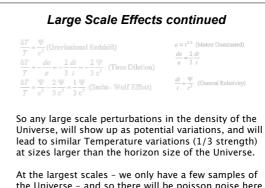


Universe at z>1100 is hot, matter dominated, but still full of photons.

Basic paradigm assumes fluctuations are from inflation...quantum fluctuations at $t=10^{-35}$ s are expanded by $\sim e^{60}$ times. The quantum fluctuations become the matter fluctuations across the entire universe...

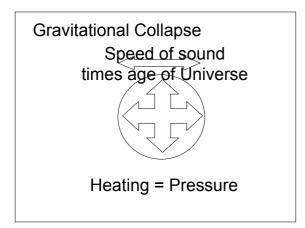
On smaller scales, gravitational matter collapses in overdensities, but when this happens, pressure and temperature increase. Size scale is set by the speed of sound.

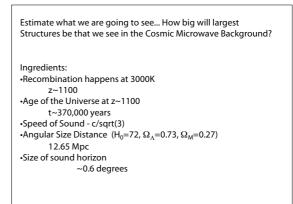
At any given time...speed of sound * age of Universe creates a sound-horizon, coherent scales where matter is falling in for the first time,


on smaller scales, matter has reverberated in and out...

Large Scales Fluctuations

- If we look at distances greater than 1.5 degrees on the sky, this material has not been in contact since the time of inflation
- On these scales, then, any fluctuations we see will be the result of the primordial seeds.


Sachs-Wolf Effect


- In a potential Ψ , photons have two effects which change them.
 - 1) Gravitational Redshift
 - 2) Time dilation

the Universe – and so there will be poisson noise here which we cannot get rid of.

1

Acoustic Basics

Continuity Equation: (number conservation)

$$\dot{\Theta} = -\frac{1}{3}kv_{\gamma}$$

where $\Theta = \delta n_{\gamma}/3n_{\gamma}$ is the temperature fluctuation with $n_{\gamma} \propto T^3$ Euler Equation: (momentum conservation)

$$\dot{v}_{\gamma} = k(\Theta + \Psi)$$

with force provided by pressure gradients $k\delta p_{\gamma}/(\rho_{\gamma} + p_{\gamma}) = k\delta \rho_{\gamma}/4\rho_{\gamma} = k\Theta$ and potential gradients $k\Psi$. Combine these to form the simple harmonic oscillator equation

$$\ddot{\Theta}+c_s^2k^2\Theta=-\frac{k^2}{3}\Psi$$

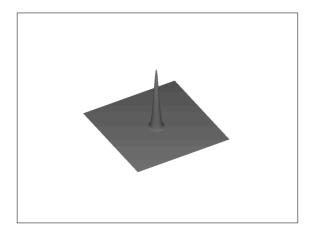
where $c_s^2 \equiv \dot{p}/\dot{\rho}$ is the sound speed squared

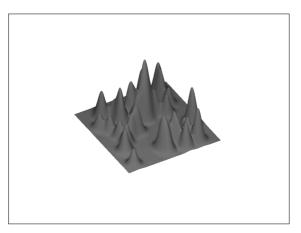
Harmonic Peaks

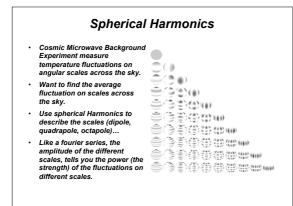
Adiabatic (Curvature) Mode Solution

 $[\Theta + \Psi](\eta) = [\Theta + \Psi](0) \cos(ks)$

where the sound horizon $\equiv \int c_s d\eta$ and $\Theta + \Psi$ is also the observed temperature fluctuation after gravitational redshift

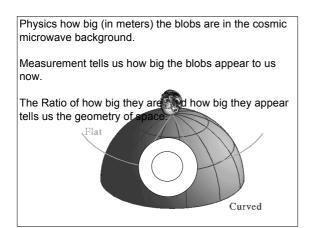

All modes are frozen in at recombination

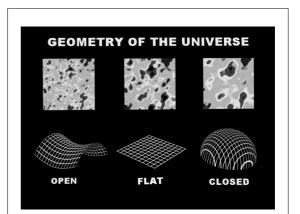

 $[\Theta + \Psi](\eta_*) = [\Theta + \Psi](0) \cos(ks_*)$

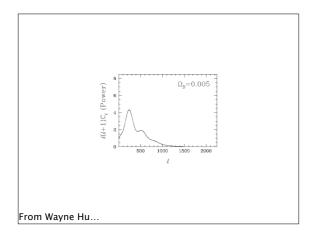

Modes caught in the extrema of their oscillation will have enhanced fluctuations

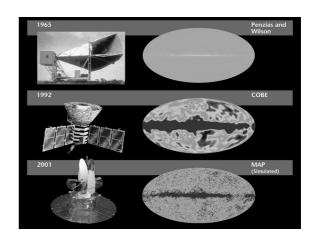
 $k_n s_* = n\pi$

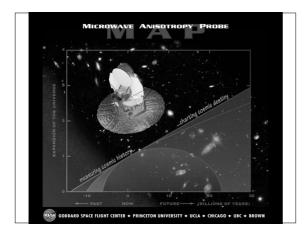
yielding a fundamental scale or frequency, related to the inverse sound horizon and series dependent on adiabatic assumption

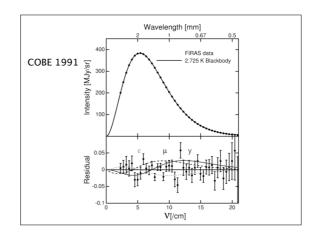


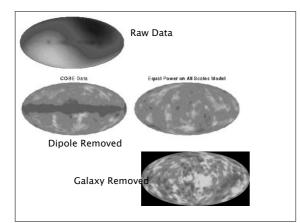


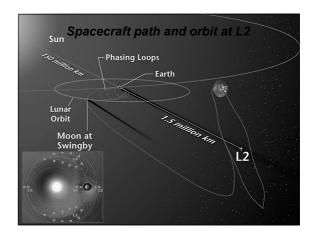


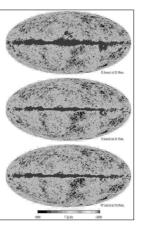

Putting it all together

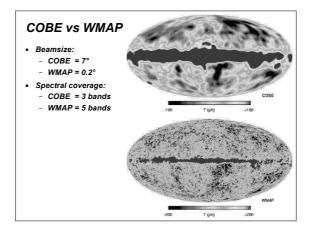

- Starting with gaussian scale-free perturbation spectrum, calculate how the Universe reverberates, then take a snap shot at z=1100, as the Universe suddenly becomes Transparent.
- Taking into account the inherent temperature variations caused by the reverberations, and the Temperature variations caused by the Sachs-Wolf effect, calculate the variation as a function of scale, and project these onto the sky using the Angular-size distance.
 - Universe doesn't become transparent instantly...Has the effect of washing out the smallest scales



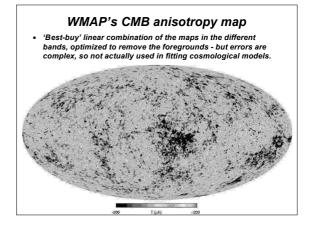


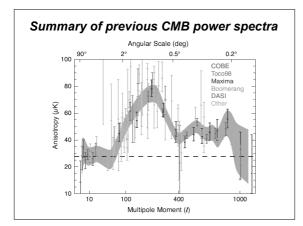


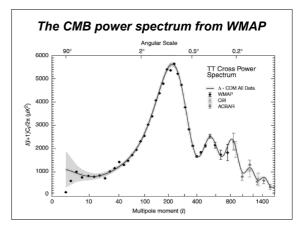


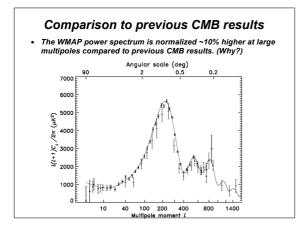


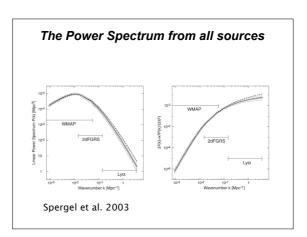
Calibrations, errors and maps

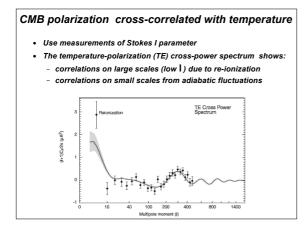

- WMAP team claim that systematic errors are well understood and controlled, based on multiple checks and detailed tests.
- Calibration is based on the Earth-velocity modulation of the CMB dipole; claim calibration good to 0.5%.
- Beam patterns are measured by observing Jupiter; the uncertainties in the beam pattern affect the window function.

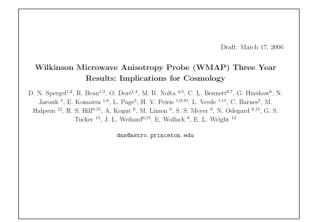


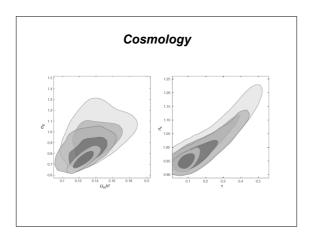


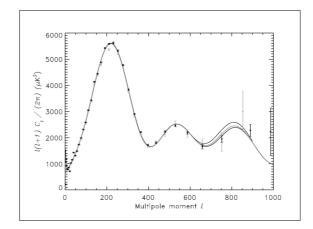

Foreground corrections

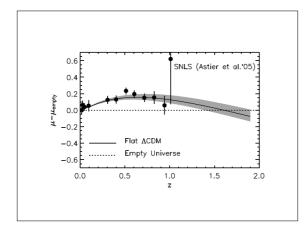

- Essential to correct for Galactic emission and extragalactic point sources. The CMB is separated from the foregrounds using the spectral information in the five WMAP bands.
- Sky regions with bright foreground emission are masked.
 Low-level diffuse emission removed by forming a map based on a MEM linear combination of the five bands - but this map
- has complex error properties and is not used in the analysis.
 Cosmological parameters are derived from a map based on masking bright sources and subtracting foregrounds based on
- masking bright sources and subtracting foregrounds based on spectral templates for the various components (IRAS \Rightarrow dust, 408MHz \Rightarrow synchrotron radiation, H $\alpha \Rightarrow$ free-free ionized gas). This method leaves rms foreground contaminations of <7µK in the Q-band and <3µK in the V and W bands for I <15.

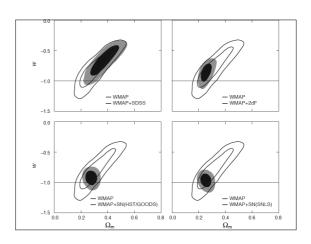


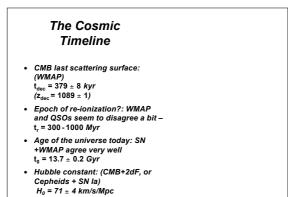


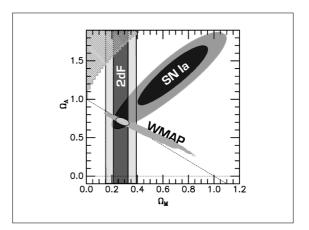


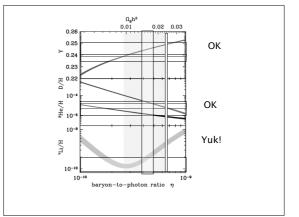


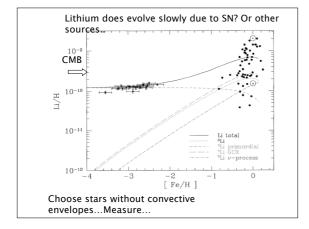












	Description	Symbol	Value	+ uncertainty	- uncertainty
The	Total density	Ω_{tot}	1.02	0.02	0.02
me	Equation of state of quintessence	w	< -0.78	95% CL	
(^	Dark energy density	Ω_{Λ}	0.73	0.04	0.04
'Concordance	Baryon density	$\Omega_0 h^2$	0.0224	0.0009	0,0009
	Baryon density	Ω_{b}	0.044	0.004	0.004
model'	Baryon density (cm-3)	<i>n</i> _b	2.5×10^{-7}	0.1×10 ⁻⁷	0.1×10^{-7}
neuer	Matter density	$\Omega_m h^2$	0.135	0.008	0.009
	Matter density	Ω_{m}	0.27	0.04	0.04
	Light neutrino density	$\Omega_{\nu}h^{2}$	< 0.0076	95% CL	
	CMB temperature (K) ¹	T_{cmb}	2.725	0.002	0.002
(WMAP +	CMB photon density (cm ⁻³) ^b	n_{γ}	410.4	0.9	0.9
	Baryon-to-photon ratio	7	6.1 × 10 ⁻¹⁰	0.3×10^{-10}	0.2×10^{-16}
2dFGRS + SN	Baryon-to-matter ratio	$\Omega_0 \Omega_m^{-1}$	0.17	0.01	0.01
	Fluctuation amplitude in 8h ⁻¹ Mpc spheres	σ_8	0.84	0.04	0.04
la + HST KP)	Low-z cluster abundance scaling	$\sigma_{h}\Omega_{m}^{0.5}$	0.44	0.04	0.05
<i>a</i> · <i>mor na ,</i>	Power spectrum normalization (at $k_0 = 0.05 \text{ Mpc}^{-1})^c$	A	0.833	0.086	0.083
	Scalar spectral index (at k0-0.05 Mpc-1) ²	n_s	0.93	0.03	0.03
	Running index slope (at $k_0 = 0.05 \text{ Mpc}^{-1})^{\circ}$	$dn_s/d\ln k$	-0.031	0.016	0.018
	Tensor-to-scalar ratio (at $k_0 = 0.002 \text{ Mpc}^{-1}$)	r	< 0.71	95% CL	
	Redshift of decoupling	z _{dec}	1089	1	1
	Thickness of decoupling (FWHM)	Δz_{dec}	195	2	2
	Hubble constant	k	0.71	0.04	0.03
	Age of universe (Gyr)	10	13.7	0.2	0.2
	Age at decoupling (kyr)	<i>ldec</i>	379	8	7
	Age at reionization (Myr, 95% CL))	t _r	180	2.20	80
	Decoupling time interval (kyr)	Δt_{dec}	118	3	2
	Redshift of matter-energy equality	z_{eq}	3.233	194	210
	Reionization optical depth	T	0.17	0.04	0.04
	Redshift of reionization (95% CL)	Zr	20	10	9
	Sound horizon at decoupling (9)	θ_A	0.598	0.002	0.002
	Angular diameter distance to decoupling (Gpc)	d_A	14.0	0.2	0.3
	Acoustic scale ^d	ℓ_A	301	1	1
	Sound horizon at decoupling (Mpc) ⁴	r,	147	2	2

