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ABSTRACT

Context. Water is the most common triatomic molecule in the universe and the basis of life on Earth. Astrophysical masers have been widely
studied in recent years and have been shown to be invaluable probes of the details of the environment in which they are found. Water masers,
for instance, are often detected toward low-mass star-forming regions. Doppler radial-velocity surveys have detected about 160 exoplanets.
Aims. Observations of water masers from exoplanetary systems would give us a new detailed window through which to explore them.
Methods. We present a search for water masers toward eighteen extrasolar planets using the newly upgraded Australia Telescope Compact
Array at 12 mm. A sensitivity of ∼ 25 mJy beam−1 and an angular resolution of ∼10′′ were achieved at 22.235 GHz.
Results. No maser lines are clearly observed.
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1. Introduction

Water is the most common triatomic molecule in the Universe
and the basis of life on Earth. Doppler radial-velocity surveys
have detected about 160 planets1 orbiting nearby solar-type
stars including 18 multiple planet systems. The proximity and
availability of water on or near these exoplanets is an impor-
tant piece of our emerging picture of how our Solar System
compares to these newly detected planetary systems, and more
speculatively what the prospects for water-based life are.

Cosmic thermal water emission is not easily detectable with
ground-based telescopes because the large amount of vapour
in the lower atmosphere of the Earth contributes to the emis-
sion itself and absorbs radiations in the sub-millimetre and
infrared parts of the electromagnetic spectrum, where water
spectral lines are largely present (e.g. Boonman et al. 2003;
Deguchi & Nguyen-Q-Rieu 1990). However, non-thermal wa-
ter emission is observed from Earth: water vapour masers (e.g.
Cheung et al. 1969; Waters et al. 1980) are very intense and
widespread cosmic phenomena that have been detected toward
star-forming regions (Genzel & Downes 1979), late M-type
stars (Dickinson 1976) and Active Galactic Nuclei (Claussen
et al. 1984). They were detected at 22.235 GHz (Cheung et al.
1969), 183.309 GHz (Cernicharo et al. 1990), 321 GHz and
325 GHz (Menten et al. 1990a,b).

Recently, detections of various types of water emission
in the Solar System have been reported. Water abundances

1 As reported in http://www.obspm.fr/planets in June 2005.

were measured in the atmosphere of giant planets with the
ISO and SWAS space observatories (e.g. Bergin et al. 2000)
and in comets with the ODIN satellite (Lecacheux et al.
2003). Thermal water emission and 22-GHz water masers
were also seen coming from the impact on Jupiter induced
by the Shoemaker-Levy comet collision (Bjoraker et al. 1996;
Cosmovici et al. 1996). Finally, water absorption features were
identified toward the sunspot umbrae and might originate on
the Sun (Wallace et al. 1995).

Traces of water emission have also been reported near
solar-type star systems. Water masers were for instance im-
aged in NGC 2071 where they might trace a protoplanetary
disk around a 1-M� protostar (Torrelles et al. 1998). Evidence
for water emission was discovered toward early M-type giant
stars (Tsuji et al. 1997). Water masers also arise in the cir-
cumstellar envelopes of more evolved giant stars such as Mira
and AGB stars (e.g. Takaba et al. 2001) and continue to glare
in post-AGB stars and young planetary nebulae (e.g. Engels
2002). This demonstrates that H2O can be present in the envi-
ronment of a wide range of stars in the HR diagram.

In 2002, possible detections of water masers toward extra-
solar planets were presented by Cosmovici et al. (2002) dur-
ing the Second European Workshop on Exo/Astrobiology in
Graz, Austria although the results have remained unpublished2.
The maser lines were possibly detected toward Epsilon Eridani,

2 This possible discovery was announced through New Scientist
175(2361), 22.
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Upsilon Andromedae and 47 Ursa Majoris at a level of a few
100 mJy (Cosmovici, priv. comm.). However, null results have
also been announced for five exoplanet host stars down to a sen-
sitivity of 14–64 mJy (Greenhill, IAU circular 7985), of which
Upsilon Andromedae and Epsilon Eridani had been reported
to emit a possible water maser. Non-detections were also re-
ported by Butler et al. (2002) after observing Epsilon Eridani,
Upsilon Andromedae and 47 Ursa Majoris down to a sensitivity
of 2.6–10.2 mJy with the VLA.

In this letter, we present the results of a search for wa-
ter masers toward 18 extrasolar planets. The objective was to
study whether water masers can form in the near environment
(e.g. planetary atmosphere, circumstellar environment or comet
clouds) of extrasolar planets. The targets were selected to be
observable from the Southern latitudes out of ∼150 known ex-
oplanets available at the date of the observations. The high sen-
sitivity and high angular resolution search was conducted with
the Australia Telescope Compact Array, that was upgraded in
April 2003 to operate at 12 mm. Observations of water masers
from exoplanetary systems would give us a new detailed win-
dow through which to explore them. Details extractable from
maser detection include answers to the following questions:
what is the velocity of the masing source (e.g. planets or
comets)? Which part of the planetary system is compatible with
the column densities of water, a pumping mechanism and a lack
of collisional thermalization that would otherwise quench the
maser? By combining observations and models, the physical
conditions of the exoplanetary systems may be probed.

2. Conditions for detecting water masers
toward extrasolar planets

The mechanisms that might generate 22-GHz water maser
emission in extrasolar planets include (but are not limited to)
cometary impacts in atmospheres of giant planets, particularly
in younger stellar systems in which much more massive and
frequent impacts are expected (e.g. Chyba 1990; Shoemaker
1983). Whether the required conditions (column density, tem-
perature, velocity coherence, path length, pumping) are present
to produce detectable water masers is unknown.

Water maser action needs a large column density of wa-
ter vapour and a pumping mechanism to ensure the inversion
of the population levels 616−523. 22-GHz masers are probably
pumped by collisions with H2, although radiative pumping is
also proposed to explain masers at higher frequencies (Yates
et al. 1997). Interstellar and stellar 22-GHz masers require rel-
atively high H2 (<108−1010 cm−3) and water (103−105 cm−3)
densities, but with an abundance ratio to H2 < 10−4, and kinetic
temperatures within 200−2000 K (Yates et al. 1997).

Jupiter-like planets whose atmosphere contains ∼80%
of H2, might offer suitable conditions for water masers, as-
suming that a large amount of water vapour is present. In
Jupiter, the water vapour appears to lie at high atmospheric al-
titudes in the middle stratosphere (Bergin et al. 2000, and refer-
ences therein). The H2O abundance results from both internal
chemistry and external transport through the Shoemaker-Levy
9 comet, and is stable against photolysis and conversion to CO2

over typically 50 years (Lellouch et al. 2002). The average

physical conditions for the bulk of water vapour at p <
5.5 mbar are T = 150 K, N(H2O) = 2.8 × 1015 cm−2 and
the H2O abundance ratio to H2 ∼ 10−9. In the case of a deep
impact, a large amount of water vapour can be detected in the
hot upper atmosphere (Bjoraker et al. 1996) where p = 3 µbar
and T > 200 K (Young 2003). The H2O abundance ratio to H2

increases to 10−7 with higher altitudes (Fig. 2 in Bergin et al.
2000).

Another vital parameter for maser action is the pumping
efficiency. Collisional pumping with H2 molecules might oc-
cur in the hot upper atmosphere and deeper in the stratosphere,
where the temperature could increase to >200 K in shocked
gas. These elements suggest that suitable conditions for plan-
etary water masers are probably met in Jupiter-like planet at-
mospheres following a comet impact. The existence of water
masers in Earth-like planets is less likely because the Earth at-
mosphere is characterised by a large column density of ther-
malised water vapour.

Outside the Solar System, the collision of relatively large
comets with a planet could enhance the water vapour abun-
dance and induce maser action if the pumping and the velocity
coherence are sufficiently effective along the path length. To es-
timate the physical conditions that produce masers with a peak
intensity∼100 mJy, we consider the case of a comet impact that
would inject water vapour in the atmosphere of a Jupiter-like
planet (140 000 km in diameter). In this simplified model, the
masing path length is the thickness of the atmosphere in which
water vapour is present. It can vary between 300 km (a strato-
sphere path length) and ∼2 × 104 km (the maximum tangen-
tial path length for a 1000-km atmosphere). A single tangen-
tial path length of 1.6 × 104 km is adopted for the purpose
of this work. It corresponds to the maximum path length for
a height of 500 km in the atmosphere. The maser amplifies
a background radiation with a brightness temperature corre-
sponding to the local atmospheric temperature. Two kinetic H2

temperature (TH2) cases are studied: 150 K (stratosphere) and
300 K (hot upper atmosphere or shocked gas). The unsaturated
maser brightness temperature is given by TH2e

τ, where τ is the
maser gain coefficient. The value of τ is, in first approxima-
tion, proportional to the path length, the velocity distribution
function (1/∆νD at the line centre, where ∆νD is the thermal
doppler broadening) and the population difference (n1 − n2,
where n1 and n2 are the population of the lower and upper
levels, respectively). Once τ is known for a given flux density
translated in brightness temperature, one can deduce the total
column density of water vapour by assuming that the pumping
efficiency (n1 − n2/n1 + n2) is ∼1% and n1 nearly obeys the
Boltzmann distribution.

Table 1 presents the physical conditions required to pro-
duce a 100-mJy maser at distances of 10–100 pc. The result-
ing H2O density varies between 1010 and 1011 cm−3 depend-
ing on TH2 . These values do not satisfy the density conditions
and longer path lengths (�106 km) are desirable to avoid high
density that will quench the inversion population. If the maser
occurs in the planetary atmosphere, its H2O column density
has to be enhanced by a factor 103 to 105 to allow maser ac-
tion assuming initial conditions comparable to those in Jupiter
(see above). The H2O abundance ratio to H2 varies between
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Table 1. Physical conditions to produce a 100-mJy Jovian water maser
at a distance D. Standard maser theory is used (Reid & Moran 1988).
R is the radius of the comet nucleus and MH2O is the total mass of
water in it. A mean ice density of 300 kg m−3 is used for the comet
nucleus. NH2O is the column density in the planet atmosphere.

TH2 (K) 150 150 300 300
D (pc) 10 100 10 100
NH2O (1019 cm−2) 6.9 8.6 3.2 4.0
R (km) 6.3 6.8 4.9 5.2
MH2O (1014 kg) 3.2 4.0 1.4 1.8

10−6 and 10−4. A large amount of water ice, 1014−1015 kg,
is needed to fill in part of the planet atmosphere (Table 1). In
comparison, Bjoraker et al. (1996) measured a column density
of 1018 cm−2 and a total water mass of 109 kg toward the im-
pacts of the Shoemaker-Levy 9 comet.

In summary, an extrasolar planet must undergo a much
more severe bombardment than Jupiter in 1994 to produce a
detectable water maser at a level of 100 mJy. However, the
presence of 100-mJy masers is difficult to explain in a plan-
etary environment in terms of standard H2O maser theory (e.g.
Reid & Moran 1988). Elitzur et al. (1989) have characterised
the maser emission measure with a parameter ξ (see Eq. (2.1) in
Elitzur et al.), which is directly proportional to the water vapour
abundance ratio to H2, the square of the H2 density and the path
length. To compensate the relatively short planetary path length
and obtain ξ > 1, either large H2O abundance ratio or large gas
density is required, which might be unrealistic in the first case
and could quench the maser in the second case. Finally, the ve-
locity coherence is implicitely assumed to be reached along the
full path length, which is unlikely to occur along a sufficiently
large path length in such a turbulent atmosphere.

3. Observations

Interferometers allow both high angular resolution and high
sensitivity observations. These technical characteristics are
ideal in the search for water masers toward extrasolar planets.
A small beam could clearly establish the connection between
water masers and exoplanets in case of detection. Furthermore,
masers from a planetary atmosphere are probably highly vari-
able as the planet rotates (only 10-h sidereal period for Jovian
planets).

In April 2003, we used the newly upgraded ATCA sys-
tem at 12 mm in the EW352-baseline configuration plus an-
tenna 6. Eighteen extrasolar planets were searched for 22-GHz
water masers down to a noise rms of about 25 mJy beam−1

(average weather conditions), excluding antenna 6 in the rms
estimate. A bandwidth of 16 MHz and 512 spectral chan-
nels were used, which give a spectral resolution of 31 kHz or
0.4 km s−1 and a total velocity range of 216 km s−1 centred at
Vlsr = 0 km s−1. An angular resolution of about 10 arcsec was
obtained with the EW352 configuration, allowing us to probe
the inner ∼30−1200 AU of the planetary systems depending
on their distance to us. Each target was observed in a straight
30-min scan in average, preceded and followed by a 3-min scan

on the phase calibrator. The high sensitivity of ATCA at 12 mm
allows us to reach a 4-σ rms of 100 mJy beam−1 in 30 minutes,
which is 1/20 of the Jupiter sidereal period.

4. Data analysis, results and discussion

The data were analysed with Miriad in an essentially identical
method as for the centimetre data analysis (Sault & Killeen
2004). The amplitude calibration was achieved on Uranus.
The bandpass solutions were obtained with a strong calibra-
tor, 1730-130. Pointing corrections were estimated and applied
every 2 hours in average. The phase calibration was made with
secondary calibrators. A couple of well known maser sources
were successfully observed during the experiment to check the
new 12-mm system.

Vector-averaged cross-correlated spectra were generated
from the data cubes for each extrasolar planet. All baseline-
averaged spectra were first inspected.

The individual baseline spectra were also averaged over
various time ranges (∼2−20 min) and searched for artificial
lines and peaks. Possible maser lines from a rotating plane-
tary atmosphere could then be monitored in velocity as long as
the maser was bright enough to be identified in a few minutes.
Conversely, non detection could be the result of signal dilu-
tion in velocity/channels over a significative fraction of sidereal
period. If a signal was visualised, the spectrum was Hanning
smoothed and checked again. Both polarisation spectra were
also inspected in a similar fashion. The 1-σ rms on the noise
baseline varies between 24 and 31 mJy for our source sample
(Table 2). This includes the noise bias value, which is a residual
noise level obtained after vector averaging. After all the above
checks, a signal was considered as a possible detection when
the flux intensity was greater than ∼4σ and the line was still
visible after Hanning smoothing.

The vector-averaged spectrum for HD 47536, a KIII giant
star with a giant planet candidate (Setiawan et al. 2003), ex-
hibits a noise level greater than ∼3−4σ in a few channels. The
intensity level reaches 100 mJy around Vlsr = −36 km s−1.
Channel maps were produced after averaging over 7 channels
(3 km s−1) that corresponds to the FWHM of the putative maser
line. A 100-mJy signal was identified in the channel map at
the averaged velocity of −36 km s−1. However, a few channel
maps exhibit a flux density level up to 50 mJy. It is thus possi-
ble that the emission at −36 km s−1 is associated with a noise
peak rather than a true signal. New ATCA observations in 2004
failed to confirm this possible detection.

Finally, no maser is observed toward Epsilon Eridani,
a target that was reported to exhibit a possible maser line
(Cosmovici et al. 2002). This result confirms other non-
detection reports by Greenhill (IAU circular 7985) and Butler
et al. (2002). Our sensitivity limit for Epsilon Eridani was
26 mJy beam−1. This value compares well with those achieved
by other instruments such as the VLA and large aperture single
dish telescope. The possible signal toward Eps Eri was mea-
sured at an intensity level >3σ (with 1σ = 200 mJy) with the
Medicina 32-m radio telescope (Cosmovici, priv. comm.). The
ATCA non-detection results suggest that the lines observed by
Cosmovici et al. are (i) transient masers, (ii) signals from
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Table 2. Exoplanet sample and results. The age of each star is estimated with log(t) = 10.725−1.334×R+0.4085×R2 −0.0522×R3 (Donahue
1993), where R is the chromospheric activity times 105.

HD Spectral Mass Distance Age Coordinates Radial vel. rms Detection
name type (M�) (pc) (109 yr) RA(J2000) Dec(J2000) (km s−1) (mJy)
HD 169830 F8V 1.40 36.32 4.3 18:27:49.5 –29:49:00 ? 28 No
HD 179949 F8V 1.24 27.05 2.0 19:15:33.2 –24:10:45 –25.5 24 No
HD 202206 G6V 1.15 46.34 ? 21:14:57.8 –20:47:21 14.7 26 No
HD 213240 G4IV 1.22 40.75 2.7 22:31:00.4 –49:25:59 –0.9 26 No
HD 2164351 G0V 1.25 33.29 5.6 22:53:37.9 –48:35:53 –1.0 26 No
HD 142 G1IV 1.10 25.64 4.2 00:06:19.2 –49:04:30 2.6 25 No
HD 2039 G2.5IV-V 0.98 89.85 4.0 00:24:20.3 –56:39:00 ? 27 No
HD 6434 G3V 1.00 40.32 3.7 01:04:40.2 –39:29:17 22.4 27 No
HD 13445 K0V 0.80 10.91 2.2 02:10:25.9 –50:49:25 53.1 26 No
HD 170512 G0V 1.03 17.24 1.6 02:42:33.5 –50:48:01 15.0 25 No
HD 220493 K2V 0.80 3.22 0.7 03:32:55.8 –09:27:29 15.5 26 No
HD 23079 F9V 1.10 34.60 4.8 03:39:43.1 –52:54:57 ? 29 No
HD 274424 K2IV 1.20 18.23 ? 04:16:29.0 –59:18:07 29.3 29 No
HD 30177 G8V 0.95 54.71 7.4 04:41:54.4 –58:01:14 ? 30 No
HD 47536 K0III 1.10 121.36 > 5 06:37:47.6 –32:20:23 78.8 31 No?
HD 73526 G7V 1.02 94.61 ? 08:37:16.5 –41:19:08 ? 29 No
HD 75289 G0V 1.15 28.94 4.9 08:47:40.4 –41:44:12 14.0 27 No
HD 83443 K0V 0.79 43.54 3.2 09:37:11.8 –43:16:19 27.6 29 No

Notes: 1 Tau1 Gru; 2 Iot Hor; 3 Eps Eri; 4 Eps Ret.

another location in the sky that was detected in the large beam
(∼1.5′) of the Medicina 32-m telescope or (iii) artificial lines
(e.g. RFI).

In conclusion, our observations have confirmed that de-
tectable water masers in planetary systems are rare phenom-
ena. Whether these phenomena can occur in an exoplanetary
environment is an issue that can only be solved with very high-
sensitivity radio telescopes. Our results and conclusions are
comparable to an unsuccessful search for cyclotron masers to-
ward extrasolar systems (Bastian et al. 2000). Randomly dis-
tributed observations in time with large aperture radio instru-
ments (e.g. SKA in the future) might possibly be useful to
further address this issue.
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