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Abstract. We use Bayesian hierarchical models and recent results from the theory of minimax
confidence interval estimation to study the effect of prior information in a cosmological inverse
problem. We consider the effect of prior information on uncertainty estimates of a linear functional
Lxof an infinite-dimensional modelx, given noisy observationsy = Kx+x. The model represents
the cosmic microwave background (CMB), which is the radiation left over from the Big Bang. The
linear functional is related to the important cosmological question of whether the CMB temperature
varies with direction in the sky; such variation is required by cosmological theories to account for
the observed large-scale heterogeneity of matter and energy in the Universe. Evidence of this
heterogeneity is the non-zero quadrupole term in the CMB detected by the COBE satellite in 1992.
Estimation of the quadrupole is an interesting ill-posed problem that requires more information than
cosmologists expected. Previously published quadrupole estimates relied on constraints such as
artificially truncating the spherical harmonic expansion of the CMB fluctuations, or on modelling
the effect of unestimated high-frequency terms, without accounting for model uncertainty. If these
implicit constraints were relaxed, the uncertainty would be several to dozens of times larger than
reported in the astrophysical literature. We study the dependence of quadrupole estimates to a
series of increasingly stringent constraints. We show that no useful estimates can be obtained from
COBE data without assuming a particular class of prior cosmological models. Even restricting the
spectrum to lie in a two-parameter family of models commonly used in cosmology does not suffice
without positing a prior probability distribution on those two parameters.

1. Introduction

Cosmology is a scientific attempt to understand how the Universe came to be and how it will
evolve. Over the past century progress has been made towards answering these questions and
has resulted in the well known Big Bang model describing the evolution of the Universe from
a primeval explosion. The bath of microwave photons coming from this hot early epoch in the
evolution of the Universe is the cosmic microwave background (CMB) radiation. The CMB
is made of the oldest photons we can observe, and contains information about the Universe
from times much before the birth of galaxies and quasars. The CMB is thus a unique tool for
probing the early Universe.

Cosmological models require initial small-density inhomogeneities to explain observed
large-scale structures such as galaxies, clusters of galaxies, giant voids and superclusters. These
small inhomogeneities were expected to leave their mark as small fluctuations, usually referred
to as anisotropies, in the CMB. For 28 years, cosmologists measured the CMB in search of such
anisotropies. In 1989 NASA launched its first cosmology satellite, the Cosmic Background
Explorer (COBE), carrying the Differential Microwave Radiometer (DMR) instrument on
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board to search for CMB anisotropies. In the spring of 1992 the COBE DMR team announced
the discovery of anisotropies in the CMB (Smootet al 1992), starting a new era in cosmology
(see Silk (1997) for a gentle introduction to cosmology).

The CMB is a function of direction in the sky. To study CMB heterogeneity we look at
its spatial frequency components with respect to an orthonormal basis of spherical harmonics
on the sphere. In a given directionr̂, the CMB temperatureT (r̂) is written as

T (r̂) =
∞∑
`=0

∑̀
m=−`

a`mY`m(r̂) (1)

whereY`m is the realmth-spherical harmonic of degreè. The first few terms in (1) can be
written as:a00 + 〈D, r̂〉+ 〈C r̂ , r̂〉, where the vectorD is determined by thedipolecoefficients
{a1m}, and the symmetric matrixC by thequadrupolecoefficients{a2m}, −2 6 m 6 2.
In the following we shall frequently use the quadrupole coefficientsQ1, . . . ,Q5; these are
normalized versions of the{a2,m} traditionally used in the astrophysical literature (see Kogut
et al 1996). The quadrupoleprincipal axesare the normalized eigenvectors ofC. Since
the DMR instrument measured spatial temperature differences in the CMB, DMR data are
insensitive to themonopolea00. In addition, the dipole is dominated by Earth’s motion relative
to the CMB, so the quadrupole coefficients are the lowest frequency terms of cosmological
significance for DMR data. The quadrupole observed by COBE is the largest detected structure
in the Universe and it is evidence of the anisotropic nature of the CMB. (Note, Bandayet al
(1997), Bennettet al (1996), Kogutet al (1996) and Smootet al (1992) will be abbreviated as
Ba97, Be96, K96 and S92 hereafter.)

The data we use are the DMR four-year sky maps. These maps are temperatures in
6144 directions in the sky (pixels) obtained by fitting the time-ordered data of differential
measurements corrected for various systematic effects. There are DMR maps for two
independent channels measuring the CMB in each of three microwave frequencies: 31 GHz,
53 GHz and 90 GHz. To increase the signal-to-noise ratio we use channel averages of each of
the less noisy maps (53 GHz and 90 GHz).

Quadrupole coefficients were originally estimated by least-squares (LS) fitting to sky
maps with a ‘Galactic cut’, i.e. omitting pixels near the Galactic plane to reduce foreground
Galactic contamination (S92). More recently, K96 improve quadrupole estimates by including
information from power-law models. By apower-lawmodel we shall mean a particular
parametric class of homogeneous random fields on the sphere used to model the CMB
(section 4). These models are characterized by twospectralparameters denoted byQ andη.
Cosmologists are mainly interested inQ, η and the power spectrum of the model; they believe
that no useful science can be derived from the CMB quadrupole in our sky. We consider the
quadrupole for the following reasons: (1) assuming a power-law model, the expected value
of the quadrupole powerQ2

rms(≡
∑2

m=−2 a
2
2m/4π) isQ2. If an estimate ofQ2

rms turns out to
be ‘very different’ from the accepted value ofQ2, then either there is something wrong with
the cosmological model assumptions or we live in a very unusual Universe; (2) the questions
we raise, and the methods we use, are also applicable to uncertainty estimates of higher-order
harmonic coefficients; (3) a lot of importance was given to the discovery of the quadrupole as
evidence of the anisotropic nature of the CMB; and (4) cosmological theories may change to
accommodate new observations, the CMB quadrupole in the sky will not.

Standard results from linear inverse theory imply that quadrupole uncertainty estimates
from maps with gaps are arbitrarily large unlesssomeconstraint is imposed on the CMB
fluctuations (Stark 1993, Bunnet al 1994). K96 use estimates of the spectral parameters
to model the expected high (` > 3) spatial frequency contributions; they also use Galactic
templates (models) in addition to Galactic cuts to reduce Galactic contamination. Our main
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goal is to study the sensitivity of quadrupole estimates to some common implicit constraints,
and to assess the prior information required to obtain ‘small’ quadrupole uncertainties. By
small we shall mean uncertainties inQi less than 10µK; this is the order of magnitude of
published quadrupole uncertainties.

In section 2 we explore the uncertainty in truncated LS quadrupole estimates. This
corresponds to the original estimates in S92, which fitted to an expansion truncated at`max= 2.
We show that LS uncertainties are extremely sensitive to the order at which the expansion
is truncated, and that LS introduces a bias in the direction of the quadrupole axes. By
modelling the` > 3 structure, we find uncertainties that are up to three times larger than
the LS uncertainties that include only noise variance. This variability, caused by the intrinsic
variability of the model and by model uncertainty, is not reflected in previously published
estimates.

Having established that more prior information is required to control quadrupole
uncertainties, we investigate how strong a constraint we need. In section 3 we use some results
on minimax estimation of linear functionals to examine how well the DMR data together with
a mild constraint on the CMB allow the control of quadrupole uncertainties without imposing a
cosmological model. We find lower bounds for the lengths of quadrupole confidence intervals
and find that at least 30 times as many observations per pixel would be required for the
quadrupole uncertainties to be as small as those published. We conclude that the usefulness
of this root-mean-square (RMS) constraint is limited given the noise level of the DMR maps.
We thus go one step further: section 4 incorporates power-law models to constrain the shape
of the CMB spectrum in conjunction with the RMS constraint. The model specifies a prior
distribution for{a`m}; estimating the quadrupole can be viewed as a typical Bayesian estimation
problem except thatQ andη are unknown. We use two different methods to controlQ, η: an
RMS constraint, which turns out to be too weak, and a joint prior distribution. Only in the
latter case do we reduce the uncertainties to the desired level.

Section 5 summarizes our conclusions; the appendices contain mathematical and
computational details. The monopole and dipole have not been subtracted from the DMR
maps we use. Quadrupole components are in Galactic coordinates and have been corrected
for the kinematic quadrupole induced by our motion with respect to the CMB (Lineweaver
et al 1996). We use only Galactic cuts to avoid additional systematic errors that modelling
Galactic emissions may introduce; incorporating Galactic models would further increase the
uncertainties.

2. Truncated least-squares estimates

The observed temperaturesd = (di) in the DMR maps are modelled as

di =
∞∑
`=0

∑̀
m=−`

G`a`mY`m(r̂i) + εi i = 1, . . . ,6144 (2)

where thea`m are the coefficients of the true CMB fluctuations. Since DMR data are not
sensitive to the monopole,a0,0 is just an offset introduced in the map making procedure.
To a good approximation the measurement errorsεi are independent, zero-mean Gaussian
variables with known variancesσ 2

i (Lineweaveret al1994). The{G`} are the known Legendre
coefficients of the instrument’s beam (Wrightet al 1994). Because of Galactic foreground
contamination, pixels in a range of Galactic latitudes|b| 6 bc near the Galactic equatorb = 0
are excluded; typically,bc is 20◦ or 20◦e. The latter is the extended cut, which discards pixels
within 20◦ of the Galactic plane and pixels in the Orion and Ophiuchus constellations (see
Be96). Owing to the Galactic cut, the data alone do not constrain the values of the spherical
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harmonic coefficients{a`m} (Stark 1993, Bunnet al 1994); we need to control the component
of eachY`m to which the data are insensitive.

One standard constraint, implicit in truncated LS fits, is that{a`m} all vanish beyond some
low finite degreè max > 2. A side effect of this assumption is that the uncertainties in the
fitted coefficients strongly depend on`max. Because standard cosmological models predict that
the{a`m} differ substantially from zero over a larger range of values of`, there is no physical
justification for truncating at low degrees.

A second shortcoming, mathematically related to a problem in geophysics (Stark and
Hengartner 1993, Pulliam and Stark 1993, Stark 1995), is that fitting a truncated spherical
harmonic expansion to noisy data with gaps tends to produce spurious large structure in the
gaps. The explanation is simple: the noise and unmodelled part of the real CMB signal have
high spatial frequencies, while the model is a linear combination of functions with relatively
small spatial derivatives. The LS estimate matches the large derivatives in the data as well
as possible. The only way to get large spatial derivatives in a linear combination of smooth
functions is by using large coefficients. By Parseval’s theorem, if the harmonic coefficients
are large, the model itself must be large somewhere. The model can afford to be large, without
adversely affecting the fit to the data, in the spatial gaps where there are no data to constrain it.

Figures 1 and 2 illustrate how the principal axes of LS quadrupole estimates tend to align
with the Galactic cut. The figures show histograms on the sphere of estimated directions
of principal quadrupole axes in the following simulation. Generate a sky map according to a
power-law model truncated at` = 25 (see section 4), withQ andη picked at random according
to normal distributions with means and standard deviations based on the four-year data (Be96);
namelyQ = 15.3± 3.8 andη = 1.2± 0.3. Add independent, DMR-like Gaussian noise to
each pixel. Introduce a 20◦ Galactic cut, and estimate the quadrupole components using LS
truncated at̀ max = 2. Repeat 7000 times. Figure 1 shows that when no Galactic cut is used
the distribution of the directions is uniform; this is consistent with the cosmological principle
of no preferred direction. Figure 2 shows the results when a 20◦ Galactic cut is used. The
quadrupole axes cluster near the Galactic equator, where there are no data, and perpendicular
to it (to preserve orthogonality), thus biasing the direction of the quadrupole axes.

cut=0

102

Figure 1. Histogram on the sphere of the directions of quadrupole axes from LS fits with 0◦
Galactic cut. The map is a planar projection of the sphere, the Galactic plane is along the equator
of the map. Each realization adds a count to the three pixels where the axes point.

The quadrupole power is also affected by the Galactic cut. Table 1 presents the RMS
departure of each quadrupole estimate from the true value in each simulation, the formal
1σ `max = 2 LS uncertainty, and the ratio of the two.Q2

RMS is estimated using the estimated
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cut=20
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Figure 2. Pulling of quadrupole axes by least-squares. Histogram on the sphere of the directions
of quadrupole axes from LS fits with 20◦ Galactic cut. The distribution is no longer uniform and
tends to concentrate along the Galactic plane.

Table 1. Standard errors of LS estimates of quadrupole components (µK), truncated at̀ max= 2,
compared with the RMS errors of the truncated LS estimates for random CMB generated from
power-law models. The RMS uncertainty from simulations is compared to the formal standard
error of the estimator.

Q1 Q2 Q3 Q4 Q5 Q2
RMS

RMS error, no cut 3.0 9.6 10.1 2.5 2.5 44.7
LS σ , no cut 2.0 7.0 6.6 1.7 1.6 2.4
Ratio, no cut 1.5 1.4 1.5 1.5 1.6 18.6

RMS error, 20◦ cut 8.6 11.4 10.9 8.7 8.6 125.8
LS σ , 20◦ cut 2.8 7.4 7.0 2.8 2.6 4.8
Ratio, 20◦ cut 3.1 1.5 1.6 3.1 3.3 26.2

quadrupole coefficients and correcting for the noise bias (K96, Gould 1993). Even without
a Galactic cut, the LS uncertainties can be 50% smaller than the RMS error. For the 20◦

Galactic cut, the uncertainty ofQ2
RMS, measured by the RMS departures in the simulations, is

26 times larger than the formal LS uncertainty. Table 1 shows that LS quadrupole uncertainties
are too optimistic: adding information from power-law models and including the modelling
uncertainties yields much larger uncertainties in the LS estimates. But what is the best we can
do without assuming a cosmological model? We answer this next; we will see that the RMS
errors in table 1 are also optimistic.

3. Minimax confidence intervals with RMS constraints

To reduce the aliasing of higher-order multipoles in quadrupole estimates, K96 assume a
power-law model for thè > 3 harmonic coefficients and include their covariance as part of
the stochastic noise in LS quadrupole fits. This aliasing adjustment is subject to sources of
uncertainty not reflected in previously published estimates: (1) possible errors in representing
the CMB using any power-law model; (2) errors in the spectral parameters used to estimate the
expected aliasing, assuming that the CMB is correctly described by some power-law model;
and (3) random deviations of the realized aliasing from the aliasing expected under the model,
assuming that the model is correct. We now address (1) by finding lower bounds for the lengths
of quadrupole confidence intervals without assuming a cosmological model. The following
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sections will address (2) and (3).
The energy in the CMB is finite, we would not be here otherwise, so there is a boundM

on the average of the squared, beam-convolved CMB temperature, i.e.∫
T 2(r̂) d� =

∑
`,m

G2
`a

2
`m 6 M2. (3)

This mild constraint limits what the CMB can do in the Galactic cut, and allows us to find
lower bounds for the lengths of 68% confidence intervals that could be attained for thebest
possible estimatorsof the quadrupole coefficients, given the data sampling, Galactic cut and
noise level. This is a minimax statistical estimation problem; a general theory of finding such
lower bounds for linear inverse problems with Gaussian noise was derived in Donoho (1994).
Donoho’s theory is applied to geophysical problems mathematically related to the present
formulation in Stark (1992), Stark and Hengartner (1993) and Pulliam and Stark (1994).
Appendix A contains mathematical and computational details relevant to the CMB problem.

We takeM = √4πRMS with RMS= 35µK (Ba97). This bound was estimated from
the four-year data with an error 2µK but we also determine the value ofM that yields a lower
bound comparable to the length of confidence intervals reported in S92. Table 2 compares the
values of the uncertainty bounds, computed for the noise and observation pattern of the 53 GHz
sky map, with the LS uncertainty, truncated at`max= 2 and 16, for different Galactic cuts. The
lower bounds are based on the best possible estimator, so proper confidence intervals around
the truncated LS estimate must be at least as long as these bounds. The table shows that when
a Galactic cut is used, truncating the spherical harmonic expansion at`max = 2 injects much
stronger information than the RMS bound, resulting in artificially small uncertainties in LS
estimates. The similarities of the bounds fora`m anda`,−m result from the spatial symmetry of
the spherical harmonics. The difference in magnitudes reflects the geometry of the harmonics
with respect to the cut, as well as the uneven data sampling. As expected, some of the symmetry
is broken by the asymmetric extended cut.

Table 2. Lower bounds on the half-lengths of 68% confidence intervals for individual quadrupole
coefficients for the estimator that would admit the shortest possible confidence intervals,
incorporating an RMS constraint on the fluctuations (top) and standard errors of LS estimates
(bottom). The lower bounds are typically much larger than the formal LS uncertainty for`max= 2;
truncating LS estimates at degree 2 injects far more information than the RMS bound.

Cut a2,−2 a2,−1 a2,0 a2,1 a2,2

Minimax lower bound (µK)
±0◦ 2 2 2 2 2
±20◦ 93 32 7 31 91
±20◦e 97 38 12 31 92

σa`m from LS (µK)
±20◦, `max= 2 8 5 7 5 7
`max= 16 550 27 389 24 384

Transforming to theQi normalization, the minimax lower bounds of table 2 set the
following lower limits on ‘1σ detections’ given the noise, observation pattern, 20◦ Galactic
cut and RMS bound, for the best possible estimator (µK):

|Q1| > 5 |Q2| > 71 |Q3| > 69 |Q4| > 52 |Q5| > 50.

Some of these lower bounds are 10 times larger than the reported detections. For the lower
bound on the minimax uncertainty to be as small as the uncertainty in the`max= 2 LS estimate,
we would need an upper boundM on the RMS of the order of 3µK, less than one tenth of the
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value estimated by Ba97. Simulations also give the signal-to-noise ratio required to attain the
published level of uncertainties: the noise per pixel has to be at least five times smaller than
that of DMR data.

4. Power-law models as constraints

We now include information from cosmological models. In large-scale structure theories, the
CMB is a realization of a homogeneous random field. We use random fields described by
power-lawmodels. Under these models the{a`m}, ` > 2, are independentN(0, σ 2

` ) variables.
The common variance of the 2` + 1 coefficients of degreèis (Bond and Efstathiou 1987)

σ 2
` (Q) =

4πQ2

5

0(` + (η − 1)/2)0((9− η)/2)
0(` + (5− η)/2)0((3 +η)/2)

(4)

whereQ ≡ (Q, η); Q > 0,−1 6 η 6 2. The spectrum of the field is the sequence{σ 2
` }; a

homogeneous Gaussian random field is characterized by its spectrum.

4.1. Prior distributions for thè 6 2 terms

For knownQ, equation (4) defines a prior joint Gaussian probability distribution fora`,m, ` > 2.
In this section we compute posterior conditional estimates of the quadrupole coefficients. We
use the 90 GHz DMR map to provide the parameters of the prior for the 53 GHz sky map,
andvice versa. We posit a Gaussian shape for the prior density of the` 6 2 coefficients and
assume independence among the components. We choose not to ignore the information about
these lower-order terms that can be extracted from the data with a simple LS fit. However,
since section 2 showed that the formal uncertainties of LS estimates are artificially small, we
inflate the standard deviation of the` 6 1 terms by a factor of two. Note that the dipole is
1000 times larger than the quadrupole and is less sensitive to Galactic cut effects (Lineweaver
et al 1996). For the quadrupole terms,σ 2

2 and the lower bounds from table 2 are added in
quadrature. For̀ > 3 we just useσ 2

` (Q).

4.2. Power-law models with an RMS constraint

The conditional distribution ofa givend is a function of the unknownQ. Before adopting
prior distributions for the spectral parameters we study the sensitivity of the posterior estimates
to a ‘reasonable’ range ofQ values. The mild RMS uncertainty on thea`,m was not strong
enough to yield small quadrupole uncertainties. Is it enough if it is used to constrainQ?

A priori plausible values forQ can be restricted using the observed RMS of the beam-
convolved CMB: RMS2 =∑`,m G

2
`a

2
`m/4π . Under the model, the{a`m} are independent, and

RMS2 is approximately Gaussianly distributed. LetµRMS2 andσ 2
RMS2 denote the mean and

variance under the Gaussian approximation. The reported RMS estimate (Ba97) yields the
following test: Reject the hypothesis thatQ is the true value if the predicted RMS2 for that
Q is outside the approximate 95% confidence intervalµ̂RMS2 ± 1.96sµ̂RMS2 . Figure 3 shows
the resulting regionR. For example, forη = 1 the interval forQ is consistent with the value
Q = 18± 4µK in Ba97.

We computed 68% credible regions for the quadrupole coefficients (appendix B) over
a dense grid of values ofQ in R. TakingR as a ‘reasonable’ constraint region forQ, the
set of 68% Bayesian credible regions yields a conservative confidence region overR. Let
a−2m anda+

2m be the smallest lower and larger upper endpoints, respectively, of any of the
credible regions asQ varies overR. DefineIm = [a−2m, a

+
2m], then for anyQ ∈ R we have
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Figure 3. RegionR for Q (µK) andη derived from a 95% confidence interval for the RMS.

Table 3. 68% confidence intervals for the quadrupole, and smallest and largest posterior
uncertainties forQ ∈ R (µK) for the 53 GHz and 90 GHz DMR maps. See section 4.2.

Q1 Q2 Q3 Q4 Q5 QRMS

53 −18.5± 14.1 38.0± 15.6 11.5± 10.3 1.8± 11.0 8.7± 11.1 12.6± 6.1
4.2, 7.3 9.0, 11.6 7.9, 9.5 4.9, 9.6 4.3, 8.2 1.6, 3.4

90 23.4± 13.3 17.4± 18.5 28.0± 14.8 −13.1± 16.3 2.0± 10.2 15.8± 7.2
5.2, 7.2 13.9, 16.2 12.4, 13.6 6.5, 11.5 5.9, 10.0 2.4, 4.1

P [Im 3 â2,m|Q,d] > 0.68. Table 3 shows theIm as well as the half-length of the shortest
and longest 68% credible regions overR for each coefficient using the 20◦e Galactic cut. The
{a2m} have been normalized toQ1, . . . ,Q5. Note that the ratio of maximum to minimum
confidence interval size, forQ ∈ R, could be as large as 2. This variability should be included
in the posterior estimates. We do this next.

4.3. Assigning a prior toQ

One could argue that the uncertainties in table 3 are the best we can do given the information we
have, but what we consider a ‘reasonable’ region is also subjective. To reduce the uncertainties
in table 3 we need more information onQ, and this, given the lack of any other prior physical
information, involves some kind of subjective choice. In this section we assume a joint prior
distribution for the spectral parameters but this time we have no physical argument for the
choice of prior. It is up to the reader to decide if the approach is a reasonable compromise
between assuming only an RMS constraint, and assuming that they take fixed previously
estimated values.

We posit two prior distributions onQ. In both cases, we take the prior distribution for the
` 6 2 components to be that described above, and use two different priors forQ.

Prior 1. Q andη are independent random variables with means and standard deviations equal
to their DMR four-year estimates (section 2.1). An inverse gamma distribution is used forQ

and a Gaussian forη. This choice of prior distributions is arbitrary, but a simulation study
showed that the posterior estimates of quadrupole coefficients andQ are not sensitive to the
shapes of the distributions provided the means and standard deviations are fixed.
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Prior 2. To reduce the influence of the prior we also used the Jeffreys non-informative prior,
∝ √detI(Q), whereI is the Fisher information.

Once a prior distribution forQ is chosen, the Bayes estimates ofa andQRMS, and their
corresponding variances, are defined as the posterior quantities given the data, marginal on
Q. Gibbs sampling was used to compute the posterior estimates (appendix B.1). The final
estimates using the 20◦e Galactic cut are in table 4.

Table 4. Posterior quadrupole means +/− posterior standard deviations using the Gaussian and
Jeffreys (j ) priors (µK) on the 53 GHz and 90 GHz DMR maps.

Q1 Q2 Q3 Q4 Q5 QRMS

53 −15.8± 7.3 38.5± 11.4 12.4± 9.3 0.0± 8.2 9.3± 7.5 11.6± 3.1
53j −16.1± 7.9 39.8± 11.5 12.4± 9.3 0.1± 8.3 9.5± 7.6 11.8± 3.4
90 22.3± 6.9 18.9± 15.8 27.7± 13.6 −8.7± 9.7 1.3± 8.5 14.1± 3.5
90j 22.6± 7.2 18.7± 15.9 27.7± 13.6 −9.2± 10.2 1.3± 8.6 14.4± 3.8

4.4. Discussion

For each channel, the results for the two different priors are consistent. Estimates from the
53 GHz and 90 GHz maps are consistent at the 1σ level except forQ1, where they take opposite
signs in the 90 GHz and 53 GHz maps. As pointed out by S92, this effect is an indication of
residual Galactic contamination. Galactic emissions are stronger at 53 GHz than at 90 GHz.

K96 provide two tables of quadrupole results: table 3 corresponds to estimates for different
frequency maps using no Galactic modelling, only the 20◦e cut; table 4 reports the results for
map combinations using Galactic cuts and Galactic templates. They provide two types of
uncertainties: the ‘statistical’ uncertainties of the estimation procedure and the ‘systematic’
ones from the Galactic modelling. We compare ours to their statistical uncertainties. Figure 4
compares table 4 above to the cross-correlation results of table 4 in K96 and to the 90 GHz
results from their table 3. Our quadrupole results are inconsistent with those in table 3 of
K96, where, as in our case, no Galactic templates were used. A plausible explanation is that
Galactic contamination in higher-order multipoles introduces a bias in their LS quadrupole
estimates by adding a non-zero mean to their noise terms. This is consistent with the similarity
of their Galactic template results with our table 4. However, their uncertainties forQ2 andQ3

seem too optimistic; this is inconsistent with the minimax results which assigned the largest
uncertainty lower bounds toQ2 andQ3. We have no explanation for this discrepancy but
all of our estimates, including those in table 1, assign the largest uncertainties to those two
coefficients.

5. Conclusions

Uncertainties in CMB quadrupole estimates depend crucially upona priori information.
Previous uncertainty estimates have either neglected power aliasing from` > 3 terms into the
quadrupole or have tried to correct the aliasing using a power-law model with fixed parameters
for the` > 3 spectrum. We have explored the dependence of quadrupole uncertainties upon
different types of prior information, including: (i)ad hoctruncation of the spherical harmonic
expansion; (ii) a constraint on the RMS fluctuations derived from observations; (iii) a two-
parameter, power-law model for the spectrum of fluctuations with an RMS constraint onQ;
(iv) a power-law model with a joint prior distribution onQ. We have shown that: (i) LS
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Figure 4. Estimated quadrupole parameters (µK) from table 4. Results from tables 3 and 4 in K96
are shown for comparison.

uncertainty estimates of individual quadrupole components are extremely sensitive to the
degree of truncation; (ii) if CMB fluctuations are constrained only by the observed RMS
and a 20◦ Galactic cut is used, lower bounds for 1σ detections of quadrupole coefficients are
|Q1| > 5, |Q2| > 71, |Q3| > 69, |Q4| > 52, |Q5| > 50 (µK). Even with the four-year maps,
for the uncertainties to be as small as those in K96 on the basis of an RMS constraint alone
would require at least a fivefold reduction in the noise per pixel; (iii) if CMB fluctuations are
assumed to follow a power-law model withQ constrained by the observed RMS, the quadrupole
uncertainties are about twice as large as those of K96; (iv) finally, only by assuming prior
distributions on the spectral parameters are most of the uncertainties as small as those of K96.
However, future data, for example those from the next generation satellites MAP and Planck,
with much higher signal-to-noise ratio than that of DMR data will, in principle, lead to ‘small’
quadrupole uncertainties without the need for a cosmological model.
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Appendix A. Derivation and calculation of the minimax bounds

We re-scale the sky map data by the knownσi and write (2) asd = Ka + z, wherea is
a sequence of spherical harmonic coefficients ordered to depend upon a single index,z is
multivariate normalN(0, I) andK is the data mapping,(Ka)i =

∑
l GlalYl(r̂i)/σi . The

length ofd is the number of pixels outside the Galactic cut. We want to lower bound the length
of 1− α confidence intervals of linear functionalsLa (e.g. a quadrupole coefficient) of the
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modela, based on the datad and the prior constraint‖a‖2 6 M2. If we base the confidence
interval on the best possible estimator (the one that admits the shortest fixed-length confidence
interval), its half-length is

Cα = inf {χ : ∃F s.t.P (|F(d)− Lx| 6 χ) > 1− α, ‖x‖ 6 M}.
Donoho (1994) shows that

1
2w(2Z1−α) 6 Cα 6 w(Z1−α/2) (A.1)

wherew is the modulus of continuity

w(δ) = sup{|Lx− Ly| : ‖Kx−Ky‖ 6 δ, ‖x‖, ‖y‖ 6 M}.
An estimate of the boundM in (3) is obtained from the RMS CMB estimate in Ba97:∫

T 2(r̂) d� ∼= 4πRMS2 ≡ M2. The modulus of continuity for estimating thekth harmonic
coefficient with the given quadratic bound is then

wk(δ) = − inf {−xk : ‖Kx‖2 6 δ2, ‖x‖2 6 4M2}. (A.2)

We discretized (A.2) using a sequence of finite-dimensional moduli of continuitywk(`max, δ),
defined by retaining only those terms of degree6`max in (A.2). By construction,wk(`max, δ) is
a non-decreasing sequence in`max converging towk(δ). In the discrete approximation, (A.2)
becomes

wk(`max, δ) = − inf

{
− et

kV y :
N(`max)∑

i

λ2
i y

2
i 6 δ2,

N(`max)∑
i

y2
i 6 4M2

}
whereek is a vector of zeros, except for a 1 in thekth entry, the columns ofV form an
orthonormal basis of eigenvectors ofK tK with eigenvalues (λi), andx = V y. A Householder
transformation was used to reduceK tK to tridiagonal form. The QL algorithm was then
used to findV and{λi}. The finite-dimensional optimization problems were solved with the
Stanford systems optimization code NPSOL (Gill and Murray 1986). Each chosen`max yields
a lower bound for the length of the confidence interval. Although the constraints are diagonal,
NPSOL uses a dense matrix to approximate the reduced Hessian. This limited the maximum
practical̀ max for which we could solve the problem numerically. Our strategy was to wait for
the solution to be on the boundary of the constraining ellipsoids and then to increase`max until
the solution stabilized.

Appendix B. Bayesian calculations

Consider an approximation of degree`max to (2): d`max ∼ Xa + z, whereX uses only those
terms of degree6`max. The choice of̀ max is not important since the posterior conditional mean
of a stabilizes for a sufficiently largèmax (figure B1). The conditional density ofd`max given
a is a multivariate normalP(d`max|a,Q) ∼ N(Xa, I). Suppose thatQ is known. Within
the finite-dimensional approximation, the Bayes estimate ofa`m is the posterior mean ofa`m
givend`max andQ

â = E(a|d`max,Q) = (X tX +6−1
a )
−1(X td`max +6−1

a α) (B.1)

Cov(â) = Cov(a|d`max,Q) = (X tX + Σ−1
a )
−1 (B.2)

whereΣa is the prior covariance matrix ofa. The posterior mean and standard deviation of
QRMS are computed through simulations using the posterior distribution ofa. Note that (B.1)
and (B.2) are like ridge regression with a weighted spectrum,atΣaa, as a penalty; estimates
are thus expected to stabilize for large`max. Figure B1 shows posterior estimates ofQRMS as a
function of`max for the 53 GHz map with a 20◦e Galactic cut and prior modelQ = (15.3, 1.2).
The estimates are stable for`max> 10.
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Figure B1. LS (top) and Bayesian (bottom) estimates ofQRMS (µK) as a function of̀ max (20◦e
Galactic cut). Bayesian estimates are obtained using (B.1) and (B.2) to estimate the posterior
distribution ofQRMS.

B.1. Computing the Bayes estimators by Markov chain Monte Carlo methods

Gibbs sampling was used to draw samples fromP(a|T ) indirectly, using the conditional
distributions. Starting with initial values forQ, we drawa from P(a|T ,Q). The resulting
a is then used to drawQ from P(Q|a,T , η). Finally, η is drawn fromP(η|a,T ,Q),
and the process starts again. Ultimately, we obtain samples ofa, Q and η from their
corresponding posterior marginal distributions conditional onT . Since no closed expressions
for P(Q|T ,a, η) and P(η|T ,a,Q) are available, we used a Metropolis algorithm with
symmetric jumping densities and acceptance rates of about 40% (Gelmanet al 1996). One
further difficulty is a ridge inQ space that forces the Gibbs sampler to meander inside a ‘half-
moon’ shape. To improve convergence, we renormalized the harmonics to thek-multipole
for which the information matrix was closer to a diagonal. Convergence was checked by
monitoring cumulative sample means and by changing the starting values of the chain.
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