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ABSTRACT
We evaluate the extent to which newly detected exoplanetary systems containing at least four
planets adhere to a generalized Titius–Bode (TB) relation. We find that the majority of ex-
oplanet systems in our sample adhere to the TB relation to a greater extent than the Solar
system does, particularly those detected by the Kepler mission. We use a generalized TB
relation to make a list of predictions for the existence of 141 additional exoplanets in 68
multiple-exoplanet systems: 73 candidates from interpolation, 68 candidates from extrapola-
tion. We predict the existence of a low-radius (R < 2.5R⊕) exoplanet within the habitable
zone of KOI-812 and that the average number of planets in the habitable zone of a star is 1–2.
The usefulness of the TB relation and its validation as a tool for predicting planets will be
partially tested by upcoming Kepler data releases.

Key words: planets and satellites: detection – planets and satellites: dynamical evolution
and stability – planets and satellites: formation – planets and satellites: general – planet–disc
interactions – protoplanetary discs.

1 IN T RO D U C T I O N

During the last few years the number of multiple-exoplanet systems
has increased rapidly. While most multiple-exoplanet systems con-
tain two or three planets, a rapidly growing number of systems now
contain at least four planets. The architecture of these systems can
begin to be compared to our Solar system. Many exoplanet systems
appear to be much more compact and their planets more evenly
spaced than the planets of our Solar system. This paper sets out to
quantify these tendencies and place constraints on the location of
undetected planets in multiple-exoplanet systems.

The approximately even logarithmic spacing between the planets
of our Solar system motivated the Titius–Bode (TB) relation, which
played an important role in the discovery of the Asteroid Belt and
Neptune, although Neptune was not as accurately represented by
the TB relation as the other planets (Hogg 1948; Lyttleton 1960;
Brookes 1970; Nieto 1972). Uranus could have been discovered
earlier if the TB relation had been taken more seriously (Nieto
1972). Since the TB relation was a useful guide in the prediction
of undetected planets in our Solar system, it may be useful for
making predictions about the periods and positions of exoplanets in
multiple-exoplanet systems. The main goal of this paper is to test
this idea. We first examine the degree to which multiple-exoplanet
systems adhere to the TB relation. Due to limited detection sensi-
tivity, we have no reason to believe that all exoplanets in a given
system have been detected. After assessing this incompleteness in
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several ways, we find that the more complete the exoplanet system,
the more it adheres to the TB relation. If this trend is correct, the TB
relation can be profitably applied to multiplanet systems to predict
the periods, positions and upper mass or radius limits for as yet
undetected exoplanets.

The distribution and separation of planets in our Solar system
can be parametrized by a generalized (two parameter) TB relation
(Goldreich 1965; Dermott 1968b):

an = aCn, n = 0, 1, 2, 3, . . . , (1)

where an is the semimajor axis of the nth planet or satellite, a is
the best-fitting parameter associated with the semimajor axis a0 of
the first planet, and the powers of C parametrize the logarithmic
spacing. This form of the TB relation involves two free parameters
(a and C), instead of three from the original TB relation (Wurm
1787, equation A1), which was derived empirically based on our
Solar system only.

The paper is organized as follows. Section 2 discusses the physics
behind the TB relation. In Section 3, we review recent work on the
TB relation and planet predictions that have been made based on it.
In Section 4, we describe our analysis and present our main results
(predictions for exoplanet periods). We discuss the details of several
systems, caveats and compare our results with previous studies in
Section 5. We summarize our results in Section 6.

2 PH Y S I C S B E H I N D T H E T B R E L AT I O N

As proto-planetary oligarchs accrete mass through collisions within
a protoplanetary disc, they clear out the material in nearby orbits (as
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2 T. Bovaird and C. H. Lineweaver

in the IAU definition of a planet1), thereby excluding the presence of
nearby planets. Starting from a relatively smooth disc (e.g. a surface
density � ∝ r−3/2), the areas of mutual exclusion grow with time
as the system relaxes dynamically. This produces a non-random
distribution of planets in which the planet periods and positions are
roughly logarithmically spaced (at least in the case of our Solar
system, Hayes & Tremaine 1998).

A roughly logarithmic spacing between planet periods can be
roughly parametrized by the generalized TB relation. Due to the
stochastic nature of planetary scattering, planet migration, high ec-
centricities and other variables of planetary formation, it is not ob-
vious that the TB relation should even approximately fit exoplanet
systems.

From equation (1) and Kepler’s third law (Pn ∝ a3/2
n ), the gen-

eralized TB relation can be restated in terms of the periods of the
orbits,

Pn = Pαn, n = 0, 1, 2, . . . , N − 1, (2)

where Pn is the period of the nth planet or satellite, and P and
α(= C3/2) are parameters to be fit for each system.

It is well known that the period ratios of planets and satellites
in the Solar system show a preference towards near mean mo-
tion resonance (NMMRs; Roy & Ovenden 1954; Goldreich 1965;
Dermott 1968a). More recently, it has been shown that planets
in exosystems also exhibit the same preference towards NMMRs
(Fabrycky et al. 2012; Lithwick & Wu 2012; Batygin & Morbidelli
2013). From equation (2), the period ratio between adjacent orbits
is Pn + 1/Pn = α. If α is approximately constant for all n (all planet
pairs in the system), then the generalized TB relation will fit the
system well. The physical mechanisms underlying these empirical
observations are not fully understood.

For example, Jupiter and Saturn are in a 5: 2 NMMR. Approxi-
mately the same NMMR exists between Mercury and Venus, Mars
and the Asteroid Belt and the Asteroid Belt and Jupiter. The re-
maining planet pairs have period ratios of ∼1.6 (∼3: 2), ∼1.9 (∼2:
1), ∼2.9 (∼3: 1) and ∼2.0 (∼2: 1) for Venus and Earth, Earth and
Mars, Saturn and Uranus and Uranus and Neptune, respectively.
The larger the scatter around the dominant NMMR, the less well
the system adheres to the generalized TB relation. In the case of
our Solar system, the smaller the scatter of period ratios around the
dominant 5: 2 ratio, the better the fit to the generalized TB relation.

3 PR E V I O U S WO R K U S I N G T H E T B
R E L AT I O N

Hills (1970) analysed adjacent planet period ratios in 11 simulated
systems. Each system was evolved with a 1 M� host star but with
different planet mass distributions. He suggested that the TB relation
results from some NMMRs (5: 2 and 3: 2) being more stable than
others. Instability tends to exclude certain period ratios between in-
teracting planets. The stronger the interactions, the more exclusion
in period ratio space, the narrower the bunching of periods ratios,
and the better the fit to the TB relation. Laskar (2000) performed
simplified numerical simulations of 105 planetesimals distributed in
systems with different initial planetesimal surface densities �(a),
where a is the semimajor axis. A merger resulted when two plan-
etesimals underwent a close encounter and simulations continued
until no more close encounters were possible. The final location of
planets could be well fit by a TB relation when the surface density
�(a) ∝ a−3/2. This same form of � is derived for the Solar sys-

1 http://www.iau.org/static/resolutions/Resolution_GA26-5-6.pdf

tem from the Minimum Mass Solar Nebula (Weidenschilling 1977;
Hayashi 1981) and a similar form, �(a) ∝ a−1.6 has been recently
derived for a Minimum Mass Extrasolar Nebula from Kepler data
(Chiang & Laughlin 2013).

Isaacman & Sagan (1977) created model planetary systems by in-
jecting accretion nuclei into a disc of gas and dust until the dust was
depleted. They found that simulated systems adhered to the gener-
alized TB relation ‘about the same as the Solar system.’ Another
numerical approach was taken by Hayes & Tremaine (1998) where
model planetary systems were generated and subjected to simple
stability criteria. For example, systems whose adjacent planets were
separated by less than k times the sum of their Hill radii, where k
ranged from 0 to 8, were discarded. They found that the adherence
to the TB relation increases with k, i.e. as the region of semimajor
axis space open for adjacent planets is restricted, the adherence to
the TB relation increases. In period space, as the effect of mutual
exclusion increases, the NMMRs closer to 1 are excluded and this
results in a narrowing of the spread of period ratios in the system.

Poveda & Lara (2008) looked for the possibility of additional
planets in the five-planet 55 Cnc system based on the generalized
TB relation (equation 1). They predicted planets at ∼2 au and at
∼15 au but made no attempt to quantify the uncertainties of those
predictions. Lovis et al. (2011) applied the generalized TB relation
to multiple-exoplanet systems observed with the High Accuracy
Radial velocity Planet Searcher and found reasonable fits, although
they made no planet predictions. Cuntz (2011) applied the three-
parameter TB relation (equation A1) to 55 Cnc. He proposed that
should the TB relation be applicable to the system, undetected
planets may exist at semimajor axes of 0.085, 0.41, 1.50 and 2.95 au.
Additionally, a planet exterior to the outermost detected planet was
predicted to exist between 10.9 and 12.6 au. For a comparison of
the two- and three-parameter TB relations, see Section 5.5 and
Appendix A.

Chang (2008) analysed the period ratios of pairs of planets in
individual multiple-planet systems, comparing the distributions of
the Solar system and 55 Cnc to that expected from a generalized
TB relation (equation 1). Chang (2010), repeated the analysis for
31 multiple-exoplanet systems. Even without taking into account
any correction for the expected incompleteness of planet detections,
Chang (2010) tentatively concluded that the adherence of the planets
of our Solar system to a TB relation is not ‘due to chance’ and that
one cannot rule out the possibility that the TB relation can be applied
to exosystems.

By utilizing numerical N-body simulations one can estimate
the regions of semimajor axis and eccentricity space which could
host an additional planet without the system becoming dynami-
cally unstable. Although planets do not necessarily have to oc-
cupy these stable regions, Barnes & Raymond (2004) argue that
most planetary systems lie near instability, leading to the ‘packed
planetary systems’ (PPS) hypothesis (Raymond & Barnes 2005;
Raymond, Barnes & Kaib 2006; Raymond, Barnes & Gorelick
2008; Raymond et al. 2009). The PPS hypothesis suggests that
the majority of systems will be near the edge of dynamical insta-
bility. That is, undetected planets will occupy a stable region and
will tend to bring the system closer to (but not over the edge of)
instability.

The PPS hypothesis and the TB relation are not orthogonal con-
ceptions. As the spacing between planets decreases, i.e. as a sys-
tem becomes more tightly packed, a system’s adherence to the TB
relation increases (see Section 4.2). The PPS hypothesis suggests
that planets are spaced as tightly as possible without the sys-
tem becoming dynamically unstable. Since dynamical stability is

 at T
he A

ustralian N
ational U

niversity on Septem
ber 3, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://www.iau.org/static/resolutions/Resolution_GA26-5-6.pdf
http://mnras.oxfordjournals.org/


Titius-Bode relation exoplanet predictions 3

correlated with planets being evenly spaced, we may then expect
systems which adhere to the PPS hypothesis to be more likely to ad-
here to the TB relation. However, the degree to which PPS systems
adhere to the TB relation is poorly understood since PPS analyses
predominately focus on two-planet systems (Barnes & Raymond
2004; Fang & Margot 2012a).

While numerical simulations can be useful for predicting stable
regions, computing constraints typically confine direct orbit inte-
grations to two-planet systems. It becomes inefficient to integrate a
large number of systems, each containing a large number of plan-
ets. There are now many systems containing four or more planets,
and this number is growing rapidly due to the Kepler mission. The
remainder of this paper discusses our tool for analysing a large num-
ber of systems and constraining regions where we expect undetected
planets to exist based on our generalized TB relation.

4 M E T H O D A N D R E S U LT S

Here, we improve on previous TB relation investigations first by
more carefully normalizing the χ2/d.o.f. fit of the TB relation to
our Solar system and then by fitting the TB relation to exoplanet
systems which contain at least four planets (Fig. 5). We choose
this minimum number of planets as a compromise between, on the
one hand, having enough systems to analyse without suffering too
badly from small number statistics, and on the other hand, having
enough planets in each system to fit two parameters and minimize
incompleteness of the systems.

As of 2013 July 17, online exoplanet archives2 (Wright et al.
2011) contained 71 systems with at least four planets. We exclude
two of these systems, KOI-2248 and KOI-284, based on concerns
of false positives in those systems (Lissauer et al. 2011; Fabrycky
et al. 2012). We also exclude KOI-3158 due to the current lack
of reported stellar parameters. The remaining 68 systems are our
sample referred to in the remainder of this paper. Seven of the 68
systems were detected by the radial velocity method; Gl 876, mu
Ara, ups And, 55 Cnc, Gl 581, HD 40307 and HD 10180. One
system, HR 8799, was detected by direct imaging. The remaining
60 are candidate systems detected by the Kepler mission. Four of the
Kepler systems have been confirmed by radial velocity observations
(Kepler-11, Kepler-20, Kepler-33 and Kepler-62). The remaining
56 Kepler-detected systems consist of planet candidates. However,
Lissauer et al. (2012) conclude that <2 per cent of Kepler candidates
in multiple planet systems are likely to be false positives.

Since the jostling during planetary system formation is a messy
process that can include planetary scattering and migration, we
expect varying degrees of adherence to the TB relation. Previous
TB relation studies of exoplanetary systems (Poveda & Lara 2008;
Cuntz 2011) chose where to propose additional planets based on the
solution which minimizes χ2/d.o.f. If our Solar system is treated
like an exosystem, where limited detection sensitivity precludes the
detection of some planets, this method does not necessarily recover
the complete Solar system. We use the Solar system as a guide to
how well we expect exosystems to adhere to the TB relation. In log
space, the period form of the generalized TB relation (equation 2)
is given by

log Pn = log P + n log α = A + Bn, n = 0, 1, 2, . . . , N − 1,

(3)

2 NASA Exoplanet Archive (http://exoplanets.org/), Extrasolar Planets En-
cyclopaedia (http://exoplanet.eu/ compiled by Jean Schneider), Exoplanet
Orbit Database (http://exoplanets.org/)

where A and B are parameters being fit to each system. The χ2/d.o.f.
value for a system containing N planets can then be calculated by

χ2(A, B)

N − 2
= 1

N − 2

N−1∑
n=0

(
(A + Bn) − log Pn

σn

)2

, (4)

where σ n is the unknown uncertainty associated with the various
reasons that the log of the period of the nth planet does not conform
to the TB relation. The σ n are not the uncertainties in the precisions
of measurements of log Pn because the deviations of log Pn from
a good fit to the TB relation are dominated by the uncertainties in
the complicated set of variables that determine the degree to which
the NMMRs of adjacent planets bunch up around the same ratio.
This is poorly understood (Hills 1970; Hayes & Tremaine 1998). In
our analysis, we choose uniform uncertainties (σ n = σ ) and scale
σ for each system by the mean log period spacing between planets
in each system, which we refer to as the sparseness or compactness
of the system (see equation 6 and Fig. 4). N − 2 is the number of
degrees of freedom [N planets – 2 fitted parameters (A and B)].

Given the periods of the planets in an exoplanet system that
contains four planets (e.g. P0, P1, P2, P3), our strategy is to insert
a new fifth planet (or more) between two adjacent planets and then
fit the new system (e.g. P0, P1, P2, P3, P4, . . . ) to the TB relation to
see if the new χ2/d.o.f. from equation (4) is lower. The maximum
mass or radius of the inserted planet is determined by the minimum
signal-to-noise ratio (SNR) of detected planets in the same system
(Section 4.3). An example of this is shown in Fig. 1, where we
remove the Asteroid Belt and Uranus (the two Solar system objects
whose approximate periods were predicted by the TB relation before
their discovery) from the Solar system and then insert planets and
compute the χ2/d.o.f. fit to the TB relation. When the Asteroid
Belt and Uranus are included in the fit to the Solar system, the
χ2/d.o.f. decreases from ∼3.7 to ∼1.0, thus improving the fit to
the TB relation.

We do not increase the d.o.f. when we insert planets because the
new planets are inserted on the best-fitting line and do not contribute
to χ2. However, inserting planets does increase the compactness and
therefore, as shown in Fig. 4, does reduce the value of σ . In some
cases the insertion of an additional planet into a system results in
a decrease of χ2/d.o.f. which means that the new system with the
inserted planet adheres to the TB relation better than the system
without the insertion.

Of the many possible ways to insert planets, we want to identify
the way which improves the adherence to the TB relation the most.
At the same time, we want to avoid inserting too many planets,
since the lowest χ2/d.o.f. does not necessarily correspond to the
complete system (at least in the case of the Solar system). See for
example, panels c and g of Fig. 1. To quantify this, we define a
variable γ , which is a measure of the fractional amount by which
the χ2/d.o.f. improves, divided by the number of inserted planets
(i.e. the improvement in the χ2/d.o.f. per inserted planet):

γ =

(
χ2

i −χ2
f

χ2
f

)

nins
, (5)

where χ2
i and χ2

f are the χ2 values from equation (4) before and
after the insertion of nins planets. γ is calculated for each insertion
solution and the solution with the highest γ is chosen. Choosing the
highest γ recovers the actual Solar system when the input system
does not include Uranus and the Asteroid Belt (Fig. 1). This result
is sensitive to which objects are removed from the Solar system. In
the special case of an outside observer performing an ∼30 yr radial
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4 T. Bovaird and C. H. Lineweaver

Figure 1. Fitting the TB relation to the planets of our Solar system when Uranus and the Asteroid Belt are not included. This figure shows the ability of the
TB relation to predict where planets could be inserted to reconstruct the incompletely detected planetary system. We use equation (4) to compute χ2 with
d.o.f. = 7 − 2 = 5. We normalize the Solar system’s adherence to the TB relation by adjusting σ to ensure that χ2/d.o.f. = 1 when Uranus and the Asteroid
belt are included in the analysis (d.o.f. = 9 − 2 = 7). The removal of Uranus and the Asteroid Belt increases the χ2/d.o.f. from 1 to 3.7. The green and blue
lines show the best-fitting generalized TB relation (minimizing χ2/d.o.f. of equation (4)) before and after the insertion of 1 (top row), 2 (second row), 3 (third
row) and 4 (fourth row) planets. We use the maximum value of γ (equation 5) to prioritize these fits. The parameter σ has been scaled in each panel according
to the sparseness/compactness of the system (equation 6) as described in Fig. 4. This figure of the Solar system has been constructed to be as comparable as
possible to our method of predicting the periods and positions of undetected exoplanets in multiplanet exoplanetary systems. Fig. 2 shows the same method
applied to the 55 Cnc system.

velocity survey of the Solar system with a detection sensitivity
of ∼8 cm−1, Venus, Earth, Jupiter and Saturn could be detected.
Applying the above method to this system results in the prediction
of planets at the orbital periods of Mars and the Asteroid Belt. If we
allow the fit to be extended to planets interior to Venus or exterior
to Saturn, the remaining Solar system planets are also recovered.

In the more general case (removing all possible combinations of
two planets from the Solar system), the highest γ value recovers
the complete Solar system 38 per cent of the time. Similarly, when
removing all possible combinations of three planets, the complete
Solar system is recovered 29 per cent of the time.

4.1 Isolating the most complete systems

To test the adherence of exoplanetary systems to the TB relation, we
want to minimize the effects of incompleteness on the test. Thus,

we identify a more complete sample using a dynamic spacing cri-
terion. After identifying a sample of exoplanet systems or subsets
of exosystems which are likely to be more complete, we test their
adherence to the TB relation. A simple approximation of the stabil-
ity of a pair of planets is the dynamical spacing � (Gladman 1993;
Chambers, Wetherrill & Boss 1996), which is a measure of the
separation of two planets in units of their mutual Hill radius (equa-
tion B1, Appendix B). The dynamic spacing � is a function of the
planet masses and hence dependent on our radius–mass conversion
for transiting planets (R ≈ 1.35M0.38, derived from 26 R < 8 R⊕
exoplanets with mass and radius measurements).

For small eccentricities and small mutual inclinations, Chambers
et al. (1996) found the stability of simulated systems increased
exponentially with �. A disrupting close encounter between planets
was likely within 108 yr for � � 10. The same � � 10 stability
threshold was observed by Fang & Margot (2012a) and in a later
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Titius-Bode relation exoplanet predictions 5

paper it was shown that the average � value for Kepler detected
exoplanet pairs was 21.7 (Fang & Margot 2013). The � values for
all adjacent pairs of exoplanets in our sample is shown in Fig. 3
(top panel). There is a drop-off below � ≈ 10, in agreement with
the simulations. Also, NMMR pairs dominate the � � 10 pairs.
Planet pairs with small dynamic spacing, � � 10, are less likely to
be stable, but if they are stable, they are more likely to be NMMR
pairs. We use this criterion to determine which pairs are more likely
to be in complete systems where the insertion of an additional planet
(with an assumed mass of 1 M⊕) between the pair would result in
a lower probability of stability: � � 10. Note that this assumed
mass for the inserted planet plays a minor role, since the mass of
the detected planet is always larger and dominates in the calculation
of � (equation B1, Appendix B).

If the insertion of an additional planet between each pair in a
system results in � � 10 for all pairs, then that system is likely
to be complete without any insertions. Nine systems satisfy this
criterion, they are KOI-116, KOI-720, KOI-730, KOI-1278, KOI-
1358, KOI-2029, KOI-2038, KOI-2055 and HR 8799. A further
22 systems have three or more adjacent planet pairs with � � 10
(after insertion) and we treat these subsets (without insertions) as

their own complete system, giving a total of 31 systems in our most
complete sample.

Of the 31 systems in our most complete sample, 26 fit the TB
relation better than the Solar system (χ2/d.o.f. < 1, with σ scaled
with compactness as shown in Fig. 4). Three systems fit approx-
imately the same as the Solar system and 2 of the 31 systems fit
worse than the Solar system (χ2/d.o.f. � 1.4). If additional planets
exist in these systems, they are likely to be in an NMMRs with one
or more of the detected planets.

Considering only the 31 systems which are most likely to be
complete, ∼94 per cent (≈29/31) adhere to the TB relation to ap-
proximately the same extent or better than the Solar system. Thus,
planetary systems, when sufficiently well sampled, have a strong
tendency to fit the TB relation. Taking this strong tendency to fit
as a common feature of planetary systems, we make predictions
about the periods and positions of exoplanets that have not yet been
detected. Specifically, we fit the TB relation to systems that are less
complete, insert planets into a variety of positions and find the posi-
tions that maximize the γ value. Fig. 1 illustrates our procedure for
the Solar system when Uranus and the Asteroid Belt are missing.
Fig. 2 and Table 1 illustrate our procedure applied to the 55 Cnc

Figure 2. Illustration of our method for the 55 Cnc system, which has an initial χ2/d.o.f. of 1.54. One to four planets are inserted between detected planets
and new σ and χ2/d.o.f. values are calculated for each insertion solution. For each number of planets inserted from 1 (top panels) to 4 (bottom panels), the
two lowest χ2/d.o.f. solutions are displayed. The insertion solutions with the two highest γ values (equation 5) are indicated by a white background. An
approximate habitable zone is represented by the horizontal green bar, which represents the effective temperature range between Venus and Mars, using an
albedo of 0.3.
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6 T. Bovaird and C. H. Lineweaver

Figure 3. Dynamical spacing � for adjacent planet pairs within exoplanet
systems containing four or more planets, separated into NMMR and non-
NMMR planet pairs. The threshold to be in NMMR is set arbitrarily at
x ≤ 2 per cent, where x = |Nj/Ni − Pn + 1/Pn|/(Nj/Ni). Ni and Nj are
positive integers with Ni < Nj ≤ 7 and Pn and Pn + 1 are the periods of
the planet pair. There is a drop-off of planet pairs at � � 10 as found in
simulations (Chambers et al. 1996; Fang & Margot 2012a). The values for
the Solar system are shown for reference.

system. The usefulness of planet predictions based on the TB re-
lation depends on how much of a better fit each insertion solution
produces (equation 5).

To test the validity of this idea further, we removed individual
planets from systems in our most complete sample, thus creating
less complete systems. We then inserted a planet in the location
predicted by our procedure of maximizing γ . The predicted location
was between the correct pair of adjacent planets 100 per cent of the
time. The predicted period (a new Pn in equation (4)) was within
our 1σ of the original period ∼86 per cent of the time.

4.2 The compactness of planetary systems

One factor not considered by other studies is the relation between
the sparseness or compactness of a system and its adherence to
the TB relation. Our initial analyzes of exoplanet systems used the
value of σ that made χ2/d.o.f. = 1 for the Solar system. However,
this led to χ2/d.o.f. << 1, particularly for the most complete (and
compact) exoplanetary systems. The Solar system is much more
sparse than these systems (Fig. 5). We have included the Solar sys-
tem in Fig. 5 to show this difference. In more compact systems
with shorter periods, one expects the tendency towards commen-
surability of neighbouring orbits to propagate more easily to other
orbits (Goldreich 1965; Dermott 1968a). This is especially impor-
tant when analysing systems discovered by the Kepler mission,
where individual systems have multiple planets within ∼50 d pe-

riods (∼0.3 au). Thus, we introduce a scaling for σ dependent on
how compact or sparse the system is. We define the sparseness Sp

of a system as

Sp = log PN−1 − log P0

N
, (6)

where PN − 1 and P0 are the largest and smallest planet periods in the
system respectively and N is the number of planets in the system.

In Fig. 4, we use the Solar system as a standard and make a linear
fit between it and the (0,0) point. For each system in our analysis, the
σ in equation (4) is calculated from this linear fit (σ = 0.270 Sp),
given the sparseness/compactness of the system (equation 6). More
compact systems are assigned smaller σ values. Systems above
the line adhere to the TB relation less well than the Solar system
does, while those below the line adhere to the TB relation more
closely than the Solar system does. Each time a hypothetical planet
is inserted between detected planets, the system becomes more
compact and a new, lower σ is calculated. The periods of the inserted
planets are calculated from the best-fitting TB relation. This ensures
that the inserted planets make no contribution to the χ2 value.

If a system has a χ2/d.o.f. similar to or lower than the Solar
system (�1) before any insertions, no insertions are made. Applying
our γ method to our sample results in insertions being made in 29
out of 68 exosystems. For all systems in our sample, we predict
the location of the next outermost planet (extrapolation). Our planet
predictions are shown in Figs 5 and 6 and Tables 2 and 3.

4.3 Upper mass or radius limit

We can place constraints on the maximum mass (radial velocity
detections) or maximum radius (transit detections) of our predicted
planets. Mmax and Rmax are calculated by applying the lowest SNR
of the detected planets in the same system, to the period of the
inserted planet. That is, we calculate the maximum mass or radius
of a planet at the predicted period that could avoid detection based
on the lowest SNR of the detected planets in that same system. For
transiting planets in the same system, SNR ∝ r2P−1/2 where r is the
planet radius and P is the planet period. For radial velocity detected
planets in the same system, SNR ∝ KP−5/6 ∝ mP−7/6 where K is
the semi-amplitude of the radial velocity and m is the planet mass.
Maximum masses and radii for predicted planets can be found in
Table 2.

5 D I SCUSSI ON

As exoplanet detection sensitivities improve, the number of mul-
tiple planet systems will increase, along with the average number

Table 1. Data corresponding to Fig. 2

Panel # Inserted χ2/d.o.f. γ Pl. Period 1 Pl. Period 2 Pl. Period 3 Pl. Period 4
(d) (d) (d) (d)

– 0 1.54 – – – –
a 1 1.94 −0.21 1227.7 – – –
b 1 2.91 −0.47 2.8 – – –
c 2 0.26 2.44 3.0 1103.6 – –
d 2 4.10 −0.31 2.9 171.7 – –
e 3 1.56 −0.01 3.1 120.0 1363.9 –
f 3 1.70 −0.03 3.6 567.3 2015.5 –
g 4 1.39 0.03 2.0 6.1 552.3 1705.9
h 4 1.83 −0.04 1.8 5.3 137.7 1200.6
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Titius-Bode relation exoplanet predictions 7

Figure 4. Top Panel: σ used in equation (4) as a function of the average log
period spacing between planets, Sp (equation 6), of multiple planet systems.
The thick line goes through two points: one point is the origin (0, 0). The
other point (Sp, σ ), is the sparseness of our Solar system (equation 6) and the
σ required for our Solar system to yield χ2/d.o.f. = 1 in equation (4). The
Solar system is shown as a blue triangle while the four small blue squares
above it (from top to bottom) are the values of (Sp, σ ) from the Solar system
if Saturn, Jupiter, Uranus and the Asteroid Belt are individually removed.
The main prograde satellites of Jupiter, Saturn, Uranus and Neptune are
also fit and indicated by small green crosses and labelled ‘Jup’, ‘Sat’, ‘Ura’
and ‘Nep’, respectively. The systems in our most complete sample (see
Section 4.1) are indicated by green dots. Bottom Panel: similar to the top
panel but with the following exceptions. All systems are shown rather than
only our most complete set. The black dots indicate systems where no
insertion was made. The grey dots indicate a system where an insertion was
made, and red dots indicate the (Sp, σ ) of the system after insertions have
been made. Each grey point is connected to a red point by a grey arrow. The
dashed box represents the range of the top panel, which encompasses all
points in our most complete sample.

of planets detected in those system. Finding additional planets in
these systems can be aided by making constrained predictions about
their locations. This helps both in the observation stage where the
sampling can be optimized to a specific period and in the analysis
stage where more care can be taken at predicted locations.

Some planet predictions have already been made by numerical
integration. Regions are mapped in semimajor axis and eccentricity
space where additional planets can be inserted while the system re-
mains stable. Due to computing constraints, numerical integrations
tend to focus on two-planet systems. For example, in our sample
of systems containing four or more planets, only two systems have
been analysed for the stability of additional planets by numerical
integration. As the number of planets detected per system and the
number of systems continues to increase, directly integrating each
system becomes more impractical. We emphasize that we do not
expect the generalized TB relation can be applied to every type of
system (e.g. where exact resonances are present).

5.1 Comparison With TB relation studies

55 Cnc: Poveda & Lara (2008) represented the semimajor axes
of the planets in 55 Cnc with an exponential function (equa-
tion A3). They claimed a good fit when the fifth planet in the
system was assigned n = 6, leaving a gap at n = 5 for an addi-
tional planet beyond the detection threshold. The fit was extrapo-
lated to n = 7 to predict a planet beyond the outermost detected
planet. The semimajor axes of the predicted planets were ∼2 au
(P = 1086 d) and ∼15 au (P = 22 309 d), with no attempt made to
estimate uncertainties. After their paper was published, the period
of the innermost planet was updated from 2.8 to 0.7 d (Winn et al.
2011).

When using the old value for the period, we similarly predict a
single planet located at 2.0 ± 0.5 au (P = 1 111 ± 406 d). When
using the new value for the period, we predict two planets, the first
at 0.04 ± 0.01 au (P = 3.1 ± 1.1 d), while the prediction for the
planet at 2.0 ± 0.5 au (P = 1111 ± 406 d) is unchanged. We cal-
culate the location of a planet exterior to the outermost detected
planet at 15.1 ± 3.5 au (P = 22 988 ± 7 816 d) and 14.7 ± 3.4 au
(P = 22 079 ± 7492 d) when the old and new data are used, respec-
tively. All predictions are compatible with those made by Poveda &
Lara (2008), with the exception of our additional planet prediction
at 0.04 ± 0.01 au (P = 3.1 ± 1.1 d) caused by the updated period
of the innermost planet.

Cuntz (2011) applied the three-parameter TB relation (equation
A1) to 55 Cnc. The residuals were minimized when A 	 0.037,
B 	 0.048 and Z 	 1.98 and for planet numbers n = −∞, 1, 2, 4
and 7. This implies undetected planets occupying the n = 0, 3, 5 and
6 spaces, calculated to have semimajor axes of 0.085 (P = 9.5 d),
0.41 (P = 100 d), 1.50 (P = 705 d) and 2.95 au (P = 1 945 d). Cuntz
predicted a planet exterior to the outermost planet (n = 8) located
at 11.8 ± 0.9 au (P = 15 599 ± 1780 d). The predicted planets at
n = 3 and n = 8 are within the uncertainties of our predictions.
The remaining three predicted planets are incompatible with our
predictions, although no uncertainty estimate is made by Cuntz.

5.2 Comparison with numerical simulations

55 Cnc: our prediction of a planet at 2.0 ± 0.5 au (P = 1111 ± 406 d)
is compatible with numerical simulations which have found that
the 55 Cnc system can support an additional planet between 0.9
(P = 327 d) and 3.8 au (P = 2844 d) with an eccentricity below 0.4
(Raymond et al. 2008; Ji et al. 2009). Raymond et al. (2008) also
demonstrate that a planet exterior to the outermost detected planet
will likely reside beyond 10 au (P = 12 143 d), compatible with our
more explicit prediction of 14.7 ± 3.4 au (P = 22 079 ± 7492 d).

Gl 876: numerical simulations by Correia et al. (2010) show
a small stable region for an additional planet centred on 0.08 au
(P = 14.3 d) around the M dwarf Gliese 876. This region is sta-
ble due to the 2: 1 mean motion resonance with Gliese 876 c, the
∼0.7 Jupiter mass planet located at 0.13 au (P = 30 d). Gerlach &
Haghighipour (2012) initially found a similar stable region around
0.08 au (P = 14 d). Furthermore, analysis suggested that initially sta-
ble orbits became chaotic and unstable over larger time frames. In
our analysis, we predict three additional planets between Gliese 876
c and the innermost planet, Gliese 876 d. The inserted planets have
semimajor axes ranging from 0.03 (P = 3.2 d) to 0.1 au (P = 20 d).
Although the numerical simulations of Gerlach & Haghighipour
(2012) suggest that these planets are located within an unstable re-
gion, our predictions correlate to their most stable areas within that
zone.
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8 T. Bovaird and C. H. Lineweaver

Figure 5. Orbital periods of planets in multiple planet systems containing at least four detected planets. Systems where planet insertions have been made are
sorted in descending order of the highest γ found in each system (equation 5 and Table 2). Systems without planet insertions (lower 2/3 of figure) are sorted in
ascending order of χ2/d.o.f. (Equation 4). Inserted and extrapolated planets are shown with red filled circles and red open circles, respectively. The γ value for
the Solar system is calculated by excluding, then including, the Asteroid Belt. ‘*’ indicates at least two adjacent planet pairs in the system have � values <10
if we had inserted a planet between each pair. ‘**’ indicates all adjacent planet pairs have � values <10 if we had inserted an additional planet between each
pair (see Section 4). For the systems where no planet was inserted by interpolation, predicted extrapolated planets are listed in Table 3. Planet letters are shown
for Gliese 876.

5.3 Potential habitable zone predictions

Extrapolated Systems: for systems which adhered to the TB relation
well without any insertions, we predicted the period of the next
outermost planet in the system. This resulted in a prediction of
a potentially habitable terrestrial planet in three Kepler candidate
systems. KOI-812 is a four-planet system with χ2/d.o.f. = 0.04
(compared to 1.0 for the Solar system). When we insert a fifth

planet into the system, it has an estimated effective temperature
(assuming an Earth-like albedo of 0.3) of ∼224 K and a maximum
radius of 2.5 R⊕ based on its current non-detection. KOI-904 is a
five-planet Kepler candidate system where we have predicted an
extrapolated sixth planet. In this case, we predict an undetected
planet with an effective temperature of ∼252 K and a maximum
radius of 2.2 R⊕.
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Titius-Bode relation exoplanet predictions 9

Figure 6. Same as the previous figure except that the periods of the planets have been converted into effective planet temperatures (assuming an Earth-like
albedo of 0.3), based on the luminosity of the stellar host. The vertical green bar represents an approximate habitable zone using the effective temperature
range between Venus and Mars, using an albedo of 0.3. We estimate that the average number of planets in the habitable zone (HZ) of a star is approximately
1–2. This estimate is based on (i) the assumption that planetary systems extend across the HZ and (ii) on the number of HZ planets in the planetary systems
shown here that span the HZ.

5.4 Kepler candidates with the highest probability of
validation

Assuming a high degree of coplanarity (Fang & Margot 2012b),
and using the angular-momentum-weighted average inclination of
planets in each system, 〈i〉L, we compute a critical semimajor axis
acrit. Beyond this value, a coplanar planet would no longer transit
(impact parameter b > 1, where b = acos 〈i〉L/R∗ and R∗ is the

estimated radius of the host star). We compute these acrit values
for each transiting system in our sample. According to the reported
Kepler data3 KOI-1102, KOI-623, KOI-719, KOI-720 and KOI-939
are the Kepler candidate systems where an undetected planet exte-
rior to each outermost detected planet is most likely to transit, i.e.

3 http://exoplanetarchive.ipac.caltech.edu
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10 T. Bovaird and C. H. Lineweaver

Table 2. Systems with interpolated and extrapolated planet predictions.

System Number γ �γ a
(

χ2

d.o.f.

)
i

(
χ2

d.o.f.

)
f

Inserted Period A R b
max M b

max Teff

inserted (equation 5) planet number (d) (au) (R⊕) (M⊕) (K)

KOI-1052 2 234.0 1528.2 1.36 0.01 1 11 ± 2 0.10 1.6 – 909
2 28 ± 3 0.18 2.0 – 669
3 E c 108 ± 12 0.46 2.8 – 423

Gliese 876 3 210.7 32.5 7.88 0.02 1 3.9 ± 0.7 0.03 – 0.7 489
2 8 ± 2 0.05 – 1.2 388
3 16 ± 3 0.08 – 2.2 308
4 E 245 ± 40 0.52 – 21.9 122

KOI-701 5 209.2 58.2 5.92 0.01 1 8.5 ± 0.8 0.07 0.5 – 621
2 27 ± 3 0.15 0.7 – 423
3 39 ± 4 0.19 0.8 – 372
4 58 ± 6 0.25 0.9 – 328
5 84 ± 8 0.32 1.0 – 288d

6 E 180 ± 17 0.54 1.2 – 223
KOI-1952 2 171.1 10.9 3.26 0.01 1 13 ± 2 0.10 1.5 – 828

2 19 ± 2 0.14 1.6 – 720
3 E 65 ± 7 0.31 2.2 – 474

Kepler-62 6 107.3 40.6 4.04 0.01 1 8.5 ± 0.8 0.07 0.5 – 649
2 27 ± 3 0.15 0.6 – 442
3 40 ± 4 0.20 0.7 – 389
4 58 ± 6 0.26 0.8 – 342
5 85 ± 8 0.33 0.9 – 301
6 182 ± 18 0.55 1.0 – 233
7 E 391 ± 37 0.92 1.2 – 180

KOI-571 2 39.8 11.4 4.87 0.07 1 41 ± 6 0.19 0.8 – 294
2 74 ± 10 0.28 1.0 – 242
3 E 234 ± 32 0.61 1.3 – 164

KOI-248 1 18.3 17.5 2.48 0.13 1 4.3 ± 0.5 0.04 1.4 – 633
2 E 31 ± 4 0.16 2.2 – 329

KOI-500 2 15.2 4.6 5.42 0.18 1 1.5 ± 0.2 0.02 1.1 – 1055
2 2.2 ± 0.2 0.03 1.2 – 929
3 E 15 ± 2 0.11 2.0 – 490

KOI-1567 2 11.8 12.1 1.51 0.07 1 12 ± 2 0.10 2.0 – 668
2 29 ± 3 0.18 2.5 – 494
3 E 70 ± 8 0.32 3.1 – 366

KOI-1198 6 10.8 1.5 7.19 0.11 1 1.5 ± 0.2 0.03 1.2 – 1855
2 2.3 ± 0.3 0.04 1.3 – 1626
3 3.3 ± 0.4 0.05 1.4 – 1425
4 4.9 ± 0.5 0.06 1.6 – 1249
5 7.3 ± 0.7 0.08 1.7 – 1095
6 24 ± 3 0.17 2.3 – 737
7 E 53 ± 6 0.29 2.8 – 566

KOI-2859 1 10.2 − 1.0 1.69 0.16 1 2.41 ± 0.10 0.03 0.6 – 1242
2 E 5.2 ± 0.3 0.05 0.8 – 967

KOI-1306 2 8.8 0.6 4.14 0.23 1 10 ± 2 0.09 1.4 – 841
2 18 ± 3 0.13 1.6 – 700
3 E 52 ± 7 0.27 2.1 – 485

ups And 2 8.5 1.0 5.31 0.30 1 18 ± 6 0.14 – 3.8 847
2 70 ± 22 0.36 – 11.9 537
3 E 16 300 ± 5000 13.57 – 1116.0 87

Kepler-20 1 7.4 1.0 3.51 0.42 1 40 ± 6 0.22 1.2 – 500
2 E 133 ± 19 0.49 1.6 – 332

mu Ara 4 6.0 1.8 4.15 0.17 1 23 ± 5 0.16 – 7.7 705
2 54 ± 11 0.29 – 15.8 529
3 127 ± 26 0.52 – 32.4 396
4 1690 ± 350 2.90 – 280.2 167
5 E 9500 ± 2000 9.17 – 1180.7 94

Gl 581 1 5.0 0.9 3.72 0.63 1 30 ± 5 0.13 – 3.0 238
2 E 139 ± 23 0.35 – 11.2 141

KOI-505 3 4.7 0.6 8.20 0.56 1 22 ± 3 0.15 4.6 – 788
2 35 ± 4 0.20 5.1 – 676
3 56 ± 7 0.27 5.8 – 580
4 E 139 ± 16 0.51 7.3 – 426
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Table 2 – continued

System Number γ �γ a
(

χ2

d.o.f.

)
i

(
χ2

d.o.f.

)
f

Inserted Period A R b
max M b

max Teff

inserted (equation 5) planet number (d) (au) (R⊕) (M⊕) (K)

KOI-880 1 4.0 2.4 1.35 0.28 1 12 ± 2 0.10 2.1 – 761
2 E 117 ± 20 0.45 3.7 – 354

Kepler-11 1 3.7 1.7 3.15 0.69 1 75 ± 8 0.34 2.9 – 449
2 E 171 ± 17 0.59 3.5 – 341

KOI-1831 3 3.5 1.7 2.54 0.23 1 6.5 ± 0.7 0.06 0.9 – 800
2 9.8 ± 1.0 0.08 1.0 – 697
3 23 ± 3 0.15 1.2 – 529
4 E 78 ± 8 0.34 1.6 – 350

Kepler-33 1 3.2 0.1 3.69 0.90 1 8.9 ± 0.8 0.09 1.9 – 1162
2 E 68 ± 7 0.35 3.2 – 590

KOI-1151 2 3.1 0.2 3.77 0.54 1 9.6 ± 0.7 0.09 0.8 – 854
2 12.7 ± 0.9 0.10 0.9 – 776
3 E 30 ± 2 0.18 1.1 – 584

KOI-250 5 3.1 2.5 2.26 0.14 1 4.9 ± 0.4 0.05 1.2 – 686
2 6.7 ± 0.6 0.06 1.3 – 616
3 9.2 ± 0.8 0.07 1.4 – 553
4 25 ± 2 0.14 1.8 – 401
5 34 ± 3 0.17 2.0 – 360
6 E 64 ± 5 0.27 2.3 – 290

KOI-245 3 2.9 2.4 1.56 0.17 1 16.8 ± 0.9 0.12 0.3 – 582
2 27 ± 2 0.16 0.4 – 502
3 33 ± 2 0.18 0.4 – 467
4 E 64 ± 4 0.28 0.5 – 374

55 Cnc 2 2.6 0.5 1.49 0.25 1 4 ± 2 0.04 – 1.4 1117
2 1080 ± 370 1.98 – 178.2 158
3 E 20 100 ± 6900 13.97 – 2046.5 59

KOI-1336 2 2.5 11.0 1.07 0.19 1 6.8 ± 0.7 0.07 1.7 – 1053
2 26 ± 3 0.17 2.4 – 679
3 E 61 ± 6 0.31 3.0 – 507

KOI-952 1 2.2 0.1 2.36 0.76 1 1.5 ± 0.3 0.02 0.9 – 904
2 E 41 ± 7 0.19 2.1 – 299

HD 40307 4 1.3 0.2 1.91 0.32 1 6.3 ± 0.7 0.06 – 0.4 814
2 15 ± 2 0.11 – 0.8 613
3 81 ± 9 0.33 – 3.4 348
4 123 ± 13 0.44 – 4.8 302
5 E 287 ± 30 0.78 – 9.7 227

KOI-719 3 1.2 0.1 1.32 0.31 1 6.2 ± 0.6 0.06 0.6 – 692
2 14 ± 2 0.10 0.7 – 532
3 20 ± 2 0.13 0.8 – 466
4 E 66 ± 7 0.28 1.1 – 314

a�γ = (γ 1 − γ 2)/γ 2 where γ 1 and γ 2 are the highest and second highest γ values for that system, respectively.
bRmax and Mmax are calculated by applying the lowest SNR of the detected planets in the system to the period of the inserted planet, i.e. SNR ∝
r2P−1/2 for the planetary radius, where r is the planet radius and P is the planet period. SNR ∝ KP−5/6 for planets detected by radial velocity, where
K is the semi-amplitude velocity (see Section 4.3).
cA planet number followed by ‘E’ indicates the planet is extrapolated (has a larger period than the outermost detected planet in the system).
dBold numbers indicate effective temperatures between the range of Venus and Mars (∼207–299 K), assuming an albedo of 0.3.

the semimajor axis aout of the outermost detected planet contributes
to a low value of aout/acrit.

5.5 The two- and three-parameter TB relations

To check the robustness of our two-parameter TB relation pre-
dictions, we repeated our analysis using the three-parameter TB
relation (equation A1). The two forms of the TB relation do not
yield identical results. For example, when the three parameter TB
relation is applied to the Gliese 876 system, no planet insertions
are made. This is a result of the decoupling of the distance to the
first planet from the rest of the system (Fig. A1, Appendix A).
The second, third and fourth planets in Gliese 876 fit the three-

parameter TB relation well while there is a large gap between the
first and second planets. However, this does not affect the fit since
the distance to the first planet is its own decoupled parameter. This
is not unique to the Gliese 876 system and the three-parameter TB
relation often does not insert a planet between the first and second
detected planets, even if a large gap is present. Of the 29 systems
where we predicted interpolated planets, 18 of these systems are
also predicted to have interpolated planets by the three-parameter
TB relation. In 8 of the 11 systems where planets are inserted by the
two-parameter TB relation but not by the three-parameter TB rela-
tion, there is a significant gap between the first and second planet
in each system. The prioritization of the lists of predicted plan-
ets by the two- and three-parameter TB fits also varies due to the
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12 T. Bovaird and C. H. Lineweaver

Table 3. Systems with only extrapolated planet predictions.

System
(

χ2

d.o.f.

)
i

Period A R a
max M a

max Teff

(d) (au) (R⊕) (M⊕) (K)

KOI-1358 0.01 13.6 ± 1.0 0.10 1.6 – 522
KOI-935 0.03 185 ± 23 0.68 4.1 – 374
KOI-812 0.04 114 ± 17 0.38 2.5 – 224b

KOI-510 0.05 79 ± 11 0.34 3.5 – 413
KOI-1432 0.07 87 ± 13 0.38 2.0 – 397
KOI-869 0.08 85 ± 12 0.35 3.8 – 349
KOI-2038 0.11 38 ± 3 0.21 1.8 – 494
KOI-720 0.14 35 ± 4 0.20 2.9 – 477
KOI-94 0.19 133 ± 20 0.55 3.5 – 468
KOI-733 0.22 36 ± 4 0.20 2.8 – 437
KOI-939 0.24 21 ± 3 0.15 1.9 – 640
KOI-2055 0.29 13.6 ± 1.0 0.11 1.3 – 706
HR 8799 0.31 368 000 ± 46 000 115.30 – 3730.5 35
KOI-2029 0.31 24 ± 2 0.15 0.9 – 505
KOI-730 0.32 28 ± 2 0.18 2.8 – 602
KOI-116 0.34 87 ± 10 0.38 1.3 – 425
KOI-623 0.40 43 ± 4 0.23 1.3 – 592
KOI-1364 0.41 35 ± 4 0.20 3.0 – 508
KOI-117 0.42 24 ± 2 0.17 1.4 – 692
KOI-408 0.51 60 ± 7 0.29 2.6 – 461
KOI-1278 0.52 73 ± 7 0.35 2.0 – 455
KOI-474 0.54 228 ± 37 0.77 3.8 – 336
KOI-2722 0.54 24 ± 2 0.17 1.3 – 774
KOI-1589 0.56 83 ± 9 0.37 2.4 – 440
KOI-1557 0.58 19 ± 2 0.12 2.0 – 499
KOI-1930 0.60 72 ± 7 0.35 2.3 – 541
KOI-1563 0.62 27 ± 3 0.17 3.7 – 491
KOI-671 0.62 27 ± 2 0.17 1.5 – 614
KOI-152 0.64 160 ± 16 0.60 5.4 – 381
HD 10180 0.65 6200 ± 1500 6.67 – 147.9 106
KOI-1102 0.75 33 ± 3 0.20 2.8 – 630
KOI-834 0.84 117 ± 17 0.47 2.5 – 351
KOI-2169 0.87 7.7 ± 0.4 0.07 0.7 – 868
KOI-700 0.91 124 ± 14 0.48 2.1 – 388
KOI-907 0.91 250 ± 41 0.76 4.5 – 309
KOI-904 0.92 105 ± 14 0.37 2.2 – 252
KOI-82 0.92 39 ± 3 0.21 0.9 – 408
KOI-232 0.93 111 ± 12 0.46 2.1 – 391
KOI-191 0.99 180 ± 39 0.61 3.4 – 301

aRmax and Mmax are calculated by applying the lowest SNR of the detected
planets in the system to the period of the inserted planet, i.e. SNR ∝ r2P−1/2

for the planetary radius, where r is the planet radius and P is the planet
period. SNR ∝ KP−5/6 for planets detected by radial velocity, where K is
the semi-amplitude velocity (see Section 4.3).
bBold numbers indicate effective temperatures between the range of Venus
and Mars (∼207–299 K), assuming an albedo of 0.3

different γ values produced for a given system by each form of the
TB relation.

6 C O N C L U S I O N

We first identified a sample of exoplanet systems most likely to be
complete based on the dynamical spacing � of planet pairs. We
applied the TB relation to each system in the sample and found that
∼94 per cent of the systems adhered to the TB relation to approx-
imately the same extent or better than the Solar system. This was
taken as evidence that the TB relation can be applied to exoplanet
systems in general.

We then applied the TB relation to the systems most likely to be
incompletely sampled and we made planet predictions in these sys-

tems. Our method involved inserting up to 10 hypothetical planets
into each system and we chose the insertion solution which maxi-
mized γ (equation 5), which is a measure of the improvement in the
χ2/d.o.f. value (equation 4) per planet inserted. We made planet
predictions (interpolations) inserting 73 planets into 29 of the 68
systems analysed here. For all 68 systems, we predicted the period
of the next outermost planet (extrapolation).

The maximum mass or radius for each predicted planet was cal-
culated based on the detection limit in the host system. Since the
TB relation may be mass-independent (e.g. the Asteroid Belt), our
predicted planets do not have a lower mass limit. Thus, some signif-
icant fraction of our predictions probably correspond to low-mass
planets or Asteroid Belt analogues, in which case, validation in the
near future is unlikely. Our predictions include a number of poten-
tially habitable terrestrial planets. We identified Kepler candidate
systems where an undetected planet exterior to the outermost de-
tected planet has the greatest chance of transiting, assuming near
coplanarity.

As the number of candidate planets in a system increases, the
system’s light curve or radial velocity curve becomes more compli-
cated. This increases the difficulty of detecting additional planets
within the system. Using the TB relation to predict planetary orbital
periods (Tables 2 and 3) narrows the region of parameter space to
be searched, and increases the likelihood of detecting an additional
planet. We expect our predictions to be partially tested using new
data from the Kepler mission in the near future. If a significant num-
ber of our predictions are substantiated, we expect the TB relation
to become an important detection tool for systems which already
contain a number of planets.
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A P P E N D I X A : T H E T WO - A N D
T H R E E - PA R A M E T E R T B R E L AT I O N S

The original TB relation was given a mathematical form by Wurm
(1787),

an = A + BZn, n = −∞, 0, 1, 2, . . . , (A1)

where an is the semimajor axis of the planet. The index n = −∞ is
assigned to the first planet, n = 0 to the second planet, n = 1 to the

third planet and so on. Historically, A = 0.4, B = 0.3 and Z = 2.0
for the Solar system, while the best-fitting values are A 	 0.382,
B 	 0.334, Z 	 1.925. The two parameter TB relation can be written
as

an = aCn, n = 1, 2, 3, . . . . (A2)

The exponential function given by Poveda & Lara (2008) is equiv-
alent to equation A2:

an = aeλn, = aCnn = 1, 2, 3, . . . (C = eλ). (A3)

By comparing equations (A1) and (A2) we can see they are most
similar for large n. Therefore, the extra term in equation (A1) and the
numbering methodology n = −∞, 0, 1, . . . produces a difference
in the fits to the inner part of a planetary system. This has led to the
location of the Earth to be called peculiar (Neslušan 2004).

Other analyzes of the Solar system tend to use the general-
ized two-parameter TB relation as we have done in this paper
(Prentice 1978; Basano & Hughes 1979; Neuhäuser & Feitzinger
1986; Zhong-Wei & Zhi-Xiong 1987; Graner & Dubrulle 1994).

APPENDI X B: THE DY NA MI CAL SPAC I NG �

The dynamical spacing � (Gladman 1993; Chambers et al. 1996)
between two planets in the same planetary system with semimajor
axes a1 and a2 is

� = a2 − a1

RH
, (B1)

where RH is the two planets’ mutual Hill radius, given by

RH = a1 + a2

2

(
m1 + m2

3M∗

)1/3

, (B2)

where m1 and m2 are the masses the inner and outer planets, respec-
tively. M∗ is the mass of the host star.

Figure A1. Illustration of the parameters in the two forms of the Titius–Bode relation (equations A1 and A2). Labels show the distances between adjacent
objects. The large filled circle represents the star while the smaller open circles represent the planets. (a) The 2 parameter TB relation (equation A2). (b) The 3
parameter TB relation (equation A1)
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