
Chapter 22
The Entropy of the Universe
and the Maximum Entropy Production
Principle

Charles H. Lineweaver

Abstract If the universe had been born in a high entropy, equilibrium state, there
would be no stars, no planets and no life. Thus, the initial low entropy of the universe
is the fundamental reason why we are here. However, we have a poor understanding
of why the initial entropy was low and of the relationship between gravity and
entropy. We are also struggling with how to meaningfully define the maximum
entropy of the universe. This is important because the entropy gap between the
maximum entropy of the universe and the actual entropy of the universe is a measure
of the free energy left in the universe to drive all processes. I review these entropic
issues and the entropy budget of the universe. I argue that the low initial entropy of
the universe could be the result of the inflationary origin of matter from unclumpable
false vacuum energy. The entropy of massive black holes dominates the entropy
budget of the universe. The entropy of a black hole is proportional to the square of its
mass. Therefore, determining whether the Maximum Entropy Production Principle
(MaxEP) applies to the entropy of the universe is equivalent to determining whether
the accretion disks around black holes are maximally efficient at dumping mass onto
the central black hole. In an attempt to make this question more precise, I review the
magnetic angular momentum transport mechanisms of accretion disks that are
responsible for increasing the masses of black holes

22.1 The Entropy of the Observable Universe

Stars are shining, supernovae are exploding, black holes are forming, winds on
planetary surfaces are blowing dust around, and hot things like coffee mugs are
cooling down. Thus, the entropy of the universe Suni, is increasing, and has been
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increasing since the hot big bang 13.8 billion years ago [1]. The universe obeys the
second law of thermodynamics:

dSuni� 0: ð22:1Þ

In the entropy literature there is often confusion about both the boundary of
‘‘the system’’ and the distinction between the rate of increase of the entropy of the
system dS/dt, and the rate entropy is produced by the system r [2]. For example, in
the Earth system, many processes are producing entropy (therefore, naively, the
entropy of the Earth should be increasing), but the entropy produced is being
exported into the interstellar radiation field (therefore the entropy of the Earth
could be constant). Assuming a steady state for the Earth means that the amount of
entropy exported is equal to the amount of entropy produced, thus dS/dt = 0 but,
r[ 0 [3]. Such an entropy-producing steady state can only happen when the
system, or control volume, is different from (e.g. hotter than) the environment.
This difference allows the system to export the entropy it produces, to the
environment.

The entropy of the universe is more simple to deal with because the boundaries
of the system are not an issue. We have much evidence that the universe is
homogeneous on scales above *100 million light years [4]. This homogeneity
makes the distinction between a very large control volume (100 million light
years)3 and its environment, meaningless. Volumes of the universe that are at least
that big are essentially identical. That is, they are so large that their average
density of black holes, supernovae, stars and planets, accurately represents the
average density of these objects everywhere in the universe. Thus, the amount of
entropy being produced by these structures in any large control volume, is the
same as the entropy being produced in the neighbouring control volumes. Thus, in
cosmology we can ignore the system boundary problem. Without an environment
into which to dump entropy, we have,

dSuni=dt ¼ runi [ 0: ð22:2Þ

Thus, we can ignore the distinction between dSuni/dt and runi. We can consider
a representative sample volume of the universe (say the current observable uni-
verse) without worrying about the net import or net export of heat or mass or
entropy across any boundary, because there is no net import or export. For smaller,
unrepresentative volumes of the universe, V \ (million light years)3, this sim-
plicity does not exist because there can be local inhomogeneities: an over-density
of matter such as a galaxy cluster or a giant wall of galaxies, or an under-density of
matter such as a cosmic void. In our analysis of cosmic entropy [5] the control
volume is the observable universe—the sphere around us with a radius equal to the
distance light has traveled since the big bang.
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22.1.1 Expansion of the Universe is Isentropic

Since 1929, we have known that the universe is expanding. This expansion is
isentropic [1, 6]. That is, the entropy of relativistic particles such as photons,
gravitons and neutrinos does not increase or decrease with the expansion. This is
because the entropy of a gas of relativistic particles is proportional to the number
of particles N, which does not change as the universe expands. If we follow the
entropy of a comoving volume of the universe, forward or backward in time, the
number of photons in that volume does not change.

Another way to understand that the expansion of the universe is isentropic is to
use the fact that the entropy density s of photons (or any relativistic particle) is
proportional to the temperature cubed: s * T3. Also, the temperature of relativ-
istic particles is inversely proportional to the size of the universe (represented by
the scale factor a): T * 1/a (the particles lose energy since their wavelengths
expand with the universe, k * a). Also, the volume under consideration is pro-
portional to the cube of the size of the universe: V * a3. Combining these facts
lets us derive that the entropy S of the photons in any volume expanding with the
expansion of the universe, is S = sV * a-3a3 = constant. In addition, the
expansion of the universe does not increase the rate at which mass accretes into
black holes. Thus, expansion does not increase the entropy of the universe. The
adiabatic expansion of an ideal gas into empty space is irreversible and thus the
entropy, which is proportional to volume, increases. This is not the case in cos-
mology because the CMB photons are not expanding into empty space.

22.1.2 The Entropy Budget of the Universe

The entropy of a black hole of mass MBH is proportional to the square of the mass
[7–9]:

SBH ¼ k 4pG=c⁄ð Þ M2
BH ð22:3Þ

where k is Boltzmann’s constant, G is Newton’s constant, c is the speed of light
and ⁄ is Planck’s constant divided by 2p. To obtain the entropy of black holes in
the universe, we multiplied Eq. (22.3) by the mass function of black holes and then
integrated over mass and volume [5]. The result is: SBHs * 3.1 9 10104 k. The
MBH

2 -weighted black hole mass function peaks in the range *109 * 1010 solar
masses. Therefore, such supermassive black holes at the cores of the most massive
elliptical galaxies (which are in the central regions of the most massive clusters of
galaxies), are the source of most of the entropy in the universe (Fig. 22.1).

The entropy density of non-relativistic particles can be computed from the
Sakur-Tetrode equation [10] which gives the entropy per baryon, which we then
multiplied by the density of baryons. The second largest contribution to the
entropy comes from the photons of the cosmic microwave background and a close
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third is from cosmic neutrinos. Both of these are a quadrillion (=1015) times
smaller than the entropic contribution from black holes. An important distinction
to make is between the entropy content of various components of the universe
(Table 22.1) and entropy production. The dominant sources of entropy production
are the accretion disks around black holes (Sect. 22.3).

22.2 The Entropy Gap and the Initial Entropy
of the Universe

The early universe was close to thermal equilibrium. Direct evidence for this
comes from the high level of isotropy of the temperature maps of the cosmic
microwave background (CMB) [11, 12]. CMB photons give us a direct view of the
universe as it was *380,000 years after the big bang when the entire universe had
a temperature of *3,000 K. Tiny temperature fluctuations in the CMB maps have
a DT/T * 10-5. That is, the anisotropies seen in the maps (hot spots and cold
spots) are deviations of amplitude DT * 30 lK around the current average tem-
perature T = 3 K. If CMB photons were its only component, the universe would

Fig. 22.1 M87 is the closest giant elliptical galaxy at the core of the Virgo Cluster of galaxies, of
which our galaxy is an outlying member. The black hole at the center of M87 has a mass
*7 9 109 MSun. Black holes of this mass are called supermassive black holes and dominate the
entropy budget of the universe. The central black hole is larger than the radius of Pluto’s orbit.
The accretion disk which feeds the central black hole is *0.4 light years in diameter and is
rotating at velocities of up to *1,000 km/s. The accretion rate onto the black hole is 0.1 MSun/
year. Magnetic fields in the accretion disk collimate the ejected material forming the prominent
relativistic jet coming out of the black hole in the upper left of the image. Image Hubble Space
Telescope/STScI/AURA
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have started out in equilibrium, at maximum entropy (DS = 0) and would have
stayed there. Nothing would have happened and no life would be possible. Such a
universe is unobservable by life forms of any kind. The second law of thermo-
dynamics (Eq. 22.1) tells us that as long as life or any other irreversible dissipative
process exists in the universe, the entropy of the universe Suni will increase. Thus
the entropy of the very early universe had to have some initially low value Sinitial,
where ‘‘low’’ means low enough compared to the maximum possible entropy Smax

so that the entropy gap DS (=Smax - Suni(t)) was large and could produce and
support irreversible processes, such as stars and life forms [1] (Fig. 22.2).

Trying to understand the low initial entropy of the universe is an important
unresolved issue of cosmology [13–16]. Figure 22.3 summarizes a few hypothe-
ses. The ‘‘uniform’’ distribution in Fig. 22.3 is just a toy model without physical
justification. However, physically plausible arguments can be made for both the
‘‘Penrose’’ and the ‘‘smooth energy dump’’ distributions. In standard

Table 22.1 Entropy [k] of the various components of the observable universe

Black holes SBHs * 3.1 9 10104

Cosmic microwave background photons Sphotons * 5.4 9 1089

Cosmic neutrinos Sneutrinos * 5.2 9 1089

Dark matter SDM * 2 9 1088

Cosmic graviton background Sgravitons * 6.2 9 1087

Interstellar medium and intergalactic medium SISMIGM * 7.1 9 1081

Stars Sstars * 9.5 9 1080
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Fig. 22.2 The Entropy of the Universe as a Function of Time. Suni(t) monotonically increases.
We define Smax as a constant equal to the largest entropy that the universe will ever have,
Suni(t ? ?) = Smax. We define the entropy gap as DS(t) = Smax - Suni(t). When DS = 0, the
universe reaches an equilibrium heat death [13]. The low initial entropy of the universe is due to
the low gravitational entropy [1, 14, 16], which, one day, should be parametrized by the large
scale structure normalization A (a parameter used by cosmologists to quantify the initial
clumping of matter). If the universe were born with a high entropy, we would have
Sinitial * Smax, and DS * 0, and a lifeless universe. Figure from [1]
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thermodynamics there are many more ways to be at high entropy than at low
entropy. Motivated by this idea and applying it to the early universe, Penrose
makes the assumption that there are many more ways for the universe to have had
high initial entropy than low initial entropy. Thus he refers to ‘‘our extraordinarily
special big bang’’ ([14], p 726, Chap 27 and Fig. 27.4) because contrary to his
assumption and expectation, our universe started out at low entropy.

If there are many more ways to be at Smax (in the absence of other constraints)
Penrose would be correct that it is much more likely that the universe should have
been born at or near maximum entropy (and our expectations should be that
Sinitial * Smax). However, at the beginning, did the universe have access to all
those ways? Or were there constraints associated with the origin of matter that
restrict the universe to having a smooth matter distribution and therefore low
gravitational entropy?

It is possible that there were physical constraints associated with the physics of
inflation. Inflation starts from an initially smooth distribution of false vacuum
energy (quantum fluctuations of false vacuum, this can also be understood as a
higher zero-point energy than the current zero-point energy of the vacuum state of
the universe). See [15]. Part of the definition of vacuum energy is that it does not,
and cannot clump. This false vacuum energy is homogeneously distributed (sub-
ject to quantum fluctuations). When the false vacuum decays during reheating
creating all the energy and matter in the universe, it may only be possible for this
to happen as a smooth energy dump, resulting in a universe with a relatively

Fig. 22.3 Three conflicting expectations about the origin of the initial entropy of the universe.
P(Sinitial) is the probability distribution from which the initial entropy of our universe Sinitial (or of
other universes) could have been drawn. One could imagine a uniform distribution in which all
values between Smin and Smax are equally likely (horizontal line). Penrose’s idea ([14], Chap. 27)
is that there are many more ways to have high initial entropy than low initial entropy. In
inflationary models, a ‘‘smooth energy dump’’ of the non-clumpable false vacuum energy
constrains the resulting matter to a smooth homogeneous distribution with low gravitational
entropy [15]

420 C. H. Lineweaver



smooth distribution of matter (and therefore low initial gravitational entropy).
Thus inflation provides a natural initial condition that could explain why the initial
entropy of our universe (Sinitial in Fig. 22.2) is so low. Homogeneously distributed
matter (i.e. with low gravitational entropy) could well be an initial constraint
(boundary condition) associated with the origin of matter from false vacuum
energy.

The low gravitational entropy of the homogeneously distributed matter is what
gives the universe its low initial entropy [1, 16]. Penrose ([14], p 706) explains:

A uniformly spread system of gravitating bodies would represent relatively low entropy
(unless the velocities of the bodies are enormously high and/or the bodies are very small
and/or greatly spread out, so that the gravitational contributions become insignificant),
whereas high entropy is achieved when the gravitating bodies clump together.

For an elaboration of this view see [17–19].

22.2.1 Anthropic Reasoning Cannot Rescue Penrose’s
Model

In Penrose’s model, if the initial entropy is too close to Smax, the entropy gap
DS will not be large enough to produce stars and life. Thus, in Penrose’s model, an
anthropic argument (in the context of a multiverse scenario in which the proba-
bility distribution of Sinitial, P(Sinitial) is exhaustively sampled) has to be invoked to
explain why Sinitial � Smax [20]. That is, although universes with Sinitial * Smax

greatly outnumber universes with low initial entropy, life (and observers like us)
are only possible in universes with low initial entropy.

Sagan [21] has poetically described the low entropy requirements for life: ‘‘If
you wish to make an apple pie from scratch, you must first invent the universe.’’
However, the entire universe did not have to be at low entropy in order for our part
of the universe to have low entropy. Feynman [22] discussed the idea of whether
our low entropy part of the universe could be a low entropy fluctuation, i.e. a low
entropy sub-set of a larger universe that is much closer to maximum entropy:

[F]rom the prediction that the world is a fluctuation, all of the predictions are that if we
look at a part of the world we have never seen before, we will find it mixed up, and not like
the piece we just looked at. If our order were due to a fluctuation, we would not expect
order anywhere but where we have just noticed it…Every day [astronomers] turn their
telescopes to other stars, and the new stars are doing the same thing as the other stars. We
therefore conclude that the universe is not a fluctuation, and that the order is a memory of
conditions when things started. This is not to say that we understand the logic of it. For
some reason, the universe at one time had a very low entropy for its energy content, and
since then the entropy has increased.

Feynman’s argument, based on new stars coming into view, can be made more
rigorous by basing it on the increasing particle horizon. If we are living in a rare
low entropy fluctuation that has enabled us to be here, then when we view
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previously unobserved parts of the universe (more specifically when we observe
parts of the universe that we had not been in causal contact with), we should find
them to be close to maximum entropy. The entropy fluctuation that made us should
be of minimal extent. As the size of the observable universe increases, new parts of
the universe that were out of causal contact, come into causal contact—new
regions of the universe appear over the horizon [23]. If our part of the universe
were a low entropy fluctuation, then the new parts coming over the horizon would
tend to be of higher entropy. This does not seem to be the case. The distant
universe seems to be at low gravitational entropy. Our observations that the distant
universe is in a state of low entropy is inconsistent with the expected rarity of such
low entropy states. This rarity can be quantified by the ratio of the probability of
the high entropy state (with Whi microstates) to the probability of the low entropy
state (with fewer Wlo microstates) [24]:

P Shið Þ=P Sloð Þ ¼ Whi=Wlo ¼ exp Shi � Sloð Þ=k½ � ð22:4Þ

Low entropy regions of the universe are not only rare, they are also much more
likely to fluctuate to higher entropy than to fluctuate to lower entropy. How much
more likely is given by the fluctuation theorem [25]:

PðdSi=dt ¼ rÞ=PðdSi=dt ¼ �rÞ ¼ expðrt=kÞ ð22:5Þ

which can be cosmologically interpreted as follows: If some part of the universe
(indexed by the subscript i) is not at equilibrium (Si \ Si,max), then during a
subsequent time t, this part of the universe is much more likely to increase its
entropy at a positive rate r and fluctuate toward equilibrium (Si,max) than it is to
fluctuate further from equilibrium at a rate -r. How much more likely is given by
the expression exp(rt/k).

The Feynman quote ends with an unresolved issue: ‘‘For some reason, the
universe at one time had a very low entropy for its energy content…’’ To resolve
the issue of the initial entropy of the universe, Carroll [16] has suggested that
either we just accept the initial condition without asking why, or that the big bang
is not the beginning. The first is the abandonment of scientific cosmology and the
second is a very poorly supported speculation. Penrose and Tegmark [14, 20] use
anthropic reasoning, but it seems like overkill since it should only apply to the
minimal sized local patch needed to create us. However, as mentioned earlier, the
inflationary origin of matter from unclumped false vacuum energy may produce a
low gravitational entropy universe everywhere it has produced matter. This could
be the reason for the initial low entropy of the universe.
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22.3 Maximum Entropy Production Principle
in Cosmology

22.3.1 Entropy Production Around Supermassive Blackholes

Mass spiralling around a black hole in an accretion disk, can only fall into the black
hole if there are mechanisms to remove its angular momentum and load it onto
other mass that is then ejected from the system. How efficient those mechanisms are
is the main issue. Since the largest component of the current entropy of the universe
is the entropy of supermassive black holes, their growth by accretion of mass is the
largest source of entropy in the universe. Since the entropy of a black hole is
proportional to the square of the mass, SBH * MBH

2 (Eq. 22.3), the entropy pro-
duced during the formation and growth of a black hole is dSBH/dt * MBH dMBH/dt.
Thus, dSBH/dt is a maximum when MBH dMBH/dt is a maximum. Therefore, to
evaluate the Maximum Entropy Production Principle (MaxEP), we need to ask if
the structure of accretion disks around black holes of a given mass, maximizes
dMBH/dt. Less ambitiously, we can try to use MaxEP predictions to identify new
constraints that need to be included in accretion disk models.

How can we determine whether the structure of an accretion disk arranges itself
such that dMBH/dt = (dMBH/dt)max? We need to understand the details of the
angular momentum transfer and to evaluate if, under the constraints given, the
material around a black hole arranges itself optimally to transport angular
momentum and concentrate it into a relatively small amount of mass that gets
ejected from the system.

For mass to accrete onto a black hole, the angular momentum and energy of the
mass has to be gotten rid of. Energy from accretion can easily be radiated away
through the high luminosity of the inner edge of accretion disks. So the rate
limiting step controlling mass infall is the transfer of angular momentum. The
angular momentum L, of the mass that is going to fall in, has to be transferred to
mass that will be ejected (Figs. 22.1, 22.4). Therefore, to evaluate MaxEP, we
need to ask if black hole accretion disks are structured in such a way that they are
maximally efficient at exporting angular momentum. The efficiency of an accretion
disk can be quantified by how much L it can concentrate in the smallest amount of
ejected mass.

Accretion discs are ubiquitous structures in the astrophysics of black holes (i.e.
quasars, active galactic nuclei, binary X-ray sources), star formation and even
massive planet formation. When an accretion disk around a star runs out of mass to
accrete and is no longer able to transport angular momentum, the skeleton it leaves
behind is a angular-momentum dominated disk of material, also known as a
planetary system. Jupiter and Saturn have been stranded with *85 % of the
angular momentum of our solar system.

Accretion disks are differentially rotating Keplerian disks. That is, the velocity

of material at a distance r from the central mass M is v(r) *
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðGM=rÞ
p

. Since
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velocity is not a constant but depends on radius, we have the frictional sheer of
molecular viscosity in the disk. This dissipation has been parametrized in the
earliest accretion disk models as the dimensionless parameter alpha [26]. How-
ever, ordinary molecular viscosity is not sufficient to explain the amount of angular
momentum transport needed to account for the observed accretion rate in accretion
disks [27]. Blandford and Payne [28] showed that magnetic stresses are more
efficient at transporting angular momentum as they convert centrifugal outflow
into the oft-observed collimated jets (see Figs. 22.1, 22.4).

The role of angular momentum in preventing accretion can be seen in the
effective potential (Fig. 22.4) of a mass m, with angular momentum L in the
accretion disk at a distance r from a black hole of mass MBH, located at r = 0, with
an event horizon radius (=Schwarzschild radius) rs [29]:

Veff ¼ �GMBHm=r þ L2= 2mr2
� �

1� rs=r½ � ð22:6Þ

For the mass m to sink into the potential well of the black hole, we need to
reduce the angular momentum L that m has. This reduction lowers the hill of high
angular momentum associated with the centrifugal force felt by the orbiting mass.

Fig. 22.4 Effective potential (Eq. 22.6) of material in an accretion disk for three values of
angular momentum L. The Newtonian 1/r gravitational potential is shown for comparison
(dashed line). The grey representative magnetic field line (‘‘B’’) is anchored to the partially
ionized material of the accretion disk (large black circle, also ‘‘m’’ in Eq. 22.6). Mass m is
whipping around the black hole at Keplerian velocities v(r) * r-1/2 carrying the magnetic field
line with it. Partially ionized particles above and below the accretion disk spiral around the
magnetic field lines. Since the magnetic field line is rotating, centrifugal forces accelerate and
eject these ionized particles like beads on a bullwhip. The acceleration of these particles comes at
the expense of the deceleration of the particles anchoring the field lines in the disk. Thus, the
transfer of angular momentum from material in the accretion disk to material ejected above and
below the disk, occurs through rotating magnetic field lines
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The ‘‘high L’’ curve drops down to become the ‘‘low L’’ curve. In Fig. 22.4, a
representative magnetic field line, is threaded through the large black circle (mass
‘‘m’’). As m circles around the black hole, it carries the B-field with it. Ionized
particles (represented by the small black circles) above (and below) the plane of
the accretion disk spiral around the B-field line and get accelerated out and up, like
beads on a whip. This transfers some of the angular momentum of m to the bead,
lowering the L of m. In this way, magnetic braking of m allows it to accrete onto
the central black hole [28].

The efficiency with which partially ionized material can be magnetically
whipped to high velocities and thus simultaneously loaded with angular momen-
tum is difficult to quantify because it depends on the complex profiles of ioniza-
tion, magnetic field strength, density, pressure and temperature above, below and
in the disk. It depends on an impedance matching between the magnetic braking of
material near the black hole and the magnetic acceleration of material further
away. For example, if the ionization fraction is too low, there will not be much
material to spiral around the field lines and get ejected. If the density of neutral
particles is too high in the region of acceleration, collisions with neutral particles
produces an ‘atmospheric friction’ that will slow down the acceleration (it is
difficult to crack a bullwhip underwater in order to accelerate a bead on it). The
high density impedes the transport of angular momentum. Magnetohydrodynamics
(MHD) is needed to model the system and feedback is important since magnetic
fields accelerate the spiraling particles, while at the same time, the spiraling
particles maintain the magnetic fields.

Since the amount of matter that could fall into a black hole is limited to how
much matter is nearby, the most ‘‘efficiently structured’’ accretion disks (the ones
that MaxEP would predict) are the ones that can concentrate angular momentum
into the smallest amount of mass and then eject only the smallest fraction of the
mass available. This allows a larger fraction of the mass to lose enough angular
momentum to fall into the hole and contribute to entropy production (Fig. 22.4).
One way to quantify the efficiency of L-transport in an accretion disk is to estimate
its ratio of mass accretion to mass ejection. In protostellar accretion disks (e.g.
around T-Tauri stars) this ratio is *5–10 [30]. In the accretion disks of SMBHs, it
may be comparable, but high angular resolution observations and modeling of
these systems are not good enough to say more. The efficiency cannot be infinite.
All the angular momentum cannot be concentrated in one ejected proton. The
constraints of the MHD angular momentum transfer, combined with MaxEP would
predict that there will be a maximum value to the mass accretion/mass ejection
ratio (somewhat analogous to the Carnot efficiency of a reversible heat engine).

Angular momentum is also transported magnetically within the disk. Modeling
by Balbus and Hawley [31, 32] showed that the magneto-rotational instability
(MRI) produces turbulent viscosity and accounts for additional outward angular
momentum transport [33]. The cause of MRI is the tendency of a weak magnetic
field to try to enforce corotation on displaced fluid elements. This results in excess
centrifugal force at large radii, and a deficiency of centrifugal force at smaller
radii. This drives fluid elements away from their equilibrium positions and
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produces interpenetrating fingers of high and low angular momentum fluid—
leading to angular momentum transport [31].

Can we arrange the magnetic field and all the other characteristics of an
accretion disk (in the context of the given specific environments around super-
massive black holes) to maximize dMBH/dt? Or does Nature do that by herself as
MaxEP would predict? As we obtain higher angular resolution images of a sig-
nificant sample of nearby supermassive blackholes, and as we make more accurate
and detailed computer MHD models of their mass accretion, we will get closer to
answering this question.
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