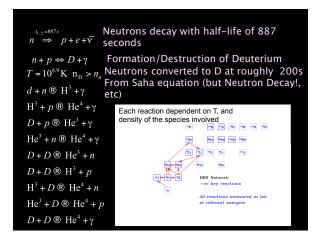
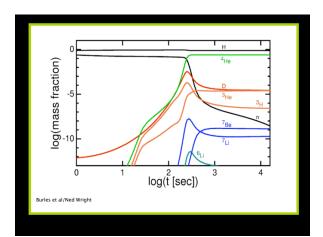
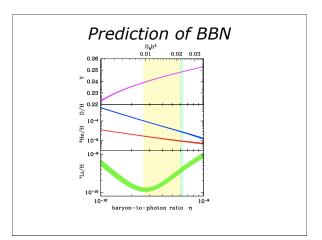
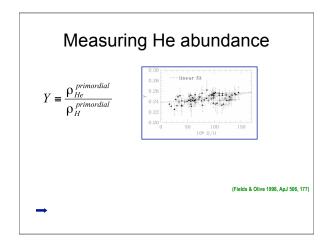
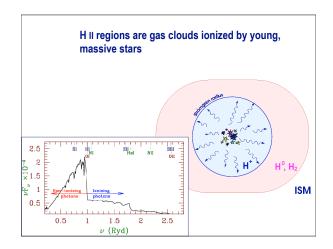

As we look back in time, photons have wavelengths shortened by (1+z) $B(\lambda/(1+z)) = B(T)$ $T_{CMB} = T_{CMB}^{z=0}(1+z)$ $\rho_M(z) = (1+z)^3 \rho_M(z=0)$ $\rho_{\gamma}(z) = (1+z)^4 \rho_{\gamma}(z=0)$ $\frac{\Omega_{\gamma}(z)}{\Omega_M(z)} = 1.6 \times 10^{-4}(1+z)$ at z=6400, Universe becomes photon dominated... T~17000K

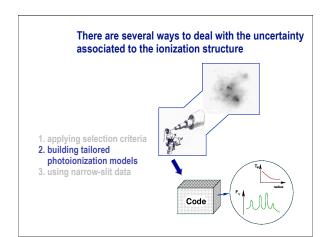

we want

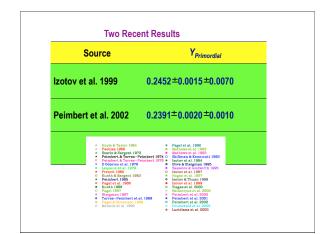

In the few minutes after the Big Bang, the initial Composition of the Big Bang is set by a series of nuclear reactions...

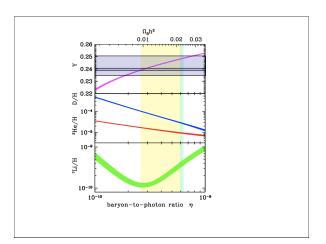

 $\begin{array}{l} \text{for } T > 10^{10.14} \Lambda_{pe} = \Lambda_{nv} = \Lambda_{p\overline{v}} = \Lambda_{nev} \propto (T^{-5}) \\ v + \overline{v} \Leftrightarrow e^+ + e \quad \text{for } T > 10^{10.5} \\ e^+ + e \Longrightarrow \gamma + \gamma \end{array}$

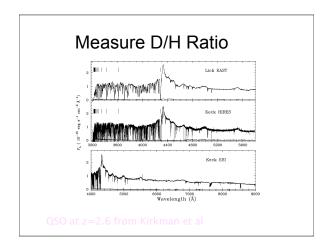

So at T>10^{10.5} (t < 0.2s) p + e = n + v p + v = p + vat T= $10^{10.5}$ (t = 0.2s) $v + \overline{v}^{\Lambda_{m}} \Leftrightarrow e^+ + e \quad \text{for } \tilde{T} > 10^{10.5}$ So at T~10^{10.14} (t < 0.9s) $e^{+} + e \Rightarrow \gamma + \gamma$ End up with mainly protons, neutrons and electrons (some neutrinos) when Universe is 1 second old With ratio of N/P set as $e^{-\Delta E_{intuing} / kT_{decoupling}} \approx 1/e$

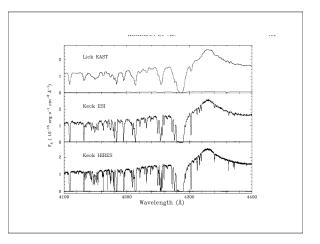


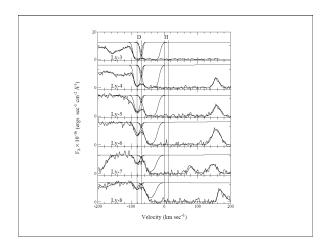


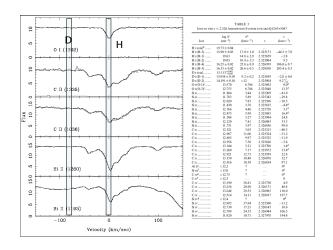


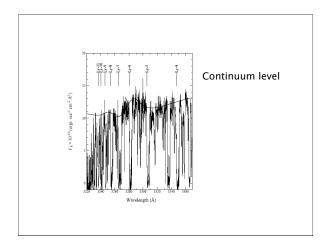


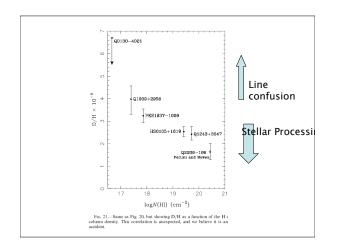


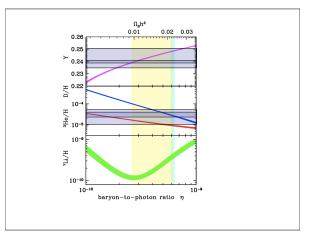


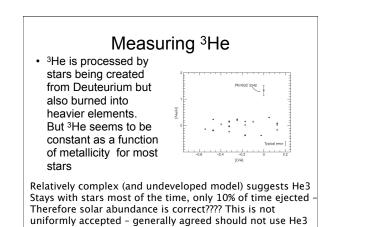

Н	Historical Problems amd their solutions						
	problem	solution					
physics	atomic parameters	Hope Physics has this right					
stellar	stellar absorption	stellar libraries					
parameters	ionization structure	tailored models					
nebular	temperature structure	self-consistent solution					
parameters	H I collisions	Better Modeling, especially at low Z					

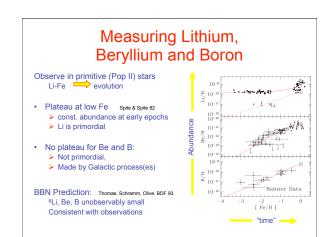


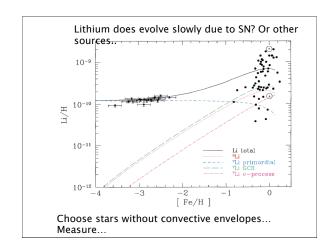











			ABLE 5 IMENTS TOWARD QSOS				
	D/H±1		_		b(D) (km s ⁻¹)		
QSO	$z_{\rm DH}$	(×10 ⁻⁵)	log D/H	X_i^a	Predicted	Obser	rved
PKS 1937-1009b	3.572	3.25 ± 0.3	-4.49 ± 0.04	+1.65	$12.5\pm2.1^{\circ}$	$14.0 \pm$	1.0
Q1009+299 ^d	2.504	$3.98^{+0.59}_{-0.67}$	$-4.40^{+0.06}_{-0.08}$	+1.95	$13.5 \pm 0.5^{\circ}$	15.7 ± 100	2.1
HS 0105+1619 ^e	2.536	2.54 ± 0.23	-4.596 ± 0.040	-1.00	$10.1 \pm 0.3^{\circ}$	$9.85 \pm$	0.42
Q1243+3047f	2.525675	$2.42^{+0.35}_{-0.25}$	$-4.617^{+0.058}_{-0.048}$	-1.05	11.3 ± 1.8	9.2 ±	0.2
Q2206-1998	2.0762	1.65 ± 0.35	$-4.78^{+0.06}_{-0.10}$	-2.80	10.6		
Q0347-3819 ⁱ	3.024855	3.75 ± 0.25	-4.43 ± 0.03	+4.20	3, 14.1, 16.2		
Q0130-403 ⁱ	2.799	< 6.8	<-4.17		$16.2 \pm 0.3^{\circ}$		
$ \begin{array}{l} log \ D/H = -4.556 \pm 0.064, \\ {}^{b} \ We \ list \ combined \ results \\ {}^{c} \ Calculated \ from \ the \ pub \\ {}^{d} \ We \ list \ combined \ results \end{array} $	lished data an	mponents, fro d first present	ed here.	Burles & T	ytler 1998a.	st five QS	305,
 ^b We list combined results ^c Calculated from the pub ^d We list combined results ^e O'Meara et al. 2001. ^r This paper. ^s Pettini & Bowen 2001. ^a Discussed in the Append 	lished data an for the two co lices of this pa	omponents, fro d first present omponents, fro per.	ed here.	and Burles & Ty	ytler 1998a. & Tytler 1998b	b.	
 ^b We list combined results ^c Calculated from the pub ^d We list combined results ^e O'Meara et al. 2001. ^r This paper. ^g Pettini & Bowen 2001. 	lished data an for the two co lices of this pa rico et al. 2001	omponents, fro d first present omponents, fro per.	ed here. om Tytler & Burles 1997	and Burles & Ty	ytler 1998a. & Tytler 1998ł METAL ABUND MEASURED	b. Ances whe	IRE
 ^b We list combined results ^c Calculated from the pub ^d We list combined results ^e O'Meara et al. 2001. ^f This paper. ^g Pettini & Bowen 2001. ^h Discussed in the Append ⁱ First analyzed by D'Odo 	lished data an for the two co lices of this pa rico et al. 2001	omponents, fr d first present mponents, fro per. l. We qu	d hére. om Tytler & Burles 1997 Column Den QSO PKS 1937–1009 ^a	I Burles & T and Burles SITIES AND M D/H IS M log N (cm ⁻ 17.86 ±	ytler 1998a. & Tytler 1998t METAL ABUND MEASURED H1 ²) Elen 0.02	b. ANCES WHE nent α Si	Abundanc [α/H] -2.7, -1.
 ^b We list combined results ^c Calculated from the pub ^d We list combined results ^e O'Meara et al. 2001. ^f This paper. ^g Pettini & Bowen 2001. ^h Discussed in the Append ⁱ First analyzed by D'Odo 	lished data an for the two co lices of this pa rico et al. 2001	mponents, fr d first present mponents, fro per. l. We qu	ed here. om Tytler & Burles 1997 Column Den QSO PKS 1937–1009 ⁴ Q1009+299 ^b	Burles & Ty and Burles & Ty and Burles - SITIES AND M D/H IS M log N (cm ⁻¹ 17.86 ± 17.39 ±	ytler 1998a. & Tytler 1998i METAL ABUND MEASURED H1 ²) Elen 0.02 0.06	b. ANCES WHE nent α Si Si	Abundand [α/H] -2.7, -1. -2.4, -2.
 ^b We list combined results ^c Calculated from the pub ^d We list combined results ^e O'Meara et al. 2001. ^f This paper. ^g Pettini & Bowen 2001. ^h Discussed in the Append ⁱ First analyzed by D'Odo 	lished data an for the two co lices of this pa rico et al. 2001	omponents, fri d first present mponents, fri per. I. We qu	2d here. m Tytler & Burles 1997 COLUMN DEN QSO PKS 1937–1009 ⁴ Q1009+299 ^b	I Burles & T and Burles SITIES AND M D/H IS M log N (cm ⁻ 17.86 ±	ytler 1998a. & Tytler 1998 METAL ABUND METAL ABUND MEASURED 	b. ANCES WHE nent α Si Si O ^d	Abundano [α/H] -2.7, -1: -2.4, -2: -1.73
 ^b We list combined results ^c Calculated from the pub ^d We list combined results ^e O'Meara et al. 2001. ^f This paper. ^g Pettini & Bowen 2001. ^h Discussed in the Append ⁱ First analyzed by D'Odo 	lished data an for the two co lices of this pa rico et al. 2001	mponents, fr d first present mponents, fr per. I. We qu	d here. m Tytler & Burles 1997 Column Den QSO PKS 1937–1009 ⁴ Q1009+299 ^b HS 0105+1619 ²	I Burles & T; and Burles & T; and Burles - stries and M D/H is M log N (cm ⁻ 17.86 ± 17.39 ± 19.73 ±	ytler 1998a. & Tytler 1998t METAL ABUND MEASURED H1 2) Elen 0.02 0.06 0.009 0.04	b. ANCES WHE Ment α Si Si O ^d O ^d	RE Abundano [α/H] -2.7, -1. -2.4, -2. -1.73 -2.79 ± 0.0
 ^b We list combined results ^c Calculated from the pub ^d We list combined results ^e O'Meara et al. 2001. ^f This paper. ^g Pettini & Bowen 2001. ^h Discussed in the Append ⁱ First analyzed by D'Odo 	lished data an for the two co lices of this pa rico et al. 2001	per en	d here. m Tytler & Burles 1997 Column Den QSO PKS 1937–1009 ^a Q1009+299 ^b Q1243+3047 ^a Q1243+3047 ^a	Burles & T; and Burles & T; strifes AND M D/H is M log N (cm ⁻¹ 17.86 ± 17.39 ± 19.73 ± 20.436 ±	ytler 1998a. & Tytler 1998t METAL ABUND MEASURED H1 2) Elen 0.02 0.06 0.009 0.004 0.008	b. ANCES WHE ment α Si Si O ^d O ^d Si	IRE Abundanc [α/H] -2.7, -1: -2.4, -2: -1.73 -2.79 ± 0.0 -2.23 ^g
 ^b We list combined results ^c Calculated from the pub ^d We list combined results ^e O'Meara et al. 2001. ^f This paper. ^g Pettini & Bowen 2001. ^h Discussed in the Append ⁱ First analyzed by D'Odo 	lished data an for the two co lices of this pa rico et al. 2001	mponents, fr d first present mponents, fr per. I. We qu	d here. m Tytler & Burles 1997 Column Den QSO PKS 1937–1009 ⁴ Q1009+299 ^b HS 0105+1619 ²	I Burles & T; and Burles & T; and Burles - stries and M D/H is M log N (cm ⁻ 17.86 ± 17.39 ± 19.73 ±	ytler 1998a. & Tytler 1998t METAL ABUND METAL ABUND M	b. ANCES WHE Ment α Si Si O ^d O ^d	RE Abundano [α/H] -2.7, -1. -2.4, -2. -1.73 -2.79 ± 0.0

