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Abstract
The generalized second law of thermodynamics states that entropy always
increases when all event horizons are attributed with an entropy proportional
to their area. We test the generalized second law by investigating the change
in entropy when dust, radiation and black holes cross a cosmological event
horizon. We generalize for flat, open and closed Friedmann–Robertson–Walker
universes by using numerical calculations to determine the cosmological
horizon evolution. In most cases, the loss of entropy from within the
cosmological horizon is more than balanced by an increase in cosmological
event horizon entropy, maintaining the validity of the generalized second law
of thermodynamics. However, an intriguing set of open universe models
shows an apparent entropy decrease when black holes disappear over the
cosmological event horizon. We anticipate that this apparent violation of the
generalized second law will disappear when solutions are available for black
holes embedded in arbitrary backgrounds.

PACS numbers: 04.70.Dy, 98.80.Jk, 02.60.Jh, 04.20.Cv

1. Introduction

A significant advance in physical theory was made by Bekenstein with the suggestion
(Bekenstein 1973) that the area of the event horizon of a black hole is a measure of its
entropy. This hinted at a deep link between information, gravitation and quantum mechanics
that remains tantalizingly unresolved today. Bekenstein’s claim was bolstered by Hawking’s
application of quantum field theory to black holes (Hawking 1975), from which he deduced
that these objects emit thermal radiation with a characteristic temperature,

Tb = 1

8πmb
, (1)

for a Schwarzschild hole, where mb is the mass of the black hole, and we use units
G = h̄ = c = k = 1. Hawking’s calculation enabled the entropy of a black hole Sb to
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be determined precisely as,

Sb = 16πm2
b, (2)

= Ab

4
, (3)

where Ab is the event horizon area. Equation (3) also applies to spinning and charged black
holes. It was then possible to formulate a generalized second law of thermodynamics (GSL),

Ṡenv + Ṡb � 0, (4)

where Senv is the entropy of the environment exterior to the black hole and an overdot represents
differentiation with respect to proper time, t. Thus when a black hole evaporates by Hawking
radiation its horizon area shrinks, its entropy decreases, but the environment gains at least as
much entropy from the emitted heat radiation (Hawking 1975). Conversely, if a black hole is
immersed in heat radiation at a higher temperature, radiation will flow into the black hole and
be lost. The corresponding entropy reduction in the environment is offset by the fact that the
black hole gains mass and increases in area and entropy.

Gibbons and Hawking (1977) conjectured that event horizon area, including cosmological
event horizons, might quite generally have associated entropy. A prominent example is de
Sitter space, a stationary spacetime which possesses a cosmological event horizon at a fixed
distance (3/�)1/2 from the observer, where � is the cosmological constant. It was known
(see, e.g., Birrell and Davies 1981) that a particle detector at rest in de Sitter space responds
to a de Sitter-invariant quantum vacuum state as if it were a bath of thermal radiation with
temperature,

TdeS = 1

2π�1/2
. (5)

It thus seemed plausible that the GSL could be extended to de Sitter space. Subsequent
work by Davies (1984) and Davies et al (1986) supported this conclusion. There were,
however, some problems. Although the de Sitter horizon has thermal properties, the stress–
energy–momentum tensor of the de Sitter vacuum state does not correspond to that of a
bath of thermal radiation (unlike for the black-hole case). Instead, it merely renormalizes
the cosmological constant. Secondly, there is no asymptotically flat external spacetime
region for de Sitter space, which precludes assigning a mass parameter to the de Sitter
horizon. This makes it hard to interpret trading in energy and entropy, as is conventional in
thermodynamic considerations, between de Sitter space and an environment. A final problem
is that in the black-hole case, Bekenstein attributed the entropy of the hole to its total hidden
information content, which is readily evaluated. For a cosmological horizon, which may
conceal a spatially infinite domain lying beyond, the total hidden entropy would seem to be ill
defined.

The foregoing concerns are amplified in the case of more general cosmological horizons
that are non-stationary and do not even have an associated well-defined temperature. Consider
the general class of Friedmann–Robertson–Walker (FRW) models with scalefactor R(t),

ds2 = −dt2 + R2(t)
[
χ2 + S2

k (χ)(dθ2 + sin2 θ dψ2)
]
, (6)

where Sk(χ) = sin χ, χ, sinh χ for closed, flat and open models, respectively. One may
define a conformal vacuum state adapted to the conformally flat geometry of these spaces, and
consider the response of a quantum particle detector (Birrell and Davies 1981, section 3.3)
to such a state. The response will generally be non-zero, but the perceived spectrum will not
be thermal. This raises the question: just how far can one extend the GSL to event horizons?
Could it apply even to non-stationary cosmological models in spite of the absence of a clear
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thermal association? And if the GSL cannot be thus extended, what are the criteria that
determine the limits of its application?

We consider these questions to be of significance to attempts to link information,
gravitation and thermodynamics, and in recent discussions about the total information content
of the universe (Lloyd 2002). They may also assist in attempts to formulate a concept of
gravitational entropy, and to clarify the status of the holographic principle (Susskind 1995,
Bousso 2002).

In this paper, we explore the range of validity of the GSL. We assume cosmological event
horizons do have entropy proportional to their area, as Gibbons and Hawking (1977) proposed.
The total entropy of a universe is then given by the entropy of the cosmological event horizon
plus the entropy of the matter and radiation it encloses. In sections 2 and 3 we assess the loss
of entropy as matter and radiation disappear over the cosmological event horizon and show
that the loss of entropy is more than balanced by the increase in the horizon area. We then
consider in section 4 the case of a FRW universe filled with a uniform non-relativistic gas of
small black holes. This enables a direct entropic comparison to be made between black-hole
and cosmological event horizon area. As the black holes stream across the cosmological
horizon, black-hole horizon area is lost, but the cosmological horizon area increases. We may
thus assess the relative entropic ‘worth’ of competing horizon areas.

2. Dust-filled universe

The simplest case to consider is the classic homogeneous, isotropic FRW universe filled
with pressureless dust. The dust in this model is assumed to be comoving. The dust is
therefore in the most ordered state possible and has zero entropy which allows us to restrict
our thermodynamic considerations to the cosmological event horizon alone.

The time dependence of the scalefactor, R(t), is given by the Friedmann equations,

ρ̇ = −3H(ρ + p), (7)

3H 2 = 8πρ + � − 3k/R2, (8)

where ρ and p are the density and pressure of the cosmological fluid, respectively, and
H = Ṙ/R is Hubble’s constant. We assume the present day Hubble constant H0 =
70 kms−1 Mpc−1 throughout. The radiation density and cosmological constant can be
normalized to �M = 8πρ0

/
3H 2

0 and �� = �
/

3H 2
0 , respectively, so that �M + �� = 1

represents flat space at the present day. The dimensionless scalefactor a(t) is defined as
a(t) = R(t)/R0 where R0 is the present day radius of curvature of the universe,

R0 = c

H0

∣∣∣∣ 1

1 − �M − ��

∣∣∣∣
1/2

. (9)

Equation (8) can then be rewritten as,

ȧ = H0[1 + �M(1/a − 1) + ��(a2 − 1)]1/2. (10)

Eternally expanding models possess event horizons if light cannot travel more than a finite
distance in an infinite time,

χc(t) =
∫ ∞

t

dt ′

a(t ′)
< ∞. (11)

Our cosmological event horizon is the distance to the most distant event we will ever see (the
distance light can travel between now and the end of time) in contrast to our particle horizon,
which is the distance to the most distant object we can currently see (the distance light has
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Figure 1. The comoving distance, proper distance, area and volume of the cosmological event
horizon are shown for three different cosmological models. The models’ matter (energy) density
and cosmological constant (�M,��) are given in the legend in the upper left panel. The
dimensionless comoving distance is not shown for the (�M,��) = (0.3, 0.7) case since R0
is undefined in this model. Note that although both the radius and volume within the cosmological
event horizon decrease for periods in the (�M,��) = (0.3, 1.4) universe, the area always
increases.

travelled since the beginning of time). The integral in equation (11) represents the comoving
distance to a comoving observer’s cosmological event horizon at time t. The proper distance
to the cosmological event horizon is then rc = R(t)χc. The area of the cosmological horizon
generalized to curved space is

Ac = 4πR2(t)S2
k (χc), (12)

which reduces to Ac = 4πr2
c in flat space. Gibbons and Hawking (1977) suggested that

the entropy of the cosmological event horizon is Ac/4, analogous to the black-hole case
(equation (3)).

Davies (1988) showed that the cosmological event horizon area of a FRW universe never
decreases, assuming the dominant energy condition holds, ρ + p � 0. This is analogous to
Hawking’s area theorem for black holes (Hawking 1972). In black holes, the dominant energy
condition is violated by quantum effects, allowing black holes to evaporate and shrink. There
is no analogous shrinking in cosmological horizon area known.

It is interesting to note that the area of the cosmological event horizon increases even
in models in which the radius of the event horizon decreases. Closed eternally expanding
universes have a decreasing event horizon radius at late times, but the effect of curvature
forces the area to increase nevertheless, e.g., (�M,��) = (0.3, 1.4) in figure 1.

3. Radiation-filled universe

To investigate the interplay of entropy exchange between the cosmological event horizon and an
environment, we consider an eternally-expanding FRW universe with a positive cosmological
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Figure 2. This is a close-up of the region near the origin of figure 1 for the (�M,��) =
(0.3, 1.4), k = +1 case, which appears to show a curious rise and fall in event horizon area at early
times. However, this is an artefact of the finite spatial size of closed FRW universes. When the
comoving distance to the event horizon exceeds π it is possible for an observer to see past the
antipode. The event horizon appears at the antipode at the finite time 1.0 Gyr in our example.

constant, filled with radiation of temperature T (t). Such a universe has an event horizon
radius that tends towards the de Sitter value, rdeS = 1/H , at late times. Most � > 0 universes
tend towards de Sitter at late times except the few that have a large enough energy density to
begin recollapse before they become cosmological constant dominated. We include constants
in this and subsequent sections to explicitly ensure environment and horizon entropy are being
compared in the same units. The entropy of the cosmological event horizon is,

Sc =
(

kc3

h̄G

)
Ac

4
. (13)

Radiation energy density obeys ρr = σT 4 (where the radiation constant σ = π2k4/15c3h̄3)
while entropy density follows sr = (4/3)ρrT

−1. This means the total entropy within an event
horizon volume, Sr = srVc, is given by,

Sr = 4

3
σ 1/4ρ3/4

r Vc. (14)

The equations for the volume of the cosmological event horizon in various FRW models
are shown in appendix A. We take p = ρr/3 for radiation in the Friedmann equations
(equations (7) and (8)). The radiation density decays as ρr = ρ0a

−4 (or T ∝ 1/a) as the
universe expands so the radiation entropy within a constant comoving volume (V ∝ a3)

remains constant. However, the radiation entropy within the cosmological horizon decreases
as the comoving volume of the event horizon decreases (χc decreases in equation (A.2)) and
radiation crosses the cosmological event horizon.
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Figure 3. This shows the radiation entropy Sr compared to the horizon entropy Sc in three
radiation-filled FRW universes. Each graph is labelled with the model, (�M,��). Only early
times are shown because that is the only time that the radiation entropy is comparable to the horizon
entropy. The radiation entropy is not constant but decreases rapidly. However, the decrease is
orders of magnitude slower than the increase in cosmological event horizon entropy, so does not
show up on this scale. Total entropy Sc + Sr never decreases so the GSL holds for these models.

The evolution of the universe is dependent on the density of radiation, so the model
universe we choose constrains the radiation density according to �r = 8πGρ0

/
3H 2

0 . (The
normalized radiation density, �r, replaces �M in Friedmann’s equation with the difference that
�r decays as a−4.) Allowing for this constraint we replace the dust of section 2 with radiation
and calculate the loss of entropy over the cosmological event horizon as the universe evolves.
Although the radiation represents much more entropy than dust, in a realistic cosmological
model this entropy is minuscule compared to that of the cosmological event horizon. At
the present day in a (�r,��) = (0.3, 0.7) radiation-dominated FRW universe the radiation
entropy would be 14 orders of magnitude smaller than the entropy of the horizon. At early
times the event horizon was tiny and the radiation was very hot—it is only at early times that
we could expect the radiation entropy to be significant enough to compete with the increase
in event horizon area. Figure 3 shows some numerical solutions typical of a wide class
of radiation-filled models. In all cases, we find that the total entropy increases with time
(Ṡr + Ṡc > 0) in conformity with our extended interpretation of the generalized second law of
thermodynamics. Davies and Davis (2002) show analytically that thermal radiation crossing
the cosmological event horizon satisfies the GSL in the limit of small departures from de Sitter
space as long as the radiation temperature is higher than the cosmological horizon temperature.
A rigorous analytical proof for the general FRW case, however, is lacking.
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4. Black-hole-de Sitter spacetimes

A way to directly compare the entropic worth of cosmological horizons and black-hole horizons
is to assess the change in entropy as black holes cross the cosmological horizon. To this end
we examine FRW universes containing a dilute pressureless gas of equal-mass black holes.
We ignore the Hawking effect which would be negligible for black holes larger than solar
mass over the timescales we address3. As the universe expands, the density of the black-hole
gas decreases (ρb ∝ a−3) and black holes disappear over the cosmological event horizon,
resulting in a decrease in the black-hole contribution to the total entropy within a horizon
volume. The area of the cosmological event horizon increases in turn4. To ascertain whether
the GSL is threatened we ask: does the cosmological event horizon area increase enough to
compensate for the loss of black-hole entropy?

We find that for realistic cosmological models the increase in cosmological horizon area
overwhelms the loss of black-hole horizon area, in clear conformity with the extended GSL.
Greater interest, then, attaches to the case where the black holes are relatively large enough
to represent a significant fraction of the total horizon area. In a realistic case this would refer
only to very early epochs, on the assumption that primordial black-hole formation had taken
place. In what follows we concentrate on the case where the ratio of black-hole horizon area
to total horizon area is large.

Davies and Davis (2002) show that black holes crossing the cosmological event horizon
maintain the GSL in the limit of small departures from de Sitter space as long as rb � rc (the
black holes are smaller than the cosmological event horizon). Here we summarize numerical
investigations that extend this work to general cosmological models.

The area of the cosmological event horizon is easy to calculate in arbitrary (eternally
expanding) FRW universes, as shown in section 2. Not so the event horizon area of black
holes because the solutions require us to deal with an overdensity in an homogeneous, time-
dependent background. The Schwarzschild metric applies for a black hole embedded in
empty space and the relationship between black-hole mass and event horizon radius, rb, is
mb = rbc

2/2G. The Schwarzschild-de Sitter solution applies for a black hole embedded in
a de Sitter universe (a universe with zero mass density and a constant positive cosmological
constant, �). This solution should therefore be a better approximation than pure Schwarzschild
at late times in a FRW universe with � > 0. The mass of a black hole in such a space is
(Gibbons and Hawking 1977),

mb = rbc
2

2G

(
1 − �r2

b

3c2

)
. (15)

There are two positive real solutions for rb. The outer is identified with the cosmological event
horizon radius, rc. We approximate a black hole embedded in an arbitrary FRW universe using
the Schwarzschild-de Sitter solution. At early times black holes would have a smaller horizon
area than this approximation due to the presence of other black holes within the cosmological
horizon.

We have the freedom to choose the mass of our black holes arbitrarily. The number
density of black holes is then constrained by the need to remain consistent with the matter

3 Black-hole evaporation time ∼(m/msolar)
3 × 1066 yr.

4 Cause and effect become confused when we try to assess cosmological event horizons in an analogous way to
black holes. The normal language used for cosmological event horizons would be to say that the matter density and
cosmological constant of the universe determine the rate of expansion of the universe and thus determine the increase
in distance to the event horizon. Alternatively, we can state that the loss of matter (energy) over the cosmological
horizon results in the increase in distance to the event horizon.
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density of the universe. Recall, the normalized matter density of the universe, �M, is related
to the density by

ρ0 = 3H 2
0 �M

8πG
. (16)

We assume that the black holes are the only contribution to the matter density of the universe,
ρ0 = ρb0 . Let nb0 be the current number density of black holes. Then,

ρb0 = mb nb0, (17)

nb0 = 3H 2
0 �M

8πGmb
. (18)

The black-hole number density drops as nb = nb0a
−3 as the universe expands. The surface

area of a single black hole’s event horizon will depend to some extent on the spacetime
geometry of the cosmological model. For a wide range of values of the ratio rb/R, the
resulting corrections to the black-hole horizon area are negligible. But for very large black
holes or very early epochs these corrections may be significant. A full treatment of black-hole
solutions in time-dependent cosmological backgrounds is beyond the scope of this paper. As
a first approximation, however, we may correct for the spacetime curvature of the embedding
space by introducing the factor Sk such that

Ab = 4πR2(t)S2
k (rb/R), (19)

(cf equation (12)). This factor is chosen to make the areas of the black hole and cosmological
horizons the same when rb = rc. Thus the total surface area of all the black-hole event
horizons, Ab,tot, is given from equations (15)–(19) and (A.2) by,

Ab,tot = Ab nbVc. (20)

We use numerical calculations to find the comoving distance to the cosmological event horizon
from which we can calculate both Ac (equation (12)) and Vc (equation (A.2)), in turn allowing
us to use equation (20) for Ab,tot.

The de Sitter horizon at rdeS = √
3/� is the horizon that would exist if the matter density

were zero in each model. As such it is the asymptotic limit in time of the cosmological event
horizon. We express the results of the numerical calculations in terms of the radius and area
of the de Sitter horizon. The results of these numerical calculations are shown in figure 4.
Black-hole event horizon area, cosmological event horizon area and the total horizon area are
plotted against time for a variety of models.

Treating the problem as stated so far we find significant departures from the GSL at early
times in all models and at late times for large black holes. However, we believe these departures
are an artefact of the approximations we have used. Firstly, by treating the black holes as dilute
dust (and as solid spheres) we have neglected interactions between them. At very early times,
the black holes in the simulation are so densely packed that they overlap, which is clearly
unphysical (see appendix B). Secondly, we have assumed that the disappearance of a black
hole across the cosmological horizon is instantaneous, but for black holes of size comparable
to the cosmological horizon this is unrealistic. A proper GR treatment of the merging of
horizons, which will involve significant departures from homogeneity and isotropy, is beyond
the scope of this paper. However, as a first approximation to compensating for this effect, we
use a simple geometric argument (see appendix B). Taking both the above considerations into
account removes almost all the departures from the GSL.

A third approximation, which we have used but cannot correct for, is the assumption that
the Schwarzschild-de Sitter solution for the black-hole radius holds. This neglects the presence
of matter density outside the black hole. This approximation is therefore suspect at early times
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Figure 4. The evolution of total horizon area is shown as a function of time for three FRW models
filled with a pressureless gas of black holes. The upper row has rb = 0.1rdeS while the lower row
has rb = 0.01rdeS. The vertical axis has been scaled to the de Sitter horizon area, AdeS, in each
model. The dotted line shows the total area of black-hole horizons within the cosmological event
horizon. The dashed line shows the area of the cosmological event horizon. The thick solid line
shows the sum of the black hole and cosmological horizon areas. The thin, solid vertical lines mark
turning points in the total horizon area curve. Corrections have been made for the three assumptions
listed in section 4. The grey shading indicates the region that should be neglected because black
holes overlap. The black-hole contribution to area starts from zero and peaks because black holes
initially have a radius larger than the cosmological horizon radius and so are excluded from the
area calculation by equation (B.2). Here the areas of black holes have been calculated assuming
they were in the geometry of the type of universe they are embedded in (using equation (19)). The
results are qualitatively unchanged when Ab = 4πr2

b is used.

in FRW universes while the universe is dominated by matter rather than dark energy (�). An
example of a GSL violation which we attribute to the breakdown of the Schwarzschild-de
Sitter assumption is shown in figure 5 for the spatially open (k = −1) model where departures
from the GSL are indicated at early times.

The Schwarzschild-de Sitter approximation also breaks down when the radius of the black
hole is comparable to the radius of the cosmological event horizon. This is because the effect
of the embedding spacetime on the mass–radius relationship of a black hole becomes larger
for larger black holes (see the term in brackets in equation (15)). An example is shown in
the spatially closed (k = +1) model illustrated in figure 6, where departures from GSL are
indicated at late times.

A more accurate resolution of these departures from the GSL awaits the derivation of
horizon solutions for black holes embedded in arbitrary FRW spacetimes. An indication
of the magnitude of the effect of different embeddings can be gained by comparing the
Schwarzschild-de Sitter solution to the Schwarzschild solution. For a particular black-hole
radius, the difference in mass for the two embeddings is 	mb/mb = (

mdeS
b − mSch

b

)/
mSch

b =
−�r2

b

/
3c2. That means that for H0 = 70 kms−1 Mpc−1 and �� = 0.7, the difference

between the two solutions is less than 	mb/mb = 0.01 as long as black holes are smaller
than 1.7 billion light years across (the de Sitter horizon for a universe with �� = 0.7 sits at
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Figure 5. An example in which the assumption of the Schwarzschild-de Sitter solution for black-
hole area breaks down because of the presence of matter density outside the black holes. The GSL
appears to be violated by the entropy decrease at early times even for small black holes.

Figure 6. A model universe filled with large black holes for which the assumption of the
Schwarzschild-de Sitter solution breaks down. The GSL appears to be violated by the entropy
decrease at late times.

rdeS = √
3/� = 16.7 Glyr so 1.7 Gyr represents rb = 0.10rdeS, cf figure 4). Therefore, to

minimize the effect of the embedding spacetime on the radius of a black hole, we simply need
to use ‘small’ black holes (a ‘small’ black hole of 0.17 Glyr radius is still on the order of 1021

solar masses).
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The only GSL violation that does not disappear when black holes are restricted to small
sizes is the early time entropy decrease that occurs in open universes because of the breakdown
of the Schwarzschild-de Sitter solution in this regime. We emphasize that any other apparent
departures from GSL are manifested only in the extreme cases where the size of the black holes
approaches the size of the observable universe. In a realistic cosmological model, the largest
black holes formed by merger will still be orders of magnitude smaller than the cosmological
horizon. In those cosmological models that permit primordial black-hole formation from
density perturbations, the size of the holes is still generally much less that the cosmological
horizon size at the epoch of formation.

5. Conclusions

We define total entropy to be the entropy of a cosmological event horizon plus the entropy
within it. Davies (1988) showed that the entropy of the cosmological event horizon in FRW
universes, subject to the dominant energy condition, never decreases. We examined radiation-
filled FRW universes and showed that total entropy never decreases for a wide range of models
by testing the parameter space using numerical calculations. We then assessed the entropy
lost as black holes disappeared over the cosmological event horizon. The lack of a black-
hole solution for arbitrary spacetime embeddings restricts the application of this technique.
Limiting the size of the black holes to those small enough that the difference in embedding in
empty space compared to de Sitter space is less than 0.1% allowed us to show that no GSL
violation occurs in any of the closed or flat models tested, but an apparent violation occurs at
early times in open FRW universes, probably due to the breakdown of the Schwarzschild-de
Sitter assumption in the presence of matter density outside a black hole. Further progress
in resolving this matter will require more realistic approximations of black-hole solutions in
cosmological backgrounds. An associated issue that needs to be addressed is what constitutes
the appropriate surface that characterizes horizon entropy when black holes are situated in a
time-dependent background.
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Appendix A. Volume within a cosmological event horizon

The volume within a cosmological event horizon is given by

Vc = 4πR3
∫ χc

0
S2

k (χ) dχ (A.1)

=



2πR3(χc − sin χc cos χc) closed,
4
3πR3χ3

c flat,
2πR3(−χc + sinh χc cosh χc) open.

(A.2)
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Appendix B. Geometric considerations

We rule out the times when black holes are so close that they overlap as being unphysical.
The separation between black holes is given by n

−1/3
b . So we rule out any regions for which

2rb � n
−1/3
b . (B.1)

The unphysical region defined by equation (B.1) is shaded grey in figures 4–6.
By considering a black hole to have crossed the cosmological horizon when its centre

passes over it we calculate too much black-hole horizon area (averaged over all black holes)
to be inside the cosmological horizon. To fix this, we need to calculate the point at which
exactly half the black-hole horizon is outside the cosmological horizon. This occurs when the
black hole’s diameter makes a secant to the cosmological horizon.

rc

black
hole

black
hole

cosmological
event horizon

rc − δ δ

rc rb

Therefore, we should consider black holes to have left the horizon when they are a distance
δ from the horizon where δ is the length of the perpendicular bisector of the secant between the
secant and the perimeter of the event horizon. That is, when we calculate Vc in equation (20)
we should use the radius rc − δ,

rc − δ =
√

r2
c − r2

b . (B.2)

This corrected calculation is shown in figure 4.
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