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ABSTRACT

Using recent measurements of the supermassive black hole (SMBH) mass function, we find that SMBHs are
the largest contributor to the entropy of the observable universe, contributing at least an order of magni-
tude more entropy than previously estimated. The total entropy of the observable universe is correspondingly
higher, and is Sobs = 3.1+3.0

−1.7 × 10104 k. We calculate the entropy of the current cosmic event horizon to be
SCEH = 2.6 ± 0.3 × 10122 k, dwarfing the entropy of its interior, SCEH int = 1.2+1.1

−0.7 × 10103 k. We make the first
tentative estimate of the entropy of weakly interacting massive particle dark matter within the observable universe,
Sdm = 1088±1 k. We highlight several caveats pertaining to these estimates and make recommendations for future
work.
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neutrinos

Online-only material: color figures

1. INTRODUCTION

The entropy budget of the universe is important because
its increase is associated with all irreversible processes, on
all scales, across all facets of nature: gravitational clustering,
accretion disks, supernovae, stellar fusion, terrestrial weather,
and chemical, geological, and biological processes (Frautschi
1982; Lineweaver & Egan 2008).

Recently, Frampton et al. (2009) and Frampton & Kephart
(2008) reported the entropy budget of the observable universe.
Their budgets (listed beside others in Table 1) estimate the total
entropy of the observable universe to be Sobs ∼ 10102 k–10103 k,
dominated by the entropy of supermassive black holes (SMBHs)
at the centers of galaxies. That the increase of entropy has not
yet been capped by some limiting value, such as the holographic
bound (’t Hooft 1993; Susskind 1995) at Smax ∼ 10123 k
(Frampton et al. 2009), is the reason dissipative processes are
ongoing and that life can exist.

In this paper, we improve the entropy budget by using recent
observational data and quantifying uncertainties. The paper is
organized as follows. In what remains of the Introduction, we
describe two different schemes for quantifying the increasing
entropy of the universe, and we comment on caveats involving
the identification of gravitational entropy. Our main work
is presented in Sections 2 and 3, where we calculate new
entropy budgets within each of the two accounting schemes.
We finish in Section 4 with a discussion touching on the time
evolution of the budgets we have calculated, and ideas for future
work.

Throughout this paper, we assume flatness (Ωk = 0) as
predicted by inflation (Guth 1981; Linde 1982) and supported
by observations (Spergel et al. 2007). Adopted values for other
cosmological parameters are h = 0.705 ± 0.013, ωb = Ωbh

2 =
0.0224 ± 0.0007, ωm = Ωmh2 = 0.136 ± 0.003 (Seljak et al.
2006), and TCMB = 2.725±0.002 K (Mather et al. 1999; quoted
uncertainties are 1σ ).

1.1. Two Schemes for Quantifying the Increasing Entropy
of the Universe

Modulo statistical fluctuations, the generalized second law
of thermodynamics holds that the entropy of the universe
(including Bekenstein–Hawking entropy in the case of any
region hidden behind an event horizon), must not decrease with
time (Bekenstein 1974; Gibbons & Hawking 1977). Within the
FRW framework, the generalized second law can be applied in
at least two obvious ways.

1. The total entropy in a sufficiently large comoving volume
of the universe does not decrease with cosmic time,

dScomoving volume � 0. (1)

2. The total entropy of matter contained within the cosmic
event horizon (CEH) plus the entropy of the CEH itself,
does not decrease with cosmic time,

dSCEH interior + dSCEH � 0. (2)

In the first of these schemes, the system is bounded by a closed
comoving surface. The system is effectively isolated because
large-scale homogeneity and isotropy imply no net flows of
entropy into or out of the comoving volume. The time-slicing
in this scheme is along surfaces of constant cosmic time. Event
horizons of black holes are used to quantify the entropy of black
holes; however, the CEH is neglected since the assumption of
large-scale homogeneity makes it possible for us to keep track
of the entropy of matter beyond it. A reasonable choice for the
comoving volume in this scheme is the comoving sphere that
presently corresponds to the observable universe, i.e., the gray
area in Figure 1. Correspondingly, in Section 2 we calculate the
present entropy budget of the observable universe and we do not
include the CEH.

The second scheme is similar to the first in that we time-
slice along surfaces of constant cosmic time. However, here
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Figure 1. Panels show the particle horizon (see Equation (A1) and Figure 9)
and the cosmic event horizon (see Equation (A5)) as a function of time. The
difference between the two panels is the spatial coordinate system used: the x-
axis in the bottom panel is proper distance D and in the top panel it is comoving
distance χ ≡ D

a
, where a is the cosmic scalefactor. The origin is chosen so that

our galaxy is the central vertical dotted line. The other dotted lines represent
distant galaxies, which are approximately comoving and recede as the universe
expands. The region inside the particle horizon is the observable universe. The
comoving volume that corresponds to the observable universe today, about
13.7 Gyr after the big bang, is filled gray. In scheme 1, the entropy within this
comoving volume increases (or remains constant) with time. Alternatively, in
scheme 2 the entropy within the event horizon (the region filled yellow), plus
the entropy of the horizon itself, increases (or remains constant) with time.

(A color version of this figure is available in the online journal.)

the system (yellow shade in Figure 1) is bounded by the time-
dependent CEH instead of a comoving boundary. Migration of
matter across the CEH is not negligible, and the CEH entropy
(Gibbons & Hawking 1977) must be included in the budget to
account for this (e.g., Davis et al. 2003). The present entropy of
the CEH and its interior is calculated in Section 3.

1.2. Entropy and Gravity

It is widely appreciated that non-gravitating systems of
particles evolve toward homogenous temperature and den-
sity distributions. The corresponding increase in the volume
of momentum-space and position-space occupied by the con-
stituent particles represents an increase in entropy. On the other
hand, strongly gravitating systems become increasingly lumpy.
With “lumpyness” naively akin to “orderliness,” it is not as easy
to see that the total entropy increases. In these systems, the en-
tropy is shared among numerous components, all of which must
be considered.

For example, approximately collisionless long-range gravita-
tional interactions between stars result in dynamical relaxation
of galaxies (Lynden-Bell 1967; whereby bulk motions are dis-
sipated and entropy is transferred to stars in the outer regions
of the galaxy) and stellar evaporation from galaxies (whereby
stars are ejected altogether, carrying with them energy, angular
momentum, and entropy, and allowing what remains behind to
contract; e.g., Binney & Tremaine 2008). In more highly dissi-
pative systems, i.e., accretion disks, non-gravitational interac-

tions (viscosity and/or magnetorotational instability; Balbus &
Hawley 2002) transfer angular momentum and dissipate energy
and entropy.

In addition to these considerations, entropy also increases
when gravitons are produced. A good example is the in-spiral
of close binaries, such as the Hulse–Taylor binary pulsar system
(Hulse & Taylor 1975; Weisberg & Taylor 2005). Gravitational
waves emitted from the system extract orbital energy (and
therefore entropy) allowing the system to contract.

The entropy of a general gravitational field is still not known.
Penrose (1987, 1979, 2004) has proposed that it is related to the
Weyl curvature tensor Wμνκλ. In conformally flat spacetimes
(such as an ideal FRW universe), the Weyl curvature vanishes
and gravitational entropy is postulated to vanish (to limits
imposed by quantum uncertainty). In clumpy spacetimes, the
Weyl curvature takes large values and the gravitational entropy
is high. While Ricci curvature Rμν vanishes in the absence of
matter, Weyl curvature may still be non-zero (e.g., gravitational
waves traveling though empty space) and the corresponding
gravitational entropy may be non-zero.

If these ideas are correct then the low gravitational entropy
of the early universe comes from small primordial gravita-
tional perturbations. Gravitational entropy then increases with
the growing amplitude of linear density fluctuations parame-
terized through the matter power spectrum P (k). The present
gravitational entropy, however, is expected to be dominated by
the nonlinear overdensities (with large Weyl tensors) which have
formed since matter-radiation equality.

In extreme cases, gravitational clumping leads to the forma-
tion of black holes. The entropy of black holes is well known
(Bekenstein 1973; Hawking 1976; Strominger & Vafa 1996).
The entropy of a Schwarzschild black hole is given by

SBH = kc3

Gh̄

A

4
= 4πkG

ch̄
M2, (3)

where A = 16πG2M2

c4 is the event-horizon area and M is the black
hole mass.

Because gravitational entropy is difficult to quantify, we
only include it in the two extremes: the thermal distribution
of gravitons and black holes.

2. THE PRESENT ENTROPY OF THE
OBSERVABLE UNIVERSE

The present entropy budget of the observable universe was
estimated most recently by Frampton et al. (2009) and Frampton
& Kephart (2008). These papers and earlier work (Kolb &
Turner 1981; Frautschi 1982; Penrose 2004; Bousso et al.
2007) identified the largest contributors to the entropy of
the observable universe as black holes, followed distantly by
the cosmic microwave background (CMB) and the neutrino
background. The last column of Table 1 contains previous
estimates of the entropy in black holes, the CMB and neutrinos,
as well as several less significant components.

Sections 2.1–2.7 below describe the data and assumptions
used to calculate our entropy densities (given in Column 2
of Table 1). Our entropy budget for the observable universe
(Column 3 of Table 1) is then found by multiplying the entropy
density by the volume of the observable universe Vobs,

Si = siVobs, (4)
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where si is the entropy density of component i. The volume of
the observable universe is (see the Appendix)

Vobs = 43.2 ± 1.2 × 104 Glyr3

= 3.65 ± 0.10 × 1080 m3. (5)

2.1. Baryons

For a non-relativistic, non-degenerate gas, the specific entropy
(entropy per baryon) is given by the Sakur–Tetrode equation
(e.g., Basu & Lynden-Bell 1990)

(s/nb) = k

nb

∑
i

ni ln
[
Zi(T )(2πmikT )

3
2 e

5
2 n−1

i h−3
]
, (6)

where i indexes particle types in the gas, ni is the ith parti-
cle type’s number density, and Zi(T ) is its internal partition
function. Basu & Lynden-Bell (1990) found specific entropies
between 11 k and 21 k per baryon for main-sequence stars of
approximately solar mass. For components of the interstellar
medium (ISM) and intergalactic medium (IGM), they found
specific entropies between 20 k (H2 in the ISM) and 143 k (ion-
ized hydrogen in the IGM) per baryon.

The cosmic entropy density in stars s∗ can be estimated by
multiplying the specific entropy of stellar material by the cosmic
number density of baryons in stars nb∗:

s∗ = (s/nb)∗nb∗ = (s/nb)∗
ρ∗
mp

= (s/nb)∗

[
3H 2

8πG

Ω∗
mp

]
. (7)

Using the stellar cosmic density parameter Ω∗ = 0.0027 ±
0.0005 (Fukugita & Peebles 2004) and the range of specific
entropies for main-sequence stars around the solar mass (which
dominate stellar mass), we find

s∗ = 0.26 ± 0.12 k m−3, (8)

S∗ = 9.5 ± 4.5 × 1080 k. (9)

Similarly, the combined energy density for the ISM and IGM is
Ωgas = 0.040 ± 0.003 (Fukugita & Peebles 2004), and by using
the range of specific entropies for ISM and IGM components,
we find

sgas = 20 ± 15 k m−3, (10)

Sgas = 7.1 ± 5.6 × 1081 k. (11)

The uncertainties in Equations (9) and (11) are dominated by
uncertainties in the mass weighting of the specific entropies, but
also include uncertainties in Ω∗, Ωgas, and the volume of the
observable universe.

2.2. Photons

The CMB photons are the most significant non-black hole
contributors to the entropy of the observable universe. The
distribution of CMB photons is thermal (Mather et al. 1994)
with a present temperature of Tγ = 2.725 ± 0.002 K (Mather
et al. 1999).

The entropy of the CMB is calculated using the equation for
a black body (e.g., Kolb & Turner 1990),

sγ = 2π2

45

k4

c3h̄3 gγ T 3
γ

= 1.478 ± 0.003 × 109 k m−3, (12)

Sγ = 2.03 ± 0.15 × 1089 k, (13)

where gγ = 2 is the number of photon spin states. The
uncertainty in Equation (13) is dominated by uncertainty in
the size of the observable universe.

The non-CMB photon contribution to the entropy budget
(including starlight and heat emitted by the ISM) is somewhat
less, at around 1086 k (Frautschi 1982; Bousso et al. 2007;
Frampton et al. 2009).

2.3. Relic Neutrinos

The neutrino entropy cannot be calculated directly since
the temperature of cosmic neutrinos has not been measured.
Standard treaties of the radiation era (e.g., Kolb & Turner
1990; Peacock 1999) describe how the present temperature (and
entropy) of massless relic neutrinos can be calculated from the
well-known CMB photon temperature. Since this background
physics is required for Sections 2.4 and 2.5, we summarize it
briefly here.

A simplifying feature of the radiation era (at least at known
energies � 1012 eV) is that the radiation fluid evolves adiabati-
cally: the entropy density decreases as the cube of the increasing
scalefactor, srad ∝ a−3. The evolution is adiabatic because reac-
tion rates in the fluid are faster than the expansion rate H of the
universe. It is convenient to write the entropy density as

srad = 2π2

45

k4

c3h̄3 g∗ST
3
γ ∝ a−3, (14)

where g∗S is the number of relativistic degrees of freedom in
the fluid (with m < kT/c2) given approximately by

g∗S(T ) ≈
∑

bosons, i

gi

(
Ti

Tγ

)3

+
∑

fermions, j

7

8
gj

(
Tj

Tγ

)3

. (15)

For photons alone, g∗S = gγ = 2, and thus Equation (14)
becomes Equation (12). For photons coupled to an electron–
positron component, such as existed before electron–positron
annihilation, g∗S=gγ + 7

8 ge±=2+ 7
8 4= 11

2 .
As the universe expands, massive particles annihilate, heating

the remaining fluid. The effect on the photon temperature is
quantified by inverting Equation (14),

Tγ ∝ a−1g
−1/3
∗S . (16)

The photon temperature decreases less quickly than a−1 because
g∗S decreases with time. Before electron–positron e± annihila-
tion, the temperature of the photons was the same as that of the
almost completely decoupled neutrinos. After e± annihilation
heats only the photons, the two temperatures differ by a factor
C,

Tν = C Tγ . (17)

A reasonable approximation, C ≈ (4/11)1/3, is derived by
assuming that only photons were heated during e± annihilation,
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where 4/11 is the ratio of g∗S for photons to g∗S for photons,
electrons, and positrons.

Corrections are necessary at the 10−3 level because neutrinos
had not completely decoupled at e± annihilation (Gnedin
& Gnedin 1998). The neutrino entropy density is computed
assuming a thermal distribution with Tν = (4/11)1/3Tγ , and we
assign a 1% uncertainty.

sν = 2π2

45

k4

c3h̄3 gν

(
7

8

)
T 3

ν

= 1.411 ± 0.014 × 109 k m−3, (18)

where gν = 6 (3 flavors, 2 spin states each). The total neutrino
entropy in the observable universe is then

Sν = 5.16 ± 0.14 × 1089 k (19)

with an uncertainty dominated by uncertainty in the volume of
the observable universe.

Neutrino oscillation experiments have demonstrated that
neutrinos are massive by measuring differences between the
three neutrino mass eigenstates (Cleveland et al. 1998; Adamson
et al. 2008; Abe et al. 2008). At least two of the mass eigenstates
are heavier than ∼ 0.009 eV. Since this is heavier than their
current relativistic energy ( k

2CTγ = 0.0001 eV; computed under
the assumption that they are massless) at least two of the three
masses are presently non-relativistic.

Expansion causes non-relativistic species to cool as a−2 in-
stead of a−1, which would result in a lower temperature for
the neutrino background than suggested by Equation (17). The
entropy density (calculated in Equation (18)) and entropy (cal-
culated in Equation (19)) are unaffected by the transition to
non-relativistic cooling since the cosmic expansion of relativis-
tic and non-relativistic gases are both adiabatic processes (the
comoving entropy is conserved, so in either case s ∝ a−3).

We neglect a possible increase in neutrino entropy due to their
infall into gravitational potentials during structure formation. If
large, this will need to be considered in future work.

2.4. Relic Gravitons

A thermal background of gravitons is expected to exist, which
decoupled from the photon bath around the Planck time, and has
been cooling as Tgrav ∝ a−1 since then. The photons cooled less
quickly because they were heated by the annihilation of heavy
particle species (Equation (16)). Thus, we can relate the current
graviton temperature to the current photon temperature

Tgrav =
(

g∗S(t0)

g∗S(tplanck)

)1/3

Tγ , (20)

where g∗S(tplanck) is the number of relativistic degrees of freedom
at the Planck time and g∗S(t0) = 3.91 today (this is appropriate
even in the case of massive neutrinos because they decoupled
from the photon bath while they were still relativistic). Given
the temperature of background gravitons, their entropy can be
calculated as

sgrav = 2π2

45

k4

c3h̄3 ggravT
3

grav, (21)

where ggrav = 2.
Figure 2 shows g∗S as a function of temperature. The func-

tion is well known for temperatures below about 1012 eV,

Figure 2. Number of relativistic degrees of freedom g∗S as a function of
temperature, computed using the prescription given by Coleman & Roos (2003).
All the particles of the standard model are relativistic at T � 1012 eV and
g∗S (1012 eV) = 106.75. The value of g∗S is not known above T ∼ 1012. To
estimate plausible ranges of values, we extrapolate g∗S linearly (gray line) and
exponentially (thin blue line) in log(T ). The minimum contribution to g∗S from
supersymmetric partners is shown (blue bar) and taken to indicate a minimum
likely value of g∗S at higher temperatures (thick blue line).

(A color version of this figure is available in the online journal.)

but is not known at higher temperatures. Previous esti-
mates of the background graviton entropy have assumed
g∗S(tplanck) ∼ g∗S(1012 eV) = 106.75 (Frampton et al. 2009;
Frampton & Kephart 2008), but this should be taken as a
lower bound on g∗S(tplanck) yielding an upper bound on Tgrav
and sgrav.

To get a better idea of the range of possible graviton
temperatures and entropies, we have adopted three values for
g∗S(tplanck). As a minimum likely value, we use g∗S = 200
(Figure 2, thick blue line), which includes the minimal set
of additional particles suggested by supersymmetry. As our
middle value we use g∗S = 350, corresponding to the linear
extrapolation of g∗S in log(T ) to the Planck scale (Figure 2,
gray line). And as a maximum likely value we use g∗S = 105,
corresponding to an exponential extrapolation (Figure 2, thin
blue line).

The corresponding graviton temperatures today are
(Equation (20))

Tgrav = 0.61+0.12
−0.52 K. (22)

Inserting this into Equation (21), we find the entropy in the relic
graviton background to be
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sgrav = 1.7 × 107+0.2
−2.5 k m−3, (23)

Sgrav = 6.2 × 1087+0.2
−2.5 k. (24)

It is interesting to note the possibility of applying
Equation (20) in reverse, i.e., calculating the number of rel-
ativistic degrees of freedom at the Planck time using future
measurements of the graviton background temperature.

2.5. Dark Matter

The most compelling interpretation of dark matter is as a
weakly interacting superpartner (or weakly interacting massive
particle, WIMP). According to this idea, dark matter particles
decoupled from the radiation background at some energy above
the particle mass.

If this interpretation is correct, the fraction of relativistic
background entropy in dark matter at the time dark matter
decoupled tdm dec is determined by the fraction of relativistic
degrees of freedom that were associated with dark matter at that
time (see Equation (14)),

sdm = g∗S dm(tdm dec)

g∗S non-dm(tdm dec)
snon-dm rad. (25)

This can be evaluated at dark matter decoupling, or any
time thereafter, since both sdm and snon−dm rad are adiabatic
(∝ a−3).

We are unaware of any constraint on the number of superpart-
ners that may collectively constitute dark matter. The require-
ments that they are only weakly interacting, and that they decou-
ple at a temperature above their mass, are probably only satisfied
by a few (even one) species. Based on these arguments, we as-
sume g∗S dm(tdm dec) � 20 and g∗S(tdm dec) � 106.75 which
yields the upper limit

g∗S dm(tdm dec)

g∗S(tdm dec)
� 1

5
. (26)

On the other hand, there may be many more degrees of
freedom than suggested by minimal supersymmetry. By ex-
trapolating g∗S exponentially beyond supersymmetric scales
(to 1015 eV), we find g∗S(tdm dec) � 800. In the simplest case,
dark matter is a single scalar particle so g∗S dm(tdm dec) � 1 and
we take as a lower limit

g∗S dm(tdm dec)

g∗S non−dm(tdm dec)
� 1

800
. (27)

Inserting this into Equation (25) at the present day gives

sdm = 5 × 107±1 k m−3, (28)

where we have used the estimated limits given in Equations (26)
and (27) and taken snon-dm rad to be the combined entropy of
neutrinos and radiation today (Equations (12) and (18)). The
corresponding estimate for the total dark matter entropy in the
observable universe is

Sdm = 2 × 1088±1 k. (29)

As with our calculated neutrino entropy, our estimates here
carry the caveat that we have not considered changes in the dark
matter entropy associated with gravitational structure formation.

Figure 3. Progenitors in the IMF (top panel) evolve into the distribution of
remnants in the bottom panel. The shape of the present main-sequence mass
function differs from that of the IMF (top panel) by the stars that have died
leaving white dwarfs (yellow), neutron stars (blue), and black holes (light
and dark gray). The present distribution of remnants is shown in the bottom
panel. Black holes in the range 2.5 M� � M � 15 M� (light gray) have
been observationally confirmed. They form from progenitors in the range
25 M� � M ∼ 42 M� via core collapse supernova and fallback, and we

calculate their entropy to be 5.9 × 1097+0.6
−1.2 k. Progenitors above about 42 M�,

may evolve directly to black holes without significant loss of mass (dark gray)
and may carry much more entropy, but this population has not been observed.
The green curve, whose axis is on the right, shows the mass distribution of
stellar black hole entropies in the observable universe.

(A color version of this figure is available in the online journal.)

2.6. Stellar Black Holes

In the top panel of Figure 3, we show the stellar initial mass
function (IMF) parameterized by

dninitial

d log M
∝

(
M

M�

)α+1

, (30)

with α = −1.35 at M < 0.5 M� and α = −2.35+0.65
−0.35 at

M � 0.5 M� (Elmegreen 2007). We also show the present
distribution of main-sequence stars, which is proportional to
the initial distribution for M � 1 M�, but which is reduced by
a factor of (M/M�)−2.5 for heavier stars (Fukugita & Peebles
2004),

dnpresent

d log(M)
=

⎧⎨
⎩

dninitial
d log(M) , for M < 1 M�
dninitial

d log(M)

(
M
M�

)−2.5
, for M � 1 M�

. (31)

The initial and present distributions are normalized using
the present cosmic density of stars, Ω∗ = 0.0027 ± 0.0005
(Fukugita & Peebles 2004).

The yellow fill in the top panel represents stars of mass
1 M� � M � 8 M�, which died leaving white dwarf remnants
of mass M � 1.4 M� (yellow fill, bottom panel). The blue fill
represents stars of mass 8 M� � M � 25 M�, which died and
left neutron star remnants of mass 1.4 M� � M � 2.5 M�. The
light gray area represents stars of mass 25 M� � M � 42 M�,
which became black holes of mass 2.5 M� � M � 15 M� via
supernovae (here we use the simplistic final-initial mass function



1830 EGAN & LINEWEAVER Vol. 710

Table 1
Current Entropy of the Observable Universe (Scheme 1 Entropy Budget)

Component Entropy Density s (k m−3) Entropy S (k) Entropy S (k) (Previous Work)

SMBHs 8.4+8.2
−4.7 × 1023 3.1+3.0

−1.7 × 10104 10101[1], 10102[2], 10103[3]

Stellar BHs (2.5–15 M�) 1.6 × 1017+0.6
−1.2 5.9 × 1097+0.6

−1.2 1097[2], 1098[4]
Photons 1.478 ± 0.003 × 109 5.40 ± 0.15 × 1089 1088[1, 2, 4], 1089[5]
Relic Neutrinos 1.411 ± 0.014 × 109 5.16 ± 0.15 × 1089 1088[2],1089[5]
WIMP Dark Matter 5 × 107±1 2 × 1088±1 . . .

Relic Gravitons 1.7 × 107+0.2
−2.5 6.2 × 1087+0.2

−2.5 1086[2, 3]
ISM and IGM 20 ± 15 7.1 ± 5.6 × 1081 . . .

Stars 0.26 ± 0.12 9.5 ± 4.5 × 1080 1079[2]

Total 8.4+8.2
−4.7 × 1023 3.1+3.0

−1.7 × 10104 10101[1], 10102[2], 10103[3]

Tentative Components:
Massive Halo BHs (105 M�) 1025 10106 10106[6]

Stellar BHs (42–140 M�) 8.5 × 1018+0.8
−1.6 3.1 × 1099+0.8

−1.6 . . .

Notes. Our budget is consistent with previous estimates from the literature with the exception that SMBHs, which dominate the budget, contain at
least an order of magnitude more entropy as previously estimated, due to the contributions of black holes 100 times larger than those considered
in previous budgets. Uncertainty in the volume of the observable universe (see the Appendix) has been included in the quoted uncertainties.
Massive halo black holes at 105 M� and stellar black holes in the range 42–140 M� are included tentatively since their existence is speculative.
They are not counted in the budget totals. Previous work: (1) Penrose 2004, (2) Frampton et al. 2009, (3) Frampton & Kephart 2008, (4) Frautschi
1982, (5) Kolb & Turner 1981, (6) Frampton 2009b.

of Fryer & Kalogera (2001)). Stars larger than ∼ 42 M� collapse
directly to black holes, without supernovae, and therefore retain
most of their mass (dark gray regions; Fryer & Kalogera 2001;
Heger et al. 2005).

Integrating Equation (3) over stellar black holes in the range
M � 15 M� (the light gray fill in the bottom panel of Figure 3),
we find

sSBH (M<15 M�) = 1.6 × 1017+0.6
−1.2 k m−3, (32)

SSBH (M<15 M�) = 5.9 × 1097+0.6
−1.2 k, (33)

which is comparable to previous estimates of the stellar black
hole entropy (see Table 1). Our uncertainty is dominated by
uncertainty in the slope of the IMF, but also includes uncertainty
in the normalization of the mass functions and uncertainty in
the volume of the observable universe.

If the IMF extends beyond M � 42 M� as in Figure 3,
then these higher mass black holes (the dark gray fill in the
bottom panel of Figure 3) may contain more entropy than black
holes of mass M < 15 M� (Equation (32)). For example, if the
Salpeter IMF is reliable to M = 140 M� (the Eddington limit
and the edge of Figure 3), then black holes in the mass range
42–140 M� would contribute about 3.1×1099+0.8

−1.6 k to the entropy
of the observable universe. Significantly less is known about
this potential population, and should be considered a tentative
contribution in Table 1.

2.7. Supermassive Black Holes

Previous estimates of the SMBH entropy (Penrose 2004;
Frampton et al. 2009; Frampton & Kephart 2008) have assumed
a typical SMBH mass and a number density and yield SSMBH =
10101–10103 k. Below we use the SMBH mass function as
measured recently by Graham et al. (2007). Assuming a three-
parameter Schechter function

dn

d log M
= φ∗

(
M

M∗

)α+1

exp

[
1 −

(
M

M∗

)]
, (34)

Figure 4. The entropy of supermassive black holes. The black curve, whose axis
is on the left, is the SMBH mass function from Graham et al. (2007), i.e., the
number of supermassive black holes per Mpc3 per logarithmic mass interval.
The green curve, whose axis is on the right, shows the mass distribution of
SMBH entropies in the observable universe.

(A color version of this figure is available in the online journal.)

(number density per logarithmic mass interval) they find
φ∗ = 0.0016 ± 0.0004 Mpc−3, M∗ = 2.9 ± 0.7 × 108 M�,
and α = −0.30 ± 0.04. The data and best-fit model are shown
in black in Figure 4.

We calculate the SMBH entropy density by integrating
Equation (3) over the SMBH mass function,

s = 4πkG

ch̄

∫
M2

(
dn

d log(M)

)
d log M. (35)

The integrand is plotted using a green line in Figure 4 showing
that the contributions to SMBH entropy are primarily due to
black holes around ∼ 109 M�. The SMBH entropy is found to
be

sSMBH = 8.4+8.2
−4.7 × 1023 k m−3, (36)

SSMBH = 3.1+3.0
−1.7 × 10104 k. (37)
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Figure 5. Comparing the entropic contributions of black holes of different
masses. Whether or not the total black hole entropy is dominated by SMBHs
depends on the yet-unquantified number of intermediate mass black holes.

(A color version of this figure is available in the online journal.)

The uncertainty here includes uncertainties in the SMBH mass
function and uncertainties in the volume of the observable
universe. This is at least an order of magnitude larger than
previous estimates (see Table 1). The reason for the difference
is that the (Graham et al. 2007) SMBH mass function contains
larger black holes than assumed in previous estimates.

Frampton (2009a, 2009b) has suggested that intermediate
mass black holes in galactic halos may contain more entropy
than SMBHs in galactic cores. For example, according to the
massive astrophysical compact halo object (MACHO) expla-
nation of dark matter, intermediate mass black holes in the
mass range 102–105 M� may constitute dark matter. Assum-
ing 105 M� black holes, these objects would contribute up to
10106 k to the entropy of the observable universe (Frampton
2009b). Whether or not this is so depends on the number den-
sity and mass distribution of this population. Figure 5 combines
Figures 3 and 4 and shows what intermediate black hole number
densities would be required.

3. THE ENTROPY OF THE COSMIC EVENT HORIZON
AND ITS INTERIOR

In this section, we calculate the entropy budget for
scheme 2 (refer to discussion in Section 1.1). Scheme 2 differs
from scheme 1 in two ways: first, along with the components
previously considered (and listed in Table 1), here we consider
the CEH as an additional entropy component; and second, the
volume of interest is that within the event horizon not the particle
horizon (or observable universe).

The proper distance to the CEH is generally time-dependent,
increasing when the universe is dominated by an energy compo-
nent with an equation of state w > −1 (radiation and matter) and
remaining constant when the universe is dark energy dominated
(assuming a cosmological constant, w = −1). Since our uni-
verse is presently entering dark energy domination, the growth
of the event horizon has slowed, and it is almost as large now as
it will ever become (bottom panel of Figure 1). In the Appendix,
we calculate the present radius and volume of the CEH,

RCEH = 15.7 ± 0.4 Glyr, (38)

VCEH = 1.62 ± 0.12 × 104 Glyr3

= 1.37 ± 0.10 × 1079 m3. (39)

Table 2
Entropy of the Event Horizon and the Matter Within It

(Scheme 2 Entropy Budget)

Component Entropy S (k)

Cosmic Event Horizon 2.6 ± 0.3 × 10122

SMBHs 1.2+1.1
−0.7 × 10103

Stellar BHs (2.5–15 M�) 2.2 × 1096+0.6
−1.2

Photons 2.03 ± 0.15 × 1088

Relic Neutrinos 1.93 ± 0.15 × 1088

WIMP Dark Matter 6 × 1086±1

Relic Gravitons 2.3 × 1086+0.2
−3.1

ISM and IGM 2.7 ± 2.1 × 1080

Stars 3.5 ± 1.7 × 1078

Total 2.6 ± 0.3 × 10122

Tentative Components:
Massive Halo BHs (105 M�) 10104

Stellar BHs (42–140 M�) 1.2 × 1098+0.8
−1.6

Notes. This budget is dominated by the cosmic event horizon
entropy. While the CEH entropy should be considered as an
additional component in scheme 2, it also corresponds to the
holographic bound (’t Hooft 1993) on the possible entropy of the
other components and may represent a significant overestimate.
Massive halo black holes at 105 M� and stellar black holes in the
range 42–140 M� are included tentatively since their existence
is speculative.

We also calculate the present entropy of the CEH (following
Gibbons & Hawking 1977),

SCEH = kc3

Gh̄

A

4

= kc3

Gh̄
πR2

CEH

= 2.6 ± 0.3 × 10122 k. (40)

Entropies of the various components within the CEH are
calculated using the entropy densities si from Section 2:

Si = siVCEH. (41)

Table 2 shows that the cosmic event horizon contributes almost
20 orders of magnitude more entropy than the next largest
contributor, supermassive black holes.

4. DISCUSSION

The second law of thermodynamics holds that the entropy
of an isolated system increases or remains constant, but does
not decrease. This has been applied to the large-scale universe
in at least two ways (Equations (1) and (2)). The first scheme
requires the entropy in a comoving volume of the universe to
not decrease. The second scheme requires the entropy of matter
contained within the event horizon, plus the entropy of the event
horizon, to not decrease.

We have calculated improved estimates of the current entropy
budget under scheme 1 (normalized to the current observable
universe) and scheme 2. These are given in Tables 1 and 2,
respectively.

The entropy of dark matter has not been calculated previously.
We find that dark matter contributes 1088±1 k to the entropy of
the observable universe. We note that the neutrino and dark
matter estimates do not include an increase due to their infall
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Figure 6. Entropy in a comoving volume (normalized to the present observable
universe). This figure illustrates the time dependence of the scheme 1 entropy

budget. N.B. 1010100 = 1 googolplex.

(A color version of this figure is available in the online journal.)

into gravitational potentials during structure formation. It is not
clear to us a priori whether this non-inclusion is significant, but
it may be since both components are presently non-relativistic.
This should be investigated in future work.

Previous estimates of the relic graviton entropy have assumed
that only the known particles participate in the relativistic
fluid of the early universe at t � tplanck. In terms of the
number of relativistic degrees of freedom, this means g∗S →
106.75 at high temperatures. However, additional particles
are expected to exist, and thus g∗S is expected to become
larger as t → tplanck. In the present work, we have calculated
the relic graviton entropy corresponding to three high-energy
extrapolations of g∗S (constant, linear growth and exponential
growth) and reported the corresponding graviton temperatures
and entropies.

In this paper, we have computed the entropy budget of the
observable universe today Sobs(t = t0). Figure 6 illustrates the
evolution of the entropy budget under scheme 1, i.e., the entropy
in a comoving volume (normalized to the current observable
universe). For simplicity, we have included only the most
important components.

At the far-left of the figure, we show a brief period of inflation.
During this period all of the energy is in the inflaton (Guth 1981;
Linde 1982), which has very few degrees of freedom and low
entropy (blue fill; A. D. Linde 2009, private communication;
P. Steinhardt 2009, private communication). Inflation ends with
a period of reheating somewhere between the Planck scale
(10−45 s) and the GUT scale (10−35 s), during which the
inflaton’s energy is transferred into a relativistic fluid (yellow
fill). During reheating, the entropy increases by many orders of
magnitude. After reheating, the constitution of the relativistic
fluid continues to change, but the changes occur reversibly and
do not increase the entropy.

After a few hundred million years (∼ 1016 s), the first stars
form from collapsing clouds of neutral hydrogen and helium.
Shortly thereafter the first black holes form. The entropy in
stellar black holes (light gray) and SMBHs (dark gray) increases
rapidly during galactic evolution. The budget given in Table 1
is a snapshot of the entropies at the present time (4.3 × 1017 s).
Over the next 1026 s, the growth of structures larger than about

Figure 7. Entropy of matter within the CEH, and the entropy of the CEH. This
figure illustrates the time dependence of the scheme 2 entropy budget. Note: the
horizontal axis is shorter than in Figure 6.

(A color version of this figure is available in the online journal.)

1014 M� will be halted by the acceleration of the universe.
Galaxies within superclusters will merge and objects in the
outer limits of these objects will be ejected. The final masses of
SMBHs will be ∼ 1010 M� (Adams & Laughlin 1997) with the
entropy dominated by those with M ∼ 1012 M�.

Stellar black holes will evaporate away into Hawking radi-
ation in about 1080 s and SMBHs will follow in 10110 s. The
decrease in black hole entropy is accompanied by a compen-
sating increase in radiation entropy. The thick black line in
Figure 6 represents the radiation entropy growing as black holes
evaporate. The asymptotic future of the entropy budget, under
scheme 1, will be radiation dominated.

Figure 7 illustrates the evolution of the entropy budget under
scheme 2, i.e., the entropy within the CEH, plus the entropy of
the CEH.

Whereas in scheme 1, we integrate over a constant comoving
volume, here the relevant volume is the event horizon. The event
horizon is discussed in some detail in the Appendix. During ra-
diation domination, the comoving radius of the CEH is approx-
imately constant (the proper distance grows as RCEH ∝ a); and
in the dark energy dominated future, it is a constant proper dis-
tance (RCEH = constant). The few logarithmic decades around
the present time cannot be described well by either of these.

Since the event horizon has been approximately comoving
in the past, the left half of Figure 7 is almost the same as in
Figure 6 except that we have included the event horizon entropy
(green fill). The event horizon entropy dominates this budget
from about 10−16 s.

After dark energy domination sets in, the CEH becomes a
constant proper distance. The expansion of the universe causes
comoving objects to recede beyond the CEH. On average, the
number of galaxies, black holes, photons, etc., within our CEH
decreases as a−3. The stellar and SMBH entropy contained
within the CEH decreases accordingly (decreasing gray filled
regions).

The decreasing black hole entropy (as well as other compo-
nents not shown) is compensated by the asymptotically growing
CEH entropy (demonstrated explicitly for a range of scenarios
in Davis et al. 2003), and thus the second law of thermodynam-
ics is satisfied. See C. A. Egan & C. H. Lineweaver (2010, in
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Figure 8. Eight hundred realizations of Vobs and VCEH indicate the volume of the
observable universe is 43.2 ± 1.2 × 104 Glyr3 (horizontal axis) and the volume
of the cosmic event horizon is VCEH = 1.62 ± 0.12 × 104 Glyr3 (vertical axis).
We note that there is only a weak correlation between uncertainties in the two
volumes.

(A color version of this figure is available in the online journal.)

preparation) for further discussion of the time dependence of
the entropy of the universe.

We are grateful for many useful discussions with Tamara
Davis, Ken Freeman, Pat Scott, Geoff Bicknell, Mike Turner,
Andrei Linde, and Paul Steinhardt. C.A.E. thanks Anna
Fransson for financial support and the Research School of
Astronomy and Astrophysics, Australian National University,
for its hospitality during the preparation of this paper.

APPENDIX

THE OBSERVABLE UNIVERSE AND THE
COSMIC EVENT HORIZON

Here we calculate the radius and volume of the observable
universe (for use in Section 2); and we calculate the radius,
volume, and entropy of the CEH (for use in Section 3). We use
numerical methods to track the propagation of errors from the
cosmological parameters.

The radius of the observable universe (or particle horizon) is

Robs = a(t)
∫ t

t ′=0

c

a(t ′)
dt ′. (A1)

Here, a(t) is the time-dependent scalefactor of the universe given
by the Friedmann equation for a flat cosmology

da

dt
=

√
Ωr

a2
+

Ωm

a
+

ΩΛ

a−2
. (A2)

Hubble’s constant and the matter density parameter are taken
from Seljak et al. (2006): h = H/100 km s−1 Mpc−1 = 0.705±
0.013, ωm = Ωmh2 = 0.136 ± 0.003. The radiation density
is calculated from the observed CMB temperature, TCMB =
2.725 ± 0.002 K (Mather et al. 1999), using Ωr = 8πG

3H 2
π2k4T 4

15c5h̄3 .
The vacuum energy density parameter is determined by flatness,
ΩΛ = 1 − Ωr − Ωm.

A distribution of Robs values is built up by repeatedly
evaluating Equation (A1) at the present time (defined by

Figure 9. The radius and entropy of the cosmic event horizon. We find SCEH =
2.6 ± 0.3 × 10122 k, in agreement with previous estimates SCEH ∼ 10122 k

(Bousso et al. 2007). Uncertainties in SCEH come from uncertainties in RCEH,
which are almost exclusively due to uncertainties in h.

(A color version of this figure is available in the online journal.)

Figure 10. Proper distance to the event horizon shown as a function of time.
The vertical gray line represents the present age of the universe (and its width,
the uncertainty in the present age). During dark energy domination, the proper
radius, proper volume, and entropy of the CEH will monotonically increase,
asymptoting to a constant.

(A color version of this figure is available in the online journal.)

a(t0) = 1) using cosmological parameters randomly selected
from the allowed region of h − ωm − TCMB parameter space
(assuming uncorrelated Gaussian errors in these parameters).
We find

Robs = 46.9 ± 0.4 Glyr (A3)

with an approximately Gaussian distribution. The quoted confi-
dence interval here, and elsewhere in this Appendix, is 1σ . The
volume of the observable universe Vobs is calculated using the
normal formula for the volume of a sphere.

Vobs = 43.2 ± 1.2 × 104 Glyr3

= 3.65 ± 0.10 × 1080 m3. (A4)

See Figure 8. Uncertainty in Robs and Vobs is predominantly due
to uncertainty in ωm however h also makes a non-negligible
contribution.
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The radius of the CEH at time t is given by integrating along
a photon’s world line from the time t to the infinite future.

RCEH = a(tnow)
∫ ∞

t=tnow

c

a(t)
dt. (A5)

This integral is finite because the future of the universe is dark
energy dominated. Using the same methods as for the observable
universe, we find the present radius and volume of the CEH to
be

RCEH = 15.7 ± 0.4 Glyr, (A6)

and

VCEH = 1.62 ± 0.12 × 104 Glyr3,

= 1.37 ± 0.10 × 1079 m3. (A7)

The entropy of the CEH is calculated using the
Bekenstein–Hawking horizon entropy equation as suggested by
Gibbons & Hawking (1977).

SCEH = kc3

Gh̄

A

4
= kc3

Gh̄
πR2

CEH

= 2.6 ± 0.3 × 10122 k. (A8)

Uncertainty in the CEH radius, volume, and entropy are domi-
nated by uncertainties in Hubble’s constant (Figure 9).

The CEH monotonically increases, asymptoting to a constant
radius and entropy slightly larger than its current value (see
Figure 10). We calculate the asymptotic radius, volume, and
entropy to be

RCEH(t → ∞) = 16.4 ± 0.4 Glyr

= 1.55 ± 0.04 × 1026 m, (A9)

VCEH(t → ∞) = 1.84 ± 0.15 × 104 Glyr3

= 1.56 ± 0.13 × 1079 m3, (A10)

SCEH(t → ∞) = 2.88 ± 0.16 × 10122 k. (A11)

REFERENCES

Abe, S., et al. 2008, Phys. Rev. Lett., 100, 221803
Adams, F. C., & Laughlin, G. 1997, Rev. Mod. Phys., 69, 337
Adamson, P., et al. 2008, Phys. Rev. Lett., 101, 131802

Balbus, S. A., & Hawley, J. F. 2002, ApJ, 573, 749
Basu, B., & Lynden-Bell, D. 1990, QJRAS, 31, 359
Bekenstein, J. D. 1973, Phys. Rev. D, 7, 2333
Bekenstein, J. D. 1974, Phys. Rev. D, 9, 3292
Binney, J., & Tremaine, S. 2008, Galactic Dynamics (2nd ed; Princeton, NJ:

Princeton Univ. Press)
Bousso, R., Harnik, R., Kribs, G. D., & Perez, G. 2007, Phys. Rev. D, 76, 043513
Cleveland, B. T., Daily, T., Davis, R. J., Distel, J. R., Lande, K., Lee, C. K.,

Wildenhain, P. S., & Ullman, J. 1998, ApJ, 496, 505
Coleman, T. S., & Roos, M. 2003, Phys. Rev. D, 68, 027702
Davis, T. M., Davies, P. C. W., & Lineweaver, C. H. 2003, Class. Quantum

Gravity, 20, 2753
Elmegreen, B. G. 2007, in ASP Conf. Ser. 362, The Seventh Pacific Rim

Conference on Stellar Astrophysics, ed. Y. W. Kang et al. (San Francisco,
CA: ASP), 269

Frampton, P. H. 2009a, arXiv:0904.2934
Frampton, P. H. 2009b, J. Cosmol. Astropart. Phys., 10, 16
Frampton, P. H., Hsu, S. D. H., Kephart, T. W., & Reeb, D. 2009, Class. Quantum

Gravity, 26, 145005
Frampton, P. H., & Kephart, T. W. 2008, J. Cosmol. Astropart. Phys., 6, 8
Frautschi, S. 1982, Science, 217, 593
Fryer, C. L., & Kalogera, V. 2001, ApJ, 554, 548
Fukugita, M., & Peebles, P. J. E. 2004, ApJ, 616, 643
Gibbons, G. W., & Hawking, S. W. 1977, Phys. Rev. D, 15, 2738
Gnedin, N. Y., & Gnedin, O. Y. 1998, ApJ, 509, 11
Graham, A. W., Driver, S. P., Allen, P. D., & Liske, J. 2007, MNRAS, 378,

198
Guth, A. H. 1981, Phys. Rev. D, 23, 347
Hawking, S. W. 1976, Phys. Rev. D, 13, 191
Heger, A., Woosley, S. E., & Baraffe, I. 2005, in ASP Conf. Ser. 332, The Fate

of the Most Massive Stars, ed. R. Humphreys & K. Stanek (San Francisco,
CA: ASP), 339

Hulse, R. A., & Taylor, J. H. 1975, ApJ, 195, L51
Kolb, E. W., & Turner, M. S. 1981, Nature, 294, 521
Kolb, E. W., & Turner, M. S. 1990, Frontiers in Physics (Reading, MA:

Addison-Wesley), 1988
Linde, A. D. 1982, Phys. Lett. B, 108, 389
Lineweaver, C. H., & Egan, C. A. 2008, Phys. Life Rev., 5, 225
Lynden Bell, D. 1967, MNRAS, 136, 101
Mather, J. C., Fixsen, D. J., Shafer, R. A., Mosier, C., & Wilkinson, D. T.

1999, ApJ, 512, 511
Mather, J. C., et al. 1994, ApJ, 420, 439
Peacock, J. A. 1999, Cosmological Physics (Cambridge: Cambridge Univ.

Press)
Penrose, R. 1979, in General Relativity: An Einstein Centenary Survey, ed.

S. W. Hawking & W. Israel (Cambridge: Cambridge Univ. Press), 581
Penrose, R. 1987, in Three Hundred Years of Gravitation, ed. S. W. Hawking &

W. Israel (Cambridge: Cambridge Univ. Press), 17
Penrose, R. (ed.) 2004, in The Road to Reality: A Complete Guide to the Laws

of the Universe (London: Jonathan Cape)
Seljak, U., Slosar, A., & McDonald, P. 2006, J. Cosmol. Astropart. Phys., 10,

14
Spergel, D. N., et al. 2007, ApJS, 170, 377
Strominger, A., & Vafa, C. 1996, Phys. Lett. B, 379, 99
Susskind, L. 1995, J. Math. Phys., 36, 6377
’t Hooft, G. 1993, arXiv:gr-qc/9310026
Weisberg, J. M., & Taylor, J. H. 2005, in ASP Conf. Ser. 328, Binary Radio

Pulsars, ed. F. A. Rasio & I. H. Stairs (San Francisco, CA: ASP), 25

http://dx.doi.org/10.1103/PhysRevLett.100.221803
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvL.100v1803A
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvL.100v1803A
http://dx.doi.org/10.1103/RevModPhys.69.337
http://adsabs.harvard.edu/cgi-bin/bib_query?1997RvMP...69..337A
http://adsabs.harvard.edu/cgi-bin/bib_query?1997RvMP...69..337A
http://dx.doi.org/10.1103/PhysRevLett.101.131802
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvL.101m1802A
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvL.101m1802A
http://dx.doi.org/10.1086/340767
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...573..749B
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...573..749B
http://adsabs.harvard.edu/cgi-bin/bib_query?1990QJRAS..31..359B
http://adsabs.harvard.edu/cgi-bin/bib_query?1990QJRAS..31..359B
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://adsabs.harvard.edu/cgi-bin/bib_query?1973PhRvD...7.2333B
http://adsabs.harvard.edu/cgi-bin/bib_query?1973PhRvD...7.2333B
http://dx.doi.org/10.1103/PhysRevD.9.3292
http://adsabs.harvard.edu/cgi-bin/bib_query?1974PhRvD...9.3292B
http://adsabs.harvard.edu/cgi-bin/bib_query?1974PhRvD...9.3292B
http://dx.doi.org/10.1103/PhysRevD.76.043513
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvD..76d3513B
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvD..76d3513B
http://dx.doi.org/10.1086/305343
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...496..505C
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...496..505C
http://dx.doi.org/10.1103/PhysRevD.68.027702
http://adsabs.harvard.edu/cgi-bin/bib_query?2003PhRvD..68b7702C
http://adsabs.harvard.edu/cgi-bin/bib_query?2003PhRvD..68b7702C
http://adsabs.harvard.edu/cgi-bin/bib_query?2003CQGra..20.2753D
http://adsabs.harvard.edu/cgi-bin/bib_query?2003CQGra..20.2753D
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ASPC..362..269E
http://www.arxiv.org/abs/0904.2934
http://dx.doi.org/10.1088/1475-7516/2009/10/016
http://adsabs.harvard.edu/cgi-bin/bib_query?2009CQGra..26n5005F
http://adsabs.harvard.edu/cgi-bin/bib_query?2009CQGra..26n5005F
http://dx.doi.org/10.1088/1475-7516/2008/06/008
http://adsabs.harvard.edu/cgi-bin/bib_query?2008JCAP...06..008F
http://adsabs.harvard.edu/cgi-bin/bib_query?2008JCAP...06..008F
http://dx.doi.org/10.1126/science.217.4560.593
http://adsabs.harvard.edu/cgi-bin/bib_query?1982Sci...217..593F
http://adsabs.harvard.edu/cgi-bin/bib_query?1982Sci...217..593F
http://dx.doi.org/10.1086/321359
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...554..548F
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...554..548F
http://dx.doi.org/10.1086/425155
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...616..643F
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...616..643F
http://dx.doi.org/10.1103/PhysRevD.15.2738
http://adsabs.harvard.edu/cgi-bin/bib_query?1977PhRvD..15.2738G
http://adsabs.harvard.edu/cgi-bin/bib_query?1977PhRvD..15.2738G
http://dx.doi.org/10.1086/306469
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...509...11G
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...509...11G
http://dx.doi.org/10.1111/j.1365-2966.2007.11770.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.378..198G
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.378..198G
http://dx.doi.org/10.1103/PhysRevD.23.347
http://adsabs.harvard.edu/cgi-bin/bib_query?1981PhRvD..23..347G
http://adsabs.harvard.edu/cgi-bin/bib_query?1981PhRvD..23..347G
http://dx.doi.org/10.1103/PhysRevD.13.191
http://adsabs.harvard.edu/cgi-bin/bib_query?1976PhRvD..13..191H
http://adsabs.harvard.edu/cgi-bin/bib_query?1976PhRvD..13..191H
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ASPC..332..339H
http://dx.doi.org/10.1086/181708
http://adsabs.harvard.edu/cgi-bin/bib_query?1975ApJ...195L..51H
http://adsabs.harvard.edu/cgi-bin/bib_query?1975ApJ...195L..51H
http://dx.doi.org/10.1038/294521a0
http://adsabs.harvard.edu/cgi-bin/bib_query?1981Natur.294..521K
http://adsabs.harvard.edu/cgi-bin/bib_query?1981Natur.294..521K
http://adsabs.harvard.edu/cgi-bin/bib_query?1990eaun.book.....K
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://adsabs.harvard.edu/cgi-bin/bib_query?1982PhLB..108..389L
http://adsabs.harvard.edu/cgi-bin/bib_query?1982PhLB..108..389L
http://dx.doi.org/10.1016/j.plrev.2008.08.002
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhLRv...5..225L
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhLRv...5..225L
http://adsabs.harvard.edu/cgi-bin/bib_query?1967MNRAS.136..101L
http://adsabs.harvard.edu/cgi-bin/bib_query?1967MNRAS.136..101L
http://dx.doi.org/10.1086/306805
http://adsabs.harvard.edu/cgi-bin/bib_query?1999ApJ...512..511M
http://adsabs.harvard.edu/cgi-bin/bib_query?1999ApJ...512..511M
http://dx.doi.org/10.1086/173574
http://adsabs.harvard.edu/cgi-bin/bib_query?1994ApJ...420..439M
http://adsabs.harvard.edu/cgi-bin/bib_query?1994ApJ...420..439M
http://dx.doi.org/10.1088/1475-7516/2006/10/014
http://adsabs.harvard.edu/cgi-bin/bib_query?2006JCAP...10..014S
http://adsabs.harvard.edu/cgi-bin/bib_query?2006JCAP...10..014S
http://dx.doi.org/10.1086/513700
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJS..170..377S
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJS..170..377S
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://adsabs.harvard.edu/cgi-bin/bib_query?1996PhLB..379...99S
http://adsabs.harvard.edu/cgi-bin/bib_query?1996PhLB..379...99S
http://dx.doi.org/10.1063/1.531249
http://adsabs.harvard.edu/cgi-bin/bib_query?1995JMP....36.6377S
http://adsabs.harvard.edu/cgi-bin/bib_query?1995JMP....36.6377S
http://www.arxiv.org/abs/gr-qc/9310026
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ASPC..328...25W
http://dx.doi.org/10.1088/0264-9381/20/13/322
http://dx.doi.org/10.1088/0264-9381/20/13/322
http://dx.doi.org/10.1088/0264-9381/26/14/145005
http://dx.doi.org/10.1088/0264-9381/26/14/145005

	1. INTRODUCTION
	1.1. Two Schemes for Quantifying the Increasing Entropy of the Universe
	1.2. Entropy and Gravity

	2. THE PRESENT ENTROPY OF THE OBSERVABLE UNIVERSE
	2.1. Baryons
	2.2. Photons
	2.3. Relic Neutrinos
	2.4. Relic Gravitons
	2.5. Dark Matter
	2.6. Stellar Black Holes
	2.7. Supermassive Black Holes

	3. THE ENTROPY OF THE COSMIC EVENT HORIZON AND ITS INTERIOR
	4. DISCUSSION
	APPENDIX THE OBSERVABLE UNIVERSE AND THE COSMIC EVENT HORIZON
	REFERENCES

