History of the Universe - according to the standard big bang

- · Radiaton dominated era
- · Matter dominated era
- Decoupling CMB emission
- · Star and structure formation
- Successes
 - Explains redshifts
 - Explains CMB
 - Explains creation of the light elements

The Big Bang: problems

- Flatness Problem
 - Why is the universe flat? Unless born flat, it should gradually move away from Flatness in the matter/radiation era.
- Horizon Problem
 - Why is the CMB The same temperature in all directions?
- Structure Problem
 - What seeded the structures we see today?
- INITIAL CONDITIONS SOLVES ALL!!
 - The universe started out perfectly flat
 - The universe started out all the same temperature
 - The universe started with the seeds of structure

Flatness

• Friedmann's Equation
$$H^2 = \frac{8\pi G}{3} \rho_{tot} - \frac{kc^2}{a^2}$$

$$\rho_{crit} = \frac{3H^2}{8\pi G}$$

• Rearranged, $\Omega_{tot} = \rho/\rho_{crit}$

$$\Omega_{tot} - 1 = \frac{kc^2}{H^2 a^2} = \frac{kc^2}{\dot{a}^2}$$

Rearranges, -- $\frac{kc^2}{H^2a^2} = \frac{kc^2}{\dot{a}^2}$ $\frac{t_{now}}{t_{planck}} = \frac{3x10^{17}s}{1x10^{-43}s} = 3x10^{60}$ • Fine tuning

Radiation dominated
$$\frac{(\Omega_{tot} - 1)_{now}}{(\Omega_{tot} - 1)_{Planck}} = \left(\frac{a_{now}}{a_{Planck}}\right)^{2}$$

$$H^{2} \propto \rho_{tot} \propto a^{-4}$$

$$\frac{t_{now}}{t_{tot}} = \frac{3 \times 10^{17} s}{1 \times 10^{-43} s} = 3 \times 10^{60}$$

$$a \propto t^{1/2} \to \frac{a_{now}}{a_{Planck}} = (3x10^{60})^{1/2}$$

$$\approx 10^{60}$$
Universe is 60 orders of r

Universe is 60 orders of magnitude less Flat than it was at the Planck time!

Flatness

 Solved by accelerating expansion (not just increase in size)

$$\Omega_{tot} - 1 = \frac{Kc^2}{H^2a^2} = \frac{Kc^2}{\dot{a}^2}$$

$$ds^{2} = (cdt)^{2} - a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right)$$

$$ds = 0, d\theta = 0, d\phi = 0$$

$$\int cdt = \int_{0}^{t} \left(\frac{a(t)dr}{\sqrt{1 - kr^{2}}} \right) = a(t)r \quad \text{(flat case)}$$

$$d_{proper}^{light} = \frac{1}{a_{0}} d_{comoving}^{light}$$

$$d_{proper}^{light} \approx .5^{\circ}$$

L=d(Horizon)_{proper}

Structure

- Quantum fluctuations are the seeds of structure
- Quantum fluctuations produce real fluctuations when virtual particle pairs find themselves separated by more than a Hubble distance

$$\Delta t \leq \hbar/\Delta E$$

Conditions for inflation

- Need accelerated expansion for inflation
- Negative pressure will accelerate the expansion
- The cosmological constant has negative pressure

What drives inflation?

- Scalar Fields
 - A potential that depends on one parameter only.
 - It can depend on position but does not have a direction
 - e.g. temperature, or potentials...
- Usually represented $V(\phi)$, and $\phi(t)$ is assumed homogeneous

Reheating

- Inflation cools down the universe some mechanism is needed for reheating and particle creation
 - Decay of the particle responsible for inflation might create a wealth of particles and energy.

So What does Inflation give us...

- Inflation invented to solve how the Cosmic Microwave Background is uniform in temperature without seemingly ever having been in causal contact.
- It naturally predicts that the Universe should be observed to be exactly flat. (It was sort of designed to do this too). This has been measured now.
- Predicts that the seeds of structure should be gaussian and scale invariant.
 - scale independent density fluctuations measured by COBE+2dF/WMAP
- Very little more that it can predict... So is it a matter of philosophy now, rather than science? Is the above enough?

Peacock 1999, "Cosmology", chapter on inflation Lineweaver 2003, "Inflation", astro-ph/0305179