Bottom panels: Same as middle panels, but the Fourier spectra and ∆-variances of the density-weighted velocity ρ1/3v
are shown. The quantity ρ1/3v has physical reference to a constant kinetic energy dissipation within the inertial range (Kritsuk et al.
2007; Schmidt et al. 2008).

powers of q than the lower order structure functions. This is re-
flected in the definition of the pth order structure function in
equation (26).

Figure B.1 demonstrates convergence for the structure func-
tions of CVIs with orders p ≤ 6 discussed in § 4.2. We only
show the compressive forcing case for clarity, but we also ver-
ified convergence for the solenoidal forcing case with the same
method. Figure B.1 shows that sampling each structure function
with roughly 1.7×1010 data pairs is sufficient to yield converged
results. The total number of data pairs used to construct the CVI
structure functions shown in Figures 11 and 12 was thus roughly
81 × 3 × 1.7 × 1010 ≈ 4.1 × 1012 from averaging over 81 reali-
sations of the turbulence and three projections along the x, y and
z-axes for each of these realisations.

Appendix C: Resolution study of the Fourier

spectra and their dependence on the numerical

scheme

The resolution and type of numerical method adopted to model
supersonic turbulence are expected to critically affect the scal-
ing of Fourier spectrum functions in the inertial range (e.g.,
Klein et al. 2007; Kritsuk et al. 2007; Padoan et al. 2007). In this
section, we investigate the dependence of our Fourier spectra on
the numerical resolution and on the numerical scheme used in
the present study.

C.1. Resolution study

Figure C.1 shows velocity Fourier spectra E(k) defined in equa-
tion (32) for numerical resolutions of 2563, 5123 and 10243

grid points. The inertial range scaling is indeed affected by the
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Fig. B.1. The 1st (p = 1) and 6th (p = 6) order structure func-
tions of the centroid velocity increments sampled with differ-
ent numbers of data pairs is shown for a single snapshot at time
t = 2 T in z-projection for the case of compressive forcing. The
number of data pairs used for sampling is given in brackets. The
structure functions of centroid velocity increments are statisti-
cally converged for p ≤ 6 for sample sizes of at least 1.7 × 1010

data pairs per turbulent realisation and per projection as used
throughout this study.

numerical resolution. For solenoidal forcing, the inertial range
scaling exponent β at resolution of 2563 grid cells is roughly
13% higher than the scaling exponent at a resolution of 10243.
However, the difference between the inertial range scaling at
5123 and 10243 is less than 3% for solenoidal forcing. For com-
pressive forcing, the difference between the inertial range scal-
ing exponents at resolutions of 5123 and 10243 grid cells is less
than 1%. This result indicates that the systematic dependence of
the inertial range scaling on the numerical resolution is less than
3% for both solenoidal and compressive forcings. It should be
emphasised that variance effects introduced by different realisa-
tions of the turbulence are typically on the order of 5–10% (see
error bars in Figure 15), which is higher than the systematic er-
rors introduced by resolution effects, as long as the numerical
resolution is at least 5123 grid cells.

C.2. Dependence on parameters of the piecewise parabolic
method

We used the piecewise parabolic method (PPM)
(Colella & Woodward 1984) to integrate the equations of
hydrodynamics (eqs. 2 and 3). PPM improves on the finite-
volume scheme originally developed by Godunov (1959)
by representing the flow variables with piecewise parabolic
functions, which makes the PPM second-order accurate in
smooth flows. However, PPM is also particularly suitable
for the accurate modelling of turbulent flows involving sharp
discontinuities, such as shocks and contact discontinuities. For
that purpose, PPM uses a lower artificial viscosity controlled
by the PPM diffusion parameter K. In three simulations with
resolutions of 5123 grid cells, we varied the PPM diffusion
parameter K between 0.0, 0.1 and 0.2. Note that K = 0.1 is the
value recommended by Colella & Woodward (1984), which was
used for all production runs throughout this study. The PPM
algorithm furthermore includes a steepening mechanism to keep
contact discontinuities from spreading over too many cells. In

one additional run at 5123, we switched off the PPM steepening
algorithm to check its influence on our results.

Figure C.2 shows that the velocity spectra E(k) decrease
faster with increasing diffusion parameter K for wavenumbers
k & 40. It is expected that the scheme dissipates more ki-
netic energy on small scales with increasing K, because the
PPM diffusion algorithm is designed to act on shocks only
(Colella & Woodward 1984, eq. 4.5). In contrast, Figure C.2
demonstrates that the Fourier spectra at wavenumbers k . 40
are hardly affected by the PPM diffusion algorithm for both
solenoidal and compressive forcings. Note that Kritsuk et al.
(2007) reported that their results for the inertial range scaling are
highly sensitive to the choice of PPM diffusion parameter in the
ENZO code. However, our results demonstrate that the choice of
PPM diffusion parameter only affects the inertial range scaling
within less than 1%, which is clearly less than the influence of
the numerical resolution and less than the typical snapshot-to-
snapshot variations. Figure C.2 furthermore demonstrates that
the PPM contact discontinuity steepening has negligible effects
for simulations of supersonic turbulence.

The results obtained here support our conclusion in § 6 that
the Fourier spectra at resolutions of 10243 grid cells are robust
for wavenumbers k . 40.
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Fig. C.1. Time-averaged velocity Fourier spectra E(k) defined in equation (32) for numerical resolutions of 2563, 5123 and 10243

grid points obtained with solenoidal forcing (left) and compressive forcing (right). The inferred inertial range scaling is converged
to within less than 3% at the typical resolution of 10243 grid points used throughout this study for both types of forcing.

Fig. C.2. Dependence of the time-averaged velocity Fourier spectra E(k) on parameters of the piecewise parabolic method (PPM)
(Colella & Woodward 1984) at fixed resolution of 5123 grid cells. Varying the PPM diffusion parameter K between 0.0, 0.1 and 0.2
affects the dissipation range at wavenumbers k & 40. However, the effect of varying the PPM diffusion parameter is negligible for
k . 40. Switching off the PPM steepening algorithm for contact discontinuities has also virtually no effect on the Fourier spectra at
k . 40.
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