Growth of perturbations

- · What does it take for an object to Collapse in the Universe.
- We can estimate this by looking at the Gravitational Binding Energy of a spherical ball and comparing it to the thermal energy of the ball. When gravity dominates, the object can collapse. Scale where this happens is called the Jean's Length

$$\frac{GM^{2}}{R} \approx \frac{M}{m}kT \qquad E_{par} \approx kT \qquad N_{par} = \frac{M}{m}$$

$$\frac{GM}{R} \approx \frac{kT}{m}$$

$$\frac{G(\frac{4}{3}\pi\rho R^{3})}{R} \approx \frac{kT}{m}$$

$$R \approx \sqrt{\frac{kT}{mG\rho}} \equiv \lambda_{J} = c_{s}\sqrt{\frac{1}{G\rho}}$$

Growth of linear perturbations

 The (non-relativistic) equations governing fluid motion under gravity can be linearized to give the following equation governing the growth of linear density perturbations:

$$\ddot{\delta} + \frac{\dot{a}}{a}\dot{\delta} = \delta \left(4\pi G\rho_0 - \frac{c_s^2 k^2}{a^2}\right)$$

 This has growing solutions for on large scales (small k) and oscillating solutions for for small scales (large k); the crossover scale between the two is the Jeans length,

$$\lambda_J = c_s \sqrt{\frac{\pi}{G\rho}}$$

where c_s is the sound speed, $c_s^2 = \partial p/\partial \rho$.

- For $\lambda < \lambda_J$, sound waves cross an object on the same time-scale as the gravitational collapse, so pressure can counter gravity.
- In an expanding universe, λ_J varies with time; perturbations on some scales swap between growing and oscillating solutions.

1

Peculiar Velocity and Linear Growth

Peebles, (1976) demonstrated in the linear regime (i.e. acceleration Due to a mass concentration is constant unaffected by the growth of the mass concentration) the following relationship holds.

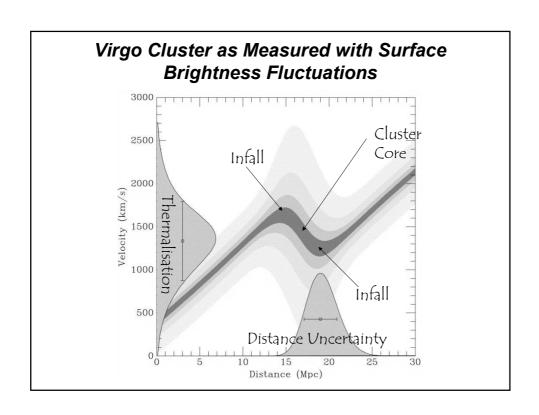
$$\frac{v_{pec}(r)}{H_0 r} = -\frac{1}{3} \Omega_M^{0.6} \delta(r) \quad \text{BIAS:} \, \delta_{gal}(r) = b \delta(r)$$

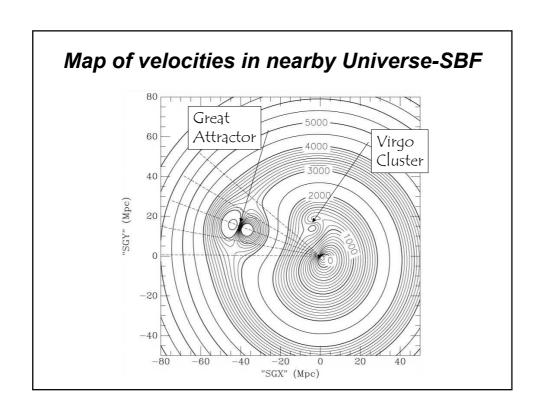
$$\frac{v_{pec}(r)}{H_0 r} = -\frac{1}{3} \frac{\Omega_M^{0.6}}{b} \delta_{gal}(r)$$

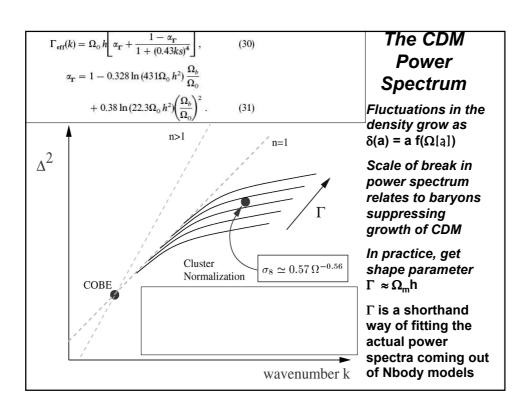
So...We think $\Omega_{\rm M}$ =0.3,

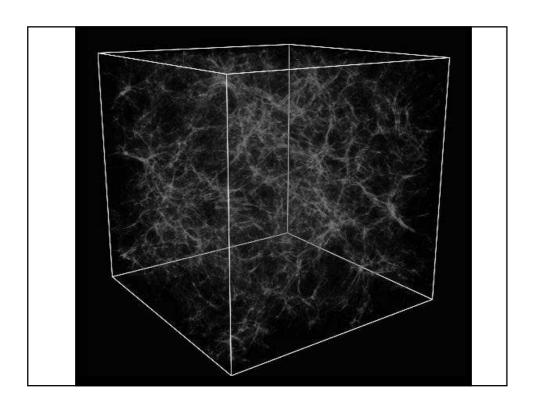
between us and the Virgo Cluster the quinty of 57.3 over the background is a factor of 2 in that sphere, H_O =70 km/s $v_{pec}(r) = -\frac{H_0 r}{3} \frac{\Omega_M^{0.6}}{b} \delta_{gal}(r)$ Distance to Virgo cluster is 16 Mpc... $v_{pec}(r) = -\frac{70*16}{3} \frac{0.3^{0.6}}{b} 2 = 362 \text{km/s}$ between us and the Virgo Cluster the density of galaxies we see

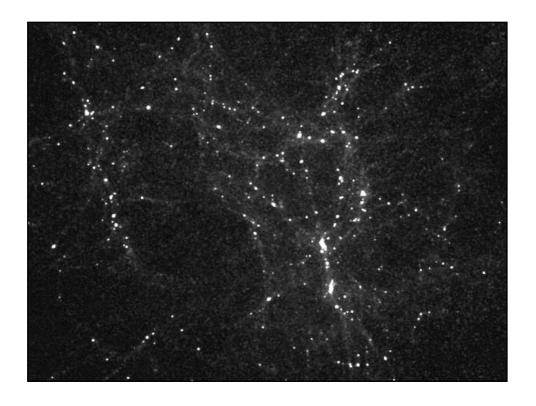
$$v_{pec}(r) = -\frac{H_0 r}{3} \frac{\Omega_M^{0.0}}{b} \delta_{gal}(r)$$

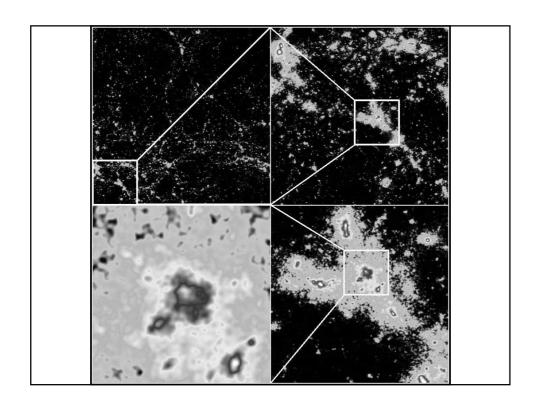

$$v_{pec}(r) = -\frac{70*16}{3} \frac{0.3^{0.6}}{h} 2 = 362 \text{km/s}$$

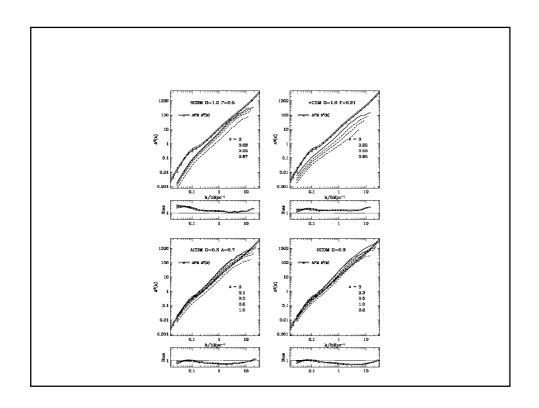

Bias: light vs mass

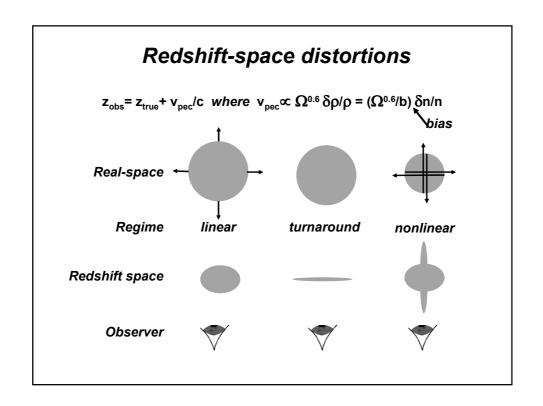

- Gravitational instability theory applies to the mass distribution but we observe the galaxy distribution - are these 1-to-1?
- A bias factor b parameterises our ignorance: $\delta_{q} = b\delta_{M}$, i.e. fractional variations in the galaxy density are proportional to fractional variations in the mass density (with ratio b).
 - What might produce a bias? Do galaxies form only at the peaks of the mass field, due to a star-formation threshold?
 - Variation of bias with scale. This is plausible at small scales (many potential mechanisms), but not at large scales.
 - Observed variation with galaxy type. The ratio E:Sp is 10:1 in clusters ($\delta_a >>1$) but 1:10 in field ($\delta_a \le 1$).

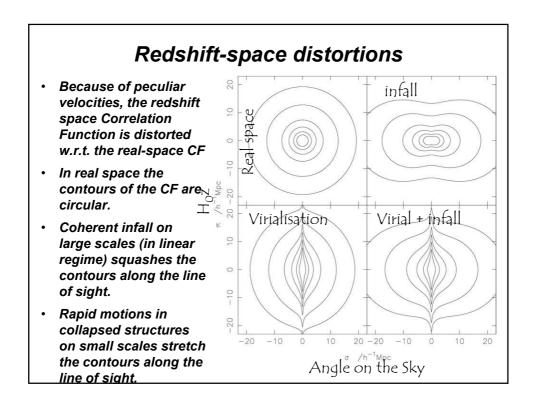

Non-Linear Growth

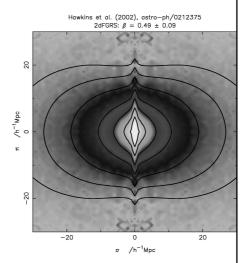

- Eventually structures grow and this causes their Mass to increase, and the linear regime to breakdown
- Galaxies start to interact with each other and thermalise (Called Virialisation)





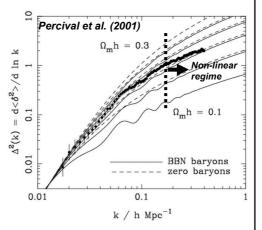




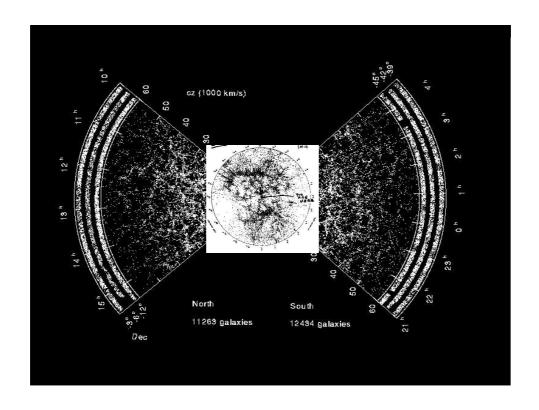

Some Relevant questions in Large Scale Structure

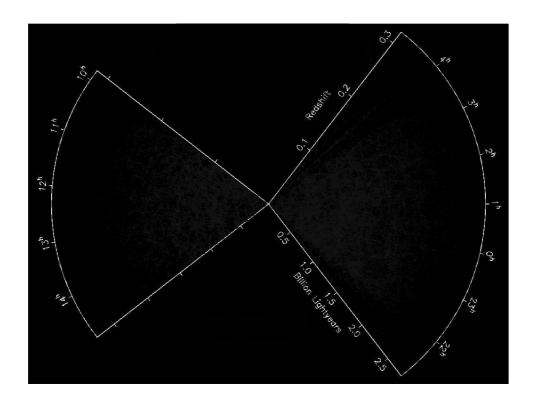
- What is the shape of the power spectrum? what is the value of $\Gamma = \Omega h$?
- · Mass and bias:
 - what is the value of $\beta \approx \Omega^{0.6}/b$?
 - can we obtain Ω and b independently of each other?
 - what are the relative biases of different galaxy populations?
- · Can we check the gravitational instability paradigm?
- Were the initial density fluctuations random-phase (Gaussian)?

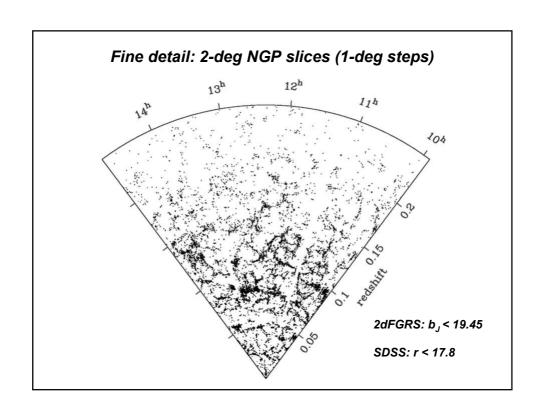
Measuring β from P(k)

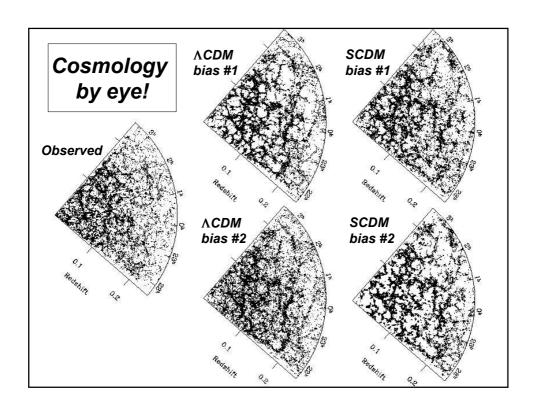

- z-space distortions produce 'Fingers of God' on small scales and compression along the line of sight on large scales.
- Or can measure the degree of distortion of ξ_s in σ-π plane from ratio of quadrupole to monopole:
- $P_2^s(k) = 4/3\beta + 4/7\beta^2$ $P_0^s(k) 1 + 2/3\beta + 1/5\beta^2$

$$(\Omega_M)^6 = b * 0.49$$
$$\Omega_M = .30 * b^{5/3}$$

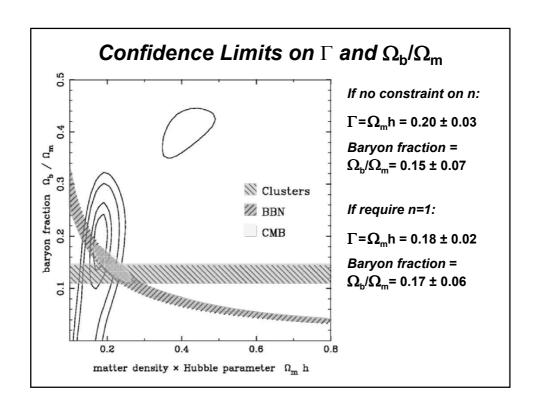

Large scales - P(k)

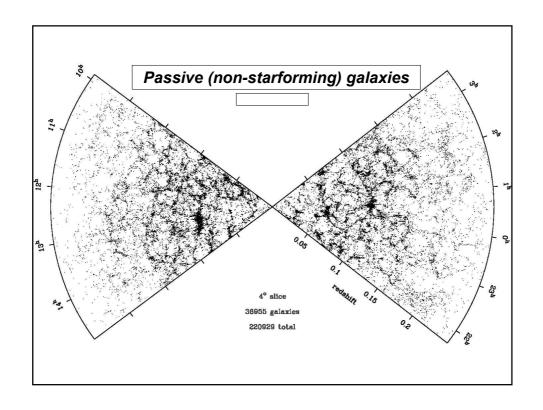

- P(k) is preferred to ξ(r) on large scales: it is more robust to compute, the covariance between scales is simpler, and the error analysis is easier.
- Fits to P(k) give Γ ≈ 0.2, implying Ω ≈ 0.3 if h ≈ 0.7, but the turnover in P(k) around 200 h⁻¹ Mpc (the horizon scale at matter-radiation equality) is not well determined.

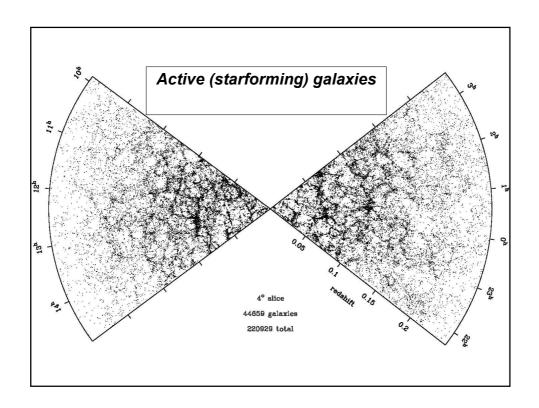


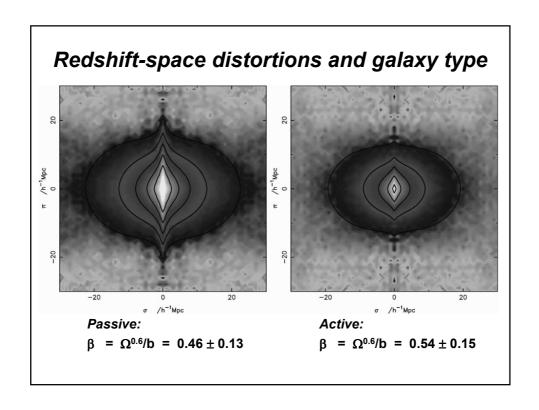

Major new Large Scale Structure Surveys

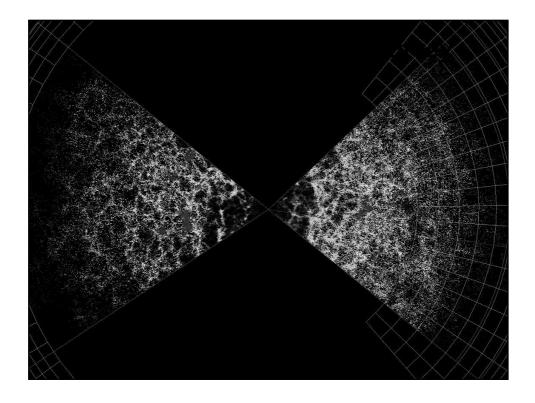
- Massive surveys at low z (10⁵-10⁶ galaxies <z> ≈ 0.1):
 - 2dF Galaxy Redshift Survey and Sloan Digital Sky Survey
 - high-precision Cosmology: measure P(k) on large scales and β from z-space distortions to give Ω_{M} and b.
 - low-z galaxy population: Φ and ξ as joint functions of luminosity, type, local density and star-formation rate
- Massive surveys at high redshift (<z> ≈ 0.5-1.0 or higher):
 - VIMOS and DEIMOS surveys (and others)
 - · evolution of the galaxy population
 - · evolution of the large-scale structure
- Mass and motions survey (6dF Galaxy Survey):
 - NIR-selectedz-survey of local universe, together with...
 - measurements of σ for 15000 E/S0 galaxies...
 - ⇒ masses and distances from Fundamental Plane
 - ⇒ density/velocity field to 15000 km/s (150 h⁻¹ Mpc)

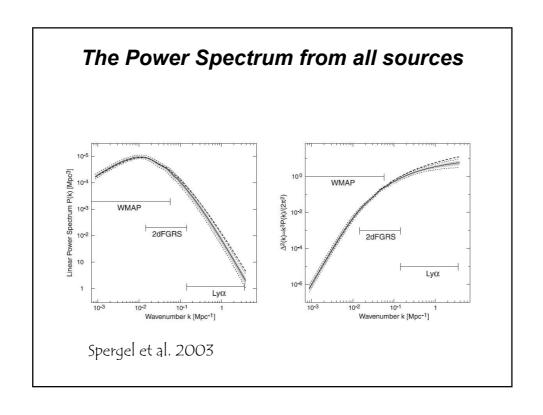


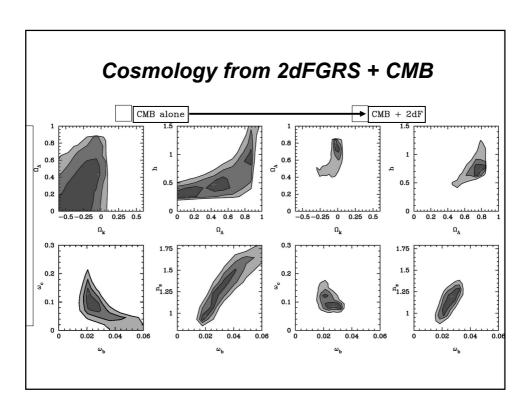


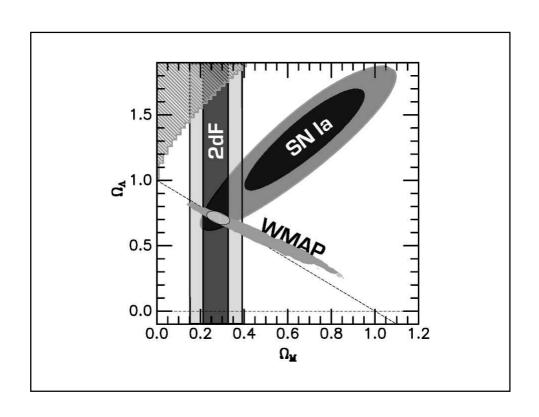



2dFGRS: LSS + Cosmology Highlights

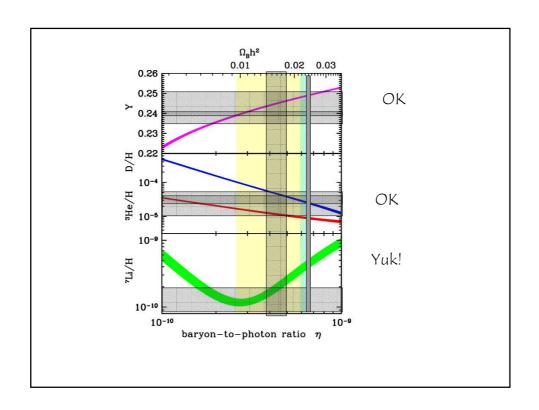

- The most precise determination of the large-scale structure of the galaxy distribution on scales up to 600 h⁻¹ Mpc.
- Unambiguous detection of coherent collapse on large scales, confirming structures grow via gravitational instability.
- Measurements of $\Omega_{\rm M}$ (mean mass density) from the power spectrum and redshift-space distortions: Ω = 0.27 \pm 0.04
- First measurement of galaxy bias parameter: b =1.00 \pm 0.09
- An new upper limit on the neutrino fraction, Ω_v/Ω < 0.13, and a limit on the mass of all neutrino species, m_v < 1.8 eV.

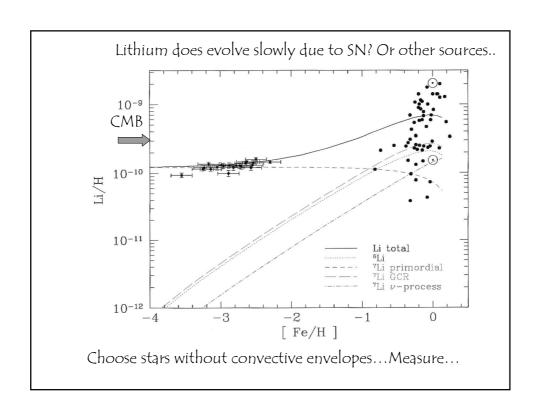






The Cosmic Timeline


 CMB last scattering surface: (WMAP)


 $t_{dec} = 379 \pm 8 \ kyr$ ($z_{dec} = 1089 \pm 1$)

- Epoch of re-ionization?: WMAP and QSOs seem to disagree – t_r = 100-1000 Myr
- Age of the universe today: SN +WMAP agree very well t₀ = 13.7 ± 0.2 Gyr
- Hubble constant: (CMB+2dF, or Cepheids + SN Ia)
 H₀ = 71 ± 4 km/s/Mpc

	Description	Symbol	Value	+ uncertainty	- uncertaint
The	Total density	Ω_{tot}	1.02	0.02	0.02
The	Equation of state of quintessence	w	< -0.78	95% CL	
(0 1	Dark energy density	Ω_{Λ}	0.73	0.04	0.04
'Concordance	Baryon density	$\Omega_b h^2$	0.0224	0.0009	0.0009
	Baryon density	Ω_b	0.044	0.004	0.004
model'	Baryon density (cm ⁻³)	n_b	2.5×10^{-7}	0.1×10^{-7}	0.1×10^{-7}
model	Matter density	$\Omega_m h^2$	0.135	0.008	0.009
	Matter density	Ω_m	0.27	0.04	0.04
	Light neutrino density	$\Omega_{\omega}h^2$	< 0.0076	95% CL	
/14/8/4 A D .	CMB temperature (K) ^a	$T_{ m cmb}$	2.725	0.002	0.002
(WMAP +	CMB photon density (cm ⁻³) ^b	n_{γ}	410.4	0.9	0.9
	Baryon-to-photon ratio	η	6.1 × 10 ⁻¹⁰	0.3×10^{-10}	0.2×10^{-1}
2dFGRS + SN	Baryon-to-matter ratio	$\Omega_b\Omega_m^{-1}$	0.17	0.01	0.01
	Fluctuation amplitude in 8h-1 Mpc spheres	σ_8	0.84	0.04	0.04
la + HST KP)	Low-z cluster abundance scaling	$\sigma_8\Omega_m^{0.5}$	0.44	0.04	0.05
ia : 1131 KF)	Power spectrum normalization (at $k_0 = 0.05 \text{ Mpc}^{-1})^c$	A	0.833	0.086	0.083
	Scalar spectral index (at $k_0 = 0.05 \text{ Mpc}^{-1})^c$	n_g	0.93	0.03	0.03
	Running index slope (at $k_0 = 0.05 \text{ Mpc}^{-1}$) ^c	$dn_s/d\ln k$	-0.031	0.016	0.018
	Tensor-to-scalar ratio (at $k_0 = 0.002 \text{ Mpc}^{-1}$)	r	< 0.71	95% CL	
	Redshift of decoupling	z_{dec}	1089	1	1
	Thickness of decoupling (FWHM)	Δz_{dec}	195	2	2
	Hubble constant	h	0.71	0.04	0.03
	Age of universe (Gyr)	t_0	13.7	0.2	0.2
	Age at decoupling (kyr)	fdec	379	8	7
	Age at reionization (Myr, 95% CL))	tr	180	220	80
	Decoupling time interval (kyr)	Δt_{dec}	118	3	2
	Redshift of matter-energy equality	z_{eq}	3233	194	210
	Reionization optical depth	τ	0.17	0.04	0.04
	Redshift of reionization (95% CL)	Z_{γ}	20	10	9
	Sound horizon at decoupling (a)	θ_A	0.598	0.002	0.002
	Angular diameter distance to decoupling (Gpc)	d_A	14.0	0.2	0.3
	Acoustic scale ^d	ℓ_A	301	1	1
	Sound horizon at decoupling (Mpc)d	r_{i}	147	2	2

