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Acoustic Kinematics



Recombination
• Equilibriumnumber densitydistribution of a non-relativistic

species

ni = gi

(
miT

2π

)3/2

e−mi/T

• Apply to thee− + p↔ H system:Saha Equation

nenp
nHnb

=
x2
e

1− xe

=
1

nb

(
meT

2π

)3/2

e−B/T

whereB = me +mp −mH = 13.6eV

• Naive guess ofT = B for recombination would putz∗ ≈ 45000.



Recombination
• But thephoton-baryon ratiois very low

ηbγ ≡ nb/nγ ≈ 3× 10−8Ωbh
2

• Eliminatein favor ofηbγ andB/T through

nγ = 0.244T 3 ,
me

B
= 3.76× 104

• Big coefficient

xe
2

1− xe
= 3.16× 1015

(
B

T

)3/2

e−B/T

T = 1/3eV → xe = 0.7, T = 0.3eV → xe = 0.2

• Further delayedby inability to maintain equilibrium since net is
through2γ process and redshifting out of line



Thomson Scattering
• Thomson scatteringof photons off of free electrons is the most

important CMB process with a cross section (averaged over
polarization states) of

σT =
8πα2

3m2
e

= 6.65× 10−25cm2

• Density of free electrons in a fully ionizedxe = 1 universe

ne = (1− Yp/2)xenb ≈ 10−5Ωbh
2(1 + z)3cm−3 ,

whereYp ≈ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomsonopacity

τ̇ ≡ neσTa

where dots are conformal timeη ≡
∫
dt/a derivatives andτ is the

optical depth.



Temperature Fluctuations
• Observe blackbody radiation with a temperature that differs at

10−5 coming from the surface of last scattering, with distribution
function (specific intensityIν = 4πν3f(ν) each polarization)

f(ν) = [exp(2πν/T (n̂))− 1]−1

• Decompose the temperature perturbation in spherical harmonics

T (n̂) =
∑
`m

T`mY`m(n̂)

• For Gaussian random fluctuations, the statistical properties of the
temperature field are determined by the power spectrum

〈T ∗`mT`′m′〉 = δ``′δmm′C`

where theδ-function comes from statistical isotropy



Spatial vs Angular Power
• Take the radiation distribution at last scattering to also be

described by an isotropic temperature fieldT (x) and
recombination to be instantaneous

T (n̂) =

∫
dD T (x)δ(D −D∗)

whereD is the comoving distance andD∗ denotes recombination.

• Describe the temperature field by its Fourier moments

T (x) =

∫
d3k

(2π)3
T (k)eik·x

with a power spectrum

〈T (k)∗T (k′)〉 = (2π)3δ(k− k′)PT (k)



Spatial vs Angular Power
• Note that the variance of the field

〈T (x)T (x)〉 =

∫
d3k

(2π)3
P (k)

=

∫
d ln k

k3P (k)

2π2
≡
∫
d ln k∆2

T (k)

so it is more convenient to think in the log power spectrum∆2
T (k)

• Temperature field

T (n̂) =

∫
d3k

(2π)3
T (k)eik·D∗n̂

• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑
`m

i`j`(kD∗)Y
∗
`m(k)Y`m(n̂)



Spatial vs Angular Power
• Multipole moments

T`m =

∫
d3k

(2π)3
T (k)4πi`j`(kD∗)Y`m(k)

• Power spectrum

〈T ∗`mT`′m′〉 =

∫
d3k

(2π)3
(4π)2(i)`−`

′
j`(kD∗)j`′(kD∗)Y

∗
`m(k)Y`′m′(k)PT (k)

= δ``′δmm′4π

∫
d ln k j2

` (kD∗)∆
2
T (k)

with
∫∞

0
j2
` (x)d lnx = 1/(2`(`+ 1)), slowly varying∆2

T

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2
T (`/D∗)

so`(`+ 1)C`/2π = ∆2
T is commonly used log power



Tight Coupling Approximation
• Nearrecombinationz ≈ 103 andΩbh

2 ≈ 0.02, the (comoving)
mean free pathof a photon

λC ≡
1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scalesλ� λC photons aretightly coupledto the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by asingle fluid
velocityvγ = vb and the photons carryno anisotropyin the rest
frame of the baryons

• → No heat conductionor viscosity(anisotropic stress) in fluid



Zeroth Order Approximation
• Momentum densityof a fluid is(ρ+ p)v, wherep is the pressure

• Neglectthe momentum density of thebaryons

R ≡ (ρb + pb)vb
(ργ + pγ)vγ

=
ρb + pb
ργ + pγ

=
3ρb
4ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)
sinceργ ∝ T 4 is fixed by the CMB temperatureT = 2.73(1 + z)K
– OK substantiallybefore recombination

• Neglectradiationin theexpansion

ρm
ρr

= 3.6

(
Ωmh

2

0.15

)( a

10−3

)



Number Continuity
• Photons arenot createdor destroyed. Without expansion

ṅγ +∇ · (nγvγ) = 0

but theexpansionor Hubble flow causesnγ ∝ a−3 or

ṅγ + 3nγ
ȧ

a
+∇ · (nγvγ) = 0

• Linearizeδnγ = nγ − n̄γ

(δnγ)
· = −3δnγ

ȧ

a
− nγ∇ · vγ(

δnγ
nγ

)·
= −∇ · vγ



Continuity Equation
• Number densitynγ ∝ T 3 so definetemperature fluctuationΘ

δnγ
nγ

= 3
δT

T
≡ 3Θ

• Real spacecontinuity equation

Θ̇ = −1

3
∇ · vγ

• Fourier space

Θ̇ = −1

3
ik · vγ



Momentum Conservation
• No expansion:̇q = F

• De Brogliewavelengthstretches with the expansion

q̇ +
ȧ

a
q = F

for photons this theredshift, for non-relativistic particles
expansion dragon peculiar velocities

• Collection of particles: momentum→ momentumdensity
(ργ + pγ)vγ and force→ pressure gradient

[(ργ + pγ)vγ]
· = −4

ȧ

a
(ργ + pγ)vγ −∇pγ

4

3
ργv̇γ =

1

3
∇ργ

v̇γ = −∇Θ



Euler Equation
• Fourier space

v̇γ = −ikΘ

• Pressure gradients (any gradient of a scalar field) generates a
curl-freeflow

• For convenience definevelocity amplitude:

vγ ≡ −ivγk̂

• EulerEquation:

v̇γ = kΘ

• ContinuityEquation:

Θ̇ = −1

3
kvγ



Oscillator: Take One
• Combine these to form thesimple harmonic oscillatorequation

Θ̈ + c2sk
2Θ = 0

where the adiabatic sound speed is defined through

c2s ≡
ṗγ
ρ̇γ

herec2s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs
sin(ks)

where thesound horizonis defined ass ≡
∫
csdη



Harmonic Extrema
• All modes arefrozenin at recombination (denoted with a subscript
∗) yielding temperature perturbations ofdifferent amplitudefor
different modes. For the adiabatic (curvature mode)Θ̇(0) = 0

Θ(η∗) = Θ(0) cos(ks∗)

• Modes caught in theextremaof their oscillation will have
enhanced fluctuations

kns∗ = nπ

yielding afundamental scaleor frequency, related to the inverse
sound horizon

kA = π/s∗

and aharmonic relationshipto the other extrema as1 : 2 : 3...



Peak Location
• The fundmentalphysical scaleis translated into a fundamental

angular scaleby simple projection according to the angular
diameter distanceDA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simplyDA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, andkA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In amatter-dominateduniverseη ∝ a1/2 soθA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Curvature
• In acurved universe, the apparent orangular diameter distanceis

no longer the conformal distanceDA = R sin(D/R) 6= D

• Objects in aclosed universearefurtherthan they appear!
gravitationallensingof the background...

• Curvature scale of the universe must be substantiallylarger than
current horizon

• Flat universeindicates critical density and implies missing energy
given local measures of the matter density “dark energy”

• D also depends ondark energy densityΩDE andequation of state
w = pDE/ρDE.

• Expansion rate at recombination ormatter-radiation ratioenters
into calculation ofkA.



Doppler Effect
• Bulk motionof fluid changes the observed temperature via

Doppler shifts (
∆T

T

)
dop

= n̂ · vγ

• Averaged over directions(
∆T

T

)
rms

=
vγ√
3

• Acoustic solution

vγ√
3

= −
√

3

k
Θ̇ =

√
3

k
kcs Θ(0)sin(ks)

= Θ(0)sin(ks)



Doppler Peaks?
• Doppler effectfor the photon dominated system is ofequal

amplitudeandπ/2 out of phase: extrema of temperature are
turning points of velocity

• Effects add inquadrature:(
∆T

T

)2

= Θ2(0)[cos2(ks) + sin2(ks)] = Θ2(0)

• No peaksin k spectrum! However the Doppler effect carries an
angular dependence that changes itsprojectionon the sky
n̂ · vγ ∝ n̂ · k̂

• Coordinates wherêz ‖ k̂

Y10Y`0 → Y`±1 0

recouplingj′`Y`0: no peaks in Doppler effect



Restoring Gravity
• Take a simplephoton dominatedsystemwith gravity

• Continuityaltered since a gravitational potential represents a
stretchingof thespatial fabricthat dilutes number densities –
formally a spatialcurvature perturbation

• Think of this as a perturbation to thescale factora→ a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

(δnγ)
· = −3δnγ

(
ȧ

a
+ Φ̇

)
− nγ∇ · vγ

so that thecontinuity equationbecomes

Θ̇ = −1

3
kvγ − Φ̇



Restoring Gravity
• Gravitational forcein momentum conservationF = −m∇Ψ

generalized to momentum density modifies theEuler equationto

v̇γ = k(Θ + Ψ)

• General relativity says thatΦ andΨ are the relativistic analogues
of theNewtonian potentialand thatΦ ≈ −Ψ.

• In our matter-dominated approximation,Φ represents matter
density fluctuations through the cosmologicalPoisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use ofcomoving coordinates
for k (a2 factor), the removal of thebackground densityinto the
background expansion(ρ∆m) and finally acoordinate subtletythat
enters into the definition of∆m
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Acoustic Dynamics



Constant Potentials
• In the matter dominated epochpotentials are constantbecause

infall generates velocitiesasvm ∼ kηΨ

• Velocity divergence generates densityperturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potentialfluctuations as
Φ ∼ ∆m/(kη)

2 ∼ −Ψ, keeping them constant. Note that because
of the expansion, density perturbations mustgrow to keep
potentials constant.

• Here we have used theFriedman equationH2 = 8πGρm/3 and
η =

∫
d ln a/(aH) ∼ 1/(aH)

• More generally, ifstress perturbationsare negligible compared
with density perturbations( δp� δρ ) then potential will remain
roughly constant – more specifically a variant called theBardeen
or comoving curvatureζ is constant



Oscillator: Take Two
• Combine these to form thesimple harmonic oscillatorequation

Θ̈ + c2sk
2Θ = −k

2

3
Ψ− Φ̈

• In aCDM dominatedexpansionΦ̇ = Ψ̇ = 0. Also for photon
dominationc2s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2sk
2(Θ + Ψ) = 0

• Solution is just anoffset versionof the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ + Ψ is also theobserved temperature fluctuationsince photons
lose energy climbing out ofgravitational potentialsat
recombination



Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed oreffective temperature

Θ + Ψ

• Effective temperature oscillates aroundzerowith amplitude given
by theinitial conditions

• Note: initial conditions are set when the perturbation isoutside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says thatinitial temperatureis given byinitial potential



Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potentialis a perturbation to the temporal

coordinate [formally agauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in thescale factor,

t =

∫
da

aH
∝
∫

da

aρ1/2
∝ a3(1+w)/2

wherew ≡ p/ρ so that duringmatter domination

δa

a
=

2

3

δt

t

• CMB temperature iscoolingasT ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ



Baryon Loading
• Baryons add extramassto the photon-baryon fluid

• Controlling parameter is themomentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of orderunity at recombination

• Momentum density of thejoint systemis conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb

where the controlling parameter is themomentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of orderunity at recombination



New Euler Equation
• Momentum density ratio enters as

[(1 +R)(ργ + pγ)vγb]
· = −4

ȧ

a
(1 +R)(ργ + pγ)vγb

−∇pγ − (1 +R)(ργ + pγ)∇Ψ

same as before except for(1 +R) terms so

[(1 +R)vγb]
· = kΘ + (1 +R)kΨ

• Photon continuityremains the same

Θ̇ = −k
3
vγb − Φ̇

• Modification ofoscillator equation

[(1 +R)Θ̇]· +
1

3
k2Θ = −1

3
k2(1 +R)Ψ− [(1 +R)Φ̇]·



Oscillator: Take Three
• Combine these to form the not-quite-sosimple harmonic oscillator

equation

c2s
d

dη
(c−2
s Θ̇) + c2sk

2Θ = −k
2

3
Ψ− c2s

d

dη
(c−2
s Φ̇)

wherec2s ≡ ṗγb/ρ̇γb

c2s =
1

3

1

1 +R

• In aCDM dominatedexpansionΦ̇ = Ψ̇ = 0 and theadiabatic
approximationṘ/R� ω = kcs

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
• Photon-baryon ratio enters inthree ways

• Overall largeramplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peakmodulationof effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of thesound horizondown or`A up

`A ∝
√

1 +R

• Actual effectssmallersinceR evolves



Photon Baryon Ratio Evolution
• Oscillator equation has timeevolving mass

c2s
d

dη
(c−2
s Θ̇) + c2sk

2Θ = 0

• Effective mass is ismeff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2
s kcsA

2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillationA ∝ (1 +R)−1/4 decays adiabaticallyas
the photon-baryon ratio changes



Oscillator: Take Three and a Half
• The not-quite-sosimple harmonic oscillatorequation is aforced

harmonic oscillator

c2s
d

dη
(c−2
s Θ̇) + c2sk

2Θ = −k
2

3
Ψ− c2s

d

dη
(c−2
s Φ)

changes in thegravitational potentialsalter the form of the
acoustic oscillations

• If the forcing term has atemporal structurethat is related to the
frequencyof the oscillation, this becomes adriven harmonic
oscillator

• Term involvingΨ is the ordinarygravitational force

• Term involvingΦ involves theΦ̇ term in thecontinuity equationas
a (curvature) perturbation to thescale factor



Potential Decay
• Matter-to-radiation ratio

ρm
ρr

≈ 24Ωmh
2
( a

10−3

)
of orderunity at recombination in a lowΩm universe

• Radiation is not stress free and soimpedesthe growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillatesaround a constant value,ρr ∝ a−4 so the
Netwoniancurvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely todrive the oscillator - close to fully

coherent

[Θ + Ψ](η) = [Θ + Ψ](0) + ∆Ψ−∆Φ

=
1

3
Ψ(0)− 2Ψ(0) =

5

3
Ψ(0)

• 5× the amplitude of the Sachs-Wolfe effect!

• Coherent approximation isexactfor a photon-baryon fluid but
reality is reduced to∼ 4× because ofneutrino contributionto
radiation

• Actual initial conditionsareΘ + Ψ = Ψ/2 for radiation
domination but comparison to matter dominated SW correct



External Potential Approach
• Solution tohomogeneous equation

(1 +R)−1/4cos(ks) , (1 +R)−1/4sin(ks)

• Give the general solution for an external potential by propagating
impulsive forces

(1 +R)1/4Θ(η) = Θ(0)cos(ks) +

√
3

k

[
Θ̇(0) +

1

4
Ṙ(0)Θ(0)

]
sin ks

+

√
3

k

∫ η

0

dη′(1 +R′)3/4sin[ks− ks′]F (η′)

where

F = −Φ̈− Ṙ

1 +R
Φ̇− k2

3
Ψ

• Useful if general form of potential evolution is known



Damping
• Tight coupling equations assume aperfect fluid: noviscosity, no

heat conduction

• Fluid imperfections are related to themean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity toThompson scattering

• Dissipation is related to thediffusion length: random walk
approximation

λD =
√
NλC =

√
η/λC λC =

√
ηλC

thegeometric meanbetween the horizon and mean free path

• λD/η∗ ∼ few %, so expect thepeaks:> 3 to be affected by
dissipation



Equations of Motion
• Continuity

Θ̇ = −k
3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation withρb = mbnb

• Euler

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ
a
vb + kΨ + τ̇(vγ − vb)/R

where the photons gain an anisotropic stress termπγ from radiation
viscosityand amomentum exchangeterm with the baryons and
are compensated by theopposite termin the baryon Euler equation



Viscosity
• Viscosityis generated from radiationstreamingfrom hot to cold

regions

• Expect

πγ ∼ vγ
k

τ̇

generated by streaming, suppressed byscatteringin a wavelength
of the fluctuation.Radiative transfersays

πγ ≈ 2Avvγ
k

τ̇

whereAv = 16/15

v̇γ = k(Θ + Ψ)− k

3
Av
k

τ̇
vγ



Oscillator: Penultimate Take
• Adiabatic approximation( ω � ȧ/a)

Θ̇ ≈ −k
3
vγ

• Oscillator equation contains ȧΘ damping term

c2s
d

dη
(c−2
s Θ̇) +

k2c2s
τ̇
AvΘ̇ + k2c2sΘ = −k

2

3
Ψ− c2s

d

dη
(c−2
s Φ̇)

• Heat conductionterm similar in that it is proportional tovγ and is
suppressed by scatteringk/τ̇ . Expansion ofEuler equationsto
leading order inkτ̇ gives

Ah =
R2

1 +R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take
• Finaloscillator equation

c2s
d

dη
(c−2
s Θ̇) +

k2c2s
τ̇

[Av + Ah]Θ̇ + k2c2sΘ = −k
2

3
Ψ− c2s

d

dη
(c−2
s Φ̇)

• Solve in theadiabatic approximation

Θ ∝ exp(i

∫
ωdη)

−ω2 +
k2c2s
τ̇

(Av + Ah)iω + k2c2s = 0 (1)



Dispersion Relation
• Solve

ω2 = k2c2s

[
1 + i

ω

τ̇
(Av + Ah)

]
ω = ±kcs

[
1 +

i

2

ω

τ̇
(Av + Ah)

]
= ±kcs

[
1± i

2

kcs
τ̇

(Av + Ah)

]
• Exponentiate

exp(i

∫
ωdη) = e±iks exp[−k2

∫
dη

1

2

c2s
τ̇

(Av + Ah)]

= e±iks exp[−(k/kD)2] (2)

• Damping isexponentialunder the scalekD



Diffusion Scale
• Diffusion wavenumber

k−2
D =

∫
dη

1

τ̇

1

6(1 +R)

(
16

15
+

R2

(1 +R)

)
• Limiting forms

lim
R→0

k−2
D =

1

6

16

15

∫
dη

1

τ̇

lim
R→∞

k−2
D =

1

6

∫
dη

1

τ̇

• Geometric mean between horizon and mean free path as expected
from arandom walk

λD =
2π

kD
∼ 2π√

6
(ητ̇−1)1/2
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Stokes Parameters
• Polarization state of radiation in direction̂n described by the

intensity matrix
〈
Ei(n̂)E∗

j (n̂)
〉
, whereE is the electric field vector

and the brackets denote time averaging.

• As a hermitian matrix, it can be decomposed into the Pauli basis

P = C
〈
E(n̂)E†(n̂)

〉
= Θ(n̂)σ0 +Q(n̂) σ3 + U(n̂) σ1 + V (n̂) σ2 ,

where

σ0 =

(
1 0

0 1

)
σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)

• Stokes parameters recovered asTr(σiP)/2



Linear Polarization
• Q ∝ 〈E1E

∗
1〉 − 〈E2E

∗
2〉, U ∝ 〈E1E

∗
2〉+ 〈E2E

∗
1〉.

• Counterclockwise rotation of axes byθ = 45◦

E1 = (E ′
1 − E ′

2)/
√

2 , E2 = (E ′
1 + E ′

2)/
√

2

• U ∝ 〈E ′
1E

′∗
1 〉 − 〈E ′

2E
′∗
2 〉, difference of intensities at45◦ orQ′

• More generally,P transforms as a tensor under rotations and

Q′ = cos(2θ)Q+ sin(2θ)U

U ′ = − sin(2θ)Q+ cos(2θ)U

• or

Q′ ± iU ′ = e∓2iθ[Q± iU ]

acquires a phase under rotation and is a spin±2 object



Coordinate Independent Representation
• Two directions: orientation of polarization and change in

amplitude, i.e.Q andU in the basis of the Fourier wavevector for
small sections of sky are calledE andB components

E(l)± iB(l) = −
∫
dn̂[Q′(n̂)± iU ′(n̂)]e−il·n̂

= −e∓2iφl

∫
dn̂[Q(n̂)± iU(n̂)]eil·n̂

• For theB-mode to not vanish, the polarization must point in a
direction not related to the wavevector - not possible for density
fluctuations in linear theory

• Generalize to all-sky: plane waves are eigenmodes of the Laplace
operator on the tensorP.



Spin Harmonics
• Laplace Eigenfunctions

∇2
±2Y`m[σ3 ∓ iσ1] = −[l(l + 1)− 4]±2Y`m[σ3 ∓ iσ1]

• Spins spherical harmonics: orthogonal and complete∫
dn̂sY

∗
`m(n̂)sY`m(n̂) = δ``′δmm′∑

`m

sY
∗
`m(n̂)sY`m(n̂′) = δ(φ− φ′)δ(cos θ − cos θ′)

where the ordinary spherical harmonics areY`m = 0Y`m

• Given in terms of the rotation matrix

sY`m(βα) = (−1)m
√

2`+ 1

4π
D`
−ms(αβ0)



Statistical Representation
• All-sky decomposition

[Q(n̂)± iU(n̂)] =
∑
`m

[E`m ± iB`m]±2Y`m(n̂)

• Power spectra

〈E∗
`mE`m〉 = δ``′δmm′CEE

`

〈B∗
`mB`m〉 = δ``′δmm′CBB

`

• Cross correlation

〈E∗
`mE`m〉 = δ``′δmm′CΘE

`

others vanish if parity is conserved



Thomson Scattering
• Differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

whereσT = 8πα2/3me is the Thomson cross section,Ê′ andÊ

denote the incoming and outgoing directions of the electric field or
polarization vector.

• Summed over angle and incoming polarization∑
i=1,2

∫
dn̂′

dσ

dΩ
= σT



Polarization Generation
• Heuristic: incoming radiation shakes an electron in direction of

electric field vector̂E′

• Radiates photon with polarization also in directionÊ′

• But photon cannot be longitudinally polarized so that scattering
into 90◦ can only pass one polarization

• Linearly polarized radiation like polarization by reflection

• Unlike reflection of sunlight, incoming radiation is nearly isotropic

• Missing linear polarization supplied by scattering from direction
orthogonal to original incoming direction

• Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization
• Break down of tight-coupling leads to quadrupole anisotropy of

πγ ≈
k

τ̇
vγ

• ScalingkD = (τ̇ /η∗)
1/2 → τ̇ = k2

Dη∗

• Know: kDs∗ ≈ kDη∗ ≈ 10

• So:

πγ ≈
k

kD

1

10
vγ

∆P ≈
`

`D

1

10
∆T



Acoustic Polarization
• Gradient of velocity is along direction of wavevector, so

polarization is pureE-mode

• Velocity is90◦ out of phase with temperature – turning points of
oscillator are zero points of velocity:

Θ + Ψ ∝ cos(ks); vγ ∝ sin(ks)

• Polarization peaks are at troughs of temperature power



Cross Correlation
• Cross correlation of temperature and polarization

(Θ + Ψ)(vγ) ∝ cos(ks) sin(ks) ∝ sin(2ks)

• Oscillation at twice the frequency

• Correlation: radial or tangential around hot spots

• Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is highS/N or if bands do
not resolve oscillations

• Good check for systematics and foregrounds

• Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features



Reionization
• Ionization depth during reionization

τ(z) =
∫

dηneσT a =
∫

d ln a
neσT

H(a)
∝ (Ωbh

2)(Ωmh2)−1/2(1 + z)3/2

=
(

Ωbh
2

0.02

)(
Ωmh2

0.15

)−1/2(1 + z

61

)3/2

• Quasars sayzri ≥ 7 soτ > 0.04

• During reionization, cosmic quadrupole of∼ 30µK from the
Sachs-Wolfe effect scatters intoE-polarization

• Few percent optical depth leads to fraction of aµK signal

• Peaks at horizon scale at recombination: quadrupole source
j2(kD∗) maximal atkD∗ ≈ kη ≈ 2



Breaking degeneracies
• First objects, breaking degeneracy of initial amplitude vs optical

depth in the peak heights

C` ∝ e−2τ

only below horizon scale at reionization

• Breaks degeneracies in angular diameter distance by removing an
ambiguity for ISW-dark energy measure, helps inΩDE − wDE
plane



Gravitational Wave
• Gravitational waves produce a quadrupolar distortion in the

temperature of the CMB like effect on a ring of test particles

• Like ISW effect, source is a metric perturbation with time
dependent amplitude

• After recombination, is a source of observable temperature
anisotropy – but is therefore confined to low order multipoles

• Generated during inflation by quandum fluctuations



Gravitational Wave Polarization
• In the tight coupling regime, quadrupole anisotropy suppressed by

scattering

πγ ≈
ḣ

τ̇

• Since gravitational waves oscillate and decay at horizon crossing,
the polarization peaks at the horizon scale at recombination not the
damping scale

• More distinct signature in theB-mode polarization since
symmetry of plane wave is broken by the transverse nature of
gravity wave polarization
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Linear Perturbation Theory



Covariant Perturbation Theory
• Covariant= takes sameform in all coordinate systems

• Invariant= takes the samevaluein all coordinate systems

• Fundamental equations:Einstein equations, covariantconservation
of stress-energy tensor:

Gµν = 8πGTµν

∇µT
µν = 0

• Preserve general covariance by keeping alldegrees of freedom: 10
for each symmetric 4×4 tensor

1 2 3 4
5 6 7

8 9
10



Metric Tensor
• Expand the metric tensor around thegeneral FRW metric

g00 = −a2, gij = a2γij .

where the “0” component isconformal timeη = dt/a andγij is a
spatial metric of constant curvatureK = H2

0 (Ωtot − 1).

• Add in a general perturbation (Bardeen 1980)

g00 = −a−2(1− 2A) ,

g0i = −a−2Bi ,

gij = a−2(γij − 2HLγ
ij − 2H ij

T ) .

• (1)A ≡ a scalarpotential; (3)Bi a vectorshift, (1)HL a
perturbation to the spatialcurvature; (5)H ij

T a trace-freedistortion
to spatial metric =(10)



Matter Tensor
• Likewise expand the matterstress energytensor around a

homogeneous densityρ and pressurep:

T 0
0 = −ρ− δρ ,

T 0
i = (ρ+ p)(vi −Bi) ,

T i
0 = −(ρ+ p)vi ,

T ij = (p+ δp)δij + pΠi
j ,

• (1) δρ adensity perturbation; (3) vi a vectorvelocity, (1) δp a
pressure perturbation; (5) Πij ananisotropic stressperturbation

• So far this isfully generaland applies to any type of matter or
coordinate choice including non-linearities in the matter, e.g.
cosmological defects.



Counting DOF’s

20 Variables (10 metric; 10 matter)

−10 Einstein equations

−4 Conservation equations

+4 Bianchi identities

−4 Gauge (coordinate choice 1 time, 3 space)

——

6 Degrees of freedom

• Without loss of generality these can be taken to be the6
componentsof thematter stress tensor

• For the background, specifyp(a) or equivalently
w(a) ≡ p(a)/ρ(a) theequation of stateparameter.



Scalar, Vector, Tensor
• In linear perturbation theory, perturbations may be separated by

their transformation propertiesunder rotation and translation.

• The eigenfunctions of theLaplacian operatorform a complete set

∇2Q(0) = −k2Q(0) S ,

∇2Q
(±1)
i = −k2Q

(±1)
i V ,

∇2Q
(±2)
ij = −k2Q

(±2)
ij T ,

• Vector and tensor modes satisfy divergence-free and
transverse-traceless conditions

∇iQ
(±1)
i = 0

∇iQ
(±2)
ij = 0

γijQ
(±2)
ij = 0



Vector and Tensor Modes
vs. Vector and Tensor Quantities

• A scalar mode carries with it associated vector (curl-free) and
tensor (longitudinal) quantities

• A vector mode carries and associated tensor (neither longitudinal
or transverse) quantities

• These are built from the mode basis out of covariant derivatives
and the metric

Q
(0)
i = −k−1∇iQ

(0) ,

Q
(0)
ij = (k−2∇i∇j +

1

3
γij)Q

(0) ,

Q
(±1)
ij = − 1

2k
[∇iQ

(±1)
j +∇jQ

(±1)
i ] ,



Spatially Flat Case
• For a spatially flat background metric, harmonics are related to

plane waves:

Q(0) = exp(ik · x)

Q
(±1)
i =

−i√
2
(ê1 ± iê2)iexp(ik · x)

Q
(±2)
ij = −

√
3

8
(ê1 ± iê2)i(ê1 ± iê2)jexp(ik · x)

whereê3 ‖ k. Chosen as spin states, c.f. polarization.

• For vectors, the harmonic points in a direction orthogonal tok

suitable for thevortical componentof a vector

• For tensors, the harmonic is transverse and traceless as appropriate
for the decompositon ofgravitational waves



Perturbationk-Modes
• For thekth eigenmode, thescalar componentsbecome

A(x) = A(k)Q(0) , HL(x) = HL(k)Q(0) ,

δρ(x) = δρ(k)Q(0) , δp(x) = δp(k)Q(0) ,

thevectors componentsbecome

Bi(x) =
1∑

m=−1

B(m)(k)Q
(m)
i , vi(x) =

1∑
m=−1

v(m)(k)Q
(m)
i ,

and thetensors components

HT ij(x) =
2∑

m=−2

H
(m)
T (k)Q

(m)
ij , Πij(x) =

2∑
m=−2

Π(m)(k)Q
(m)
ij ,



Homogeneous Einstein Equations
• Einstein (Friedmann) equations:(

1

a

da

dt

)2

=
8πG

3
ρ

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p)

so thatw ≡ p/ρ < −1/3 for acceleration

• Conservation equation∇µTµν = 0 implies

ρ̇

ρ
= −3(1 + w)

ȧ

a



Homogeneous Einstein Equations
• Counting exercise:

20 Variables (10 metric; 10 matter)

−17 Homogeneity and Isotropy

−2 Einstein equations

−1 Conservation equations

+1 Bianchi identities

——

1 Degree of freedom

• without loss of generality choose ratio of homogeneous & isotropic
component of thestress tensorto the densityw(a) = p(a)/ρ(a).



Acceleration Implies Negative Pressure
• Role ofstressesin the background cosmology

• HomogeneousEinstein equationsGµν = 8πGTµν imply the two
Friedman equations(flat universe, or associating curvature
ρK = −3K/8πGa2)(

1

a

da

dt

)2

=
8πG

3
ρ

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p)

so that the total equation of statew ≡ p/ρ < −1/3 for acceleration

• Conservation equation∇µTµν = 0 implies

ρ̇

ρ
= −3(1 + w)

ȧ

a

• so thatρ must scale more slowly thana−2



Questions regarding Dark Energy
• Coincidence:given the very different scalings of matter and dark

energy witha, why are theycomparable now?

• Stability: why doesn’t negative pressure implyaccelerated
collapse? or why doesn’t the vacuum suck?

• Answer:stability is associated with stress (pressure)gradientsnot
stress (pressure) itself.

• Example:thecosmological constantwΛ = −1, a constant in time
and space – no gradients.

• Example:ascalar fieldwherew = p/ρ 6= δp/δρ = sound speed.



Covariant Scalar Equations
• Einstein equations(suppressing0) superscripts (Hu & Eisenstein 1999):

(k2 − 3K)[HL +
1
3
HT +

ȧ

a

1
k2

(kB − ḢT )]

= 4πGa2

[
δρ + 3

ȧ

a
(ρ + p)(v −B)/k

]
, Poisson Equation

k2(A + HL +
1
3
HT ) +

(
d

dη
+ 2

ȧ

a

)
(kB − ḢT )

= 8πGa2pΠ ,

ȧ

a
A− ḢL −

1
3
ḢT −

K

k2
(kB − ḢT )

= 4πGa2(ρ + p)(v −B)/k ,[
2
ä

a
− 2

(
ȧ

a

)2

+
ȧ

a

d

dη
− k2

3

]
A−

[
d

dη
+

ȧ

a

]
(ḢL +

1
3
kB)

= 4πGa2(δp +
1
3
δρ) .



Covariant Scalar Equations
• Conservation equations:continuityandNavier Stokes[

d

dη
+ 3

ȧ

a

]
δρ + 3

ȧ

a
δp = −(ρ + p)(kv + 3ḢL) ,[

d

dη
+ 4

ȧ

a

] [
(ρ + p)

(v −B)
k

]
= δp− 2

3
(1− 3

K

k2
)pΠ + (ρ + p)A ,

• Equations are not independent since∇µG
µν = 0 via theBianchi

identities.

• Related to the ability to choose acoordinate systemor “gauge” to
represent the perturbations.



Covariant Scalar Equations
• DOF counting exercise

8 Variables (4 metric; 4 matter)

−4 Einstein equations

−2 Conservation equations

+2 Bianchi identities

−2 Gauge (coordinate choice 1 time, 1 space)

——

2 Degrees of freedom

• without loss of generality choose scalar components of thestress
tensorδp, Π .



Covariant Vector Equations
• Einstein equations

(1− 2K/k2)(kB(±1) − Ḣ
(±1)
T )

= 16πGa2(ρ + p)(v(±1) −B(±1))/k ,[
d

dη
+ 2

ȧ

a

]
(kB(±1) − Ḣ

(±1)
T )

= −8πGa2pΠ(±1) .

• Conservation Equations[
d

dη
+ 4

ȧ

a

]
[(ρ + p)(v(±1) −B(±1))/k]

= −1
2
(1− 2K/k2)pΠ(±1) ,

• Gravity providesno sourceto vorticity→ decay



Covariant Vector Equations
• DOF counting exercise

8 Variables (4 metric; 4 matter)

−4 Einstein equations

−2 Conservation equations

+2 Bianchi identities

−2 Gauge (coordinate choice 1 time, 1 space)

——

2 Degrees of freedom

• without loss of generality choose vector components of thestress
tensorΠ(±1).



Covariant Tensor Equation
• Einstein equation[

d2

dη2
+ 2

ȧ

a

d

dη
+ (k2 + 2K)

]
H

(±2)
T = 8πGa2pΠ(±2) .

• DOF counting exercise

4 Variables (2 metric; 2 matter)

−2 Einstein equations

−0 Conservation equations

+0 Bianchi identities

−0 Gauge (coordinate choice 1 time, 1 space)

——

2 Degrees of freedom

• wlog choose tensor components of thestress tensorΠ(±2).



Arbitrary Dark Components
• Total stress energy tensor can be broken up intoindividual pieces

• Dark componentsinteract only through gravity and so satisfy
separate conservation equations

• Einstein equation source remains the sum of components.

• To specify an arbitrary dark component, give the behavior of the
stress tensor: 6 components: δp, Π(i), wherei = −2, ..., 2.

• Many types of dark components (dark matter, scalar fields,
massive neutrinos,..) havesimple formsfor their stress tensor in
terms of the energy density, i.e. described byequations of state.

• An equation of state for the backgroundw = p/ρ is notsufficient
to determine the behavior of the perturbations.



Gauge
• Metric and matter fluctuations take ondifferent valuesin different

coordinate system

• No such thing as a “gauge invariant” density perturbation!

• Generalcoordinate transformation:

η̃ = η + T

x̃i = xi + Li

free to choose(T, Li) to simplify equations or physics.
Decompose these into scalar and vector harmonics.

• Gµν andTµν transform astensors, so components in different
frames can be related



Gauge Transformation
• Scalar Metric:

Ã = A− Ṫ − ȧ

a
T ,

B̃ = B + L̇ + kT ,

H̃L = HL −
k

3
L− ȧ

a
T ,

H̃T = HT + kL ,

• Scalar Matter (J th component):

δρ̃J = δρJ − ρ̇JT ,

δp̃J = δpJ − ṗJT ,

ṽJ = vJ + L̇,

• Vector:

B̃(±1) = B(±1) + L̇(±1), H̃
(±1)
T = H

(±1)
T + kL(±1), ṽ

(±1)
J = v

(±1)
J + L̇(±1),



Common Scalar Gauge Choices
• A coordinate system isfully specifiedif there is an explicit

prescription for(T, Li) or for scalars(T, L)

• Newtonian:

B̃ = H̃T = 0

Ψ ≡ Ã (Newtonian potential)

Φ ≡ H̃L (Newtonian curvature)

L = −HT /k

T = −B/k + ḢT /k2

Good:intuitive Newtonian like gravity; matter and metric
algebraically related; commonly chosen foranalytic CMBand
lensingwork

Bad: numericallyunstable



Example: Newtonian Reduction
• In the general equations, setB = HT = 0:

(k2 − 3K)Φ = 4πGa2

[
δρ + 3

ȧ

a
(ρ + p)v/k

]
k2(Ψ + Φ) = 8πGa2pΠ

soΨ = −Φ if anisotropic stressΠ = 0 and[
d

dη
+ 3

ȧ

a

]
δρ + 3

ȧ

a
δp = −(ρ + p)(kv + 3Φ̇) ,[

d

dη
+ 4

ȧ

a

]
(ρ + p)v = kδp− 2

3
(1− 3

K

k2
)p kΠ + (ρ + p) kΨ ,

• Competition betweenstress(pressure and viscosity) andpotential
gradients



Common Scalar Gauge Choices
• Comoving:

B̃ = ṽ (T 0
i = 0)

HT = 0

ξ = Ã

ζ = H̃L (Bardeen curvature)

∆ = δ̃ (comoving density pert)

T = (v −B)/k

L = −HT /k

Good:Algebraic relations between matter and metric

• Euler equation becomes an algebraic relation between stress
and potential

(ρ+ p)ξ = −δp+
2

3

(
1− 3K

k

)
pΠ



Common Scalar Gauge Choices
• Einstein equation lacks momentum density source

ȧ

a
ξ − ζ̇ − K

k2
kv = 0

• Combine:ζ is conservedif stress fluctuations negligible, e.g.
above the horizon if|K| � H2

ζ̇ +Kv/k =
ȧ

a

[
− δp

ρ+ p
+

2

3

(
1− 3K

k2

)
p

ρ+ p
Π

]
→ 0

Bad: explicitly relativistic choice



Common Scalar Gauge Choices
• Synchronous:

Ã = B̃ = 0

ηL ≡ −H̃L −
1
3
H̃T

hT = H̃T or h = 6HL

T = a−1

∫
dηaA + c1a

−1

L = −
∫

dη(B + kT ) + c2

Good:stable, the choice of numerical codes

Bad: residualgauge freedomin constantsc1, c2 must be
specified as an initial condition, intrinsically relativistic.



Common Scalar Gauge Choices
• Spatially Unperturbed:

H̃L = H̃T = 0

L = −HT /k

Ã , B̃ = metric perturbations

T =
(

ȧ

a

)−1(
HL +

1
3
HT

)
Good:eliminates spatial metric in evolution equations; useful in
inflationary calculations(Mukhanov et al)

Bad: intrinsically relativistic.

• Caution:perturbation evolution is governed by the behavior of
stress fluctuations and an isotropic stress fluctuationδp is gauge
dependent.



Hybrid “Gauge Invariant” Approach
• With the gauge transformation relations, express variables ofone

gaugein terms of those inanother– allows a mixture in the
equations of motion

• Example:Newtonian curvature and comoving density

(k2 − 3K)Φ = 4πGa2ρ∆

ordinary Poisson equation then impliesΦ approximately constant
if stresses negligible.

• Example:Exact Newtonian curvature above the horizon derived
through Bardeen curvature conservation

Gauge transformation

Φ = ζ +
ȧ

a

v

k



Hybrid “Gauge Invariant” Approach
Einstein equation to eliminate velocity

ȧ

a
Ψ− Φ̇ = 4πGa2(ρ+ p)v/k

Friedman equation with no spatial curvature(
ȧ

a

)2

=
8πG

3
a2ρ

With Φ̇ = 0 andΨ ≈ −Φ

ȧ

a

v

k
= − 2

3(1 + w)
Φ



Hybrid “Gauge Invariant” Approach
Combining gauge transformation with velocity relation

Φ =
3 + 3w

5 + 3w
ζ

Usage: calculateζ from inflation determinesΦ for any choice of
matter content or causal evolution.

• Example:Scalar field (“quintessence” dark energy) equations in
comoving gauge imply asound speedδp/δρ = 1 independent of
potentialV (φ). Solve in synchronous gauge (Hu 1998).
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Inflationary Perturbations



Scalar Fields
• Stress-energy tensor of a scalar field

T µν = ∇µϕ∇νϕ−
1

2
(∇αϕ∇αϕ+ 2V )δµν .

• For the background〈φ〉 ≡ φ0

ρφ =
1

2
a−2φ̇2

0 + V pφ =
1

2
a−2φ̇2

0 +−V

• So for kinetic dominatedwφ = pφ/ρφ → 1

• And potential dominatedwφ = pφ/ρφ → −1

• A slowly rolling (potential dominated) scalar field can accelerate
the expansion and so solve the horizon problem or act as a dark
energy candidate



Equation of Motion
• Can use general equations of motion of dictated by stress energy

conservation

ρ̇φ = −3(ρφ + pφ)
ȧ

a
,

to obtain the equation of motion of the background fieldφ

φ̈0 + 2
ȧ

a
φ̇0 + a2V ′ = 0 ,

• Likewise for the perturbationsφ = φ0 + φ1

δρφ = a−2(φ̇0φ̇1 − φ̇2
0A) + V ′φ1 ,

δpφ = a−2(φ̇0φ̇1 − φ̇2
0A)− V ′φ1 ,

(ρφ + pφ)(vφ −B) = a−2kφ̇0φ1 ,

pφπφ = 0 ,



Equation of Motion
• The stress of the perturbations is defined through

δpφ = δρφ + 3(ρφ + pφ)
vφ −B

k

ȧ

a
(1− c2φ)

wherec2φ ≡ ṗφ/ρ̇φ is the “adiabatic” sound speed

• So for the comoving gauge wherevφ = B, δpφ = δρφ so the sound
speed relevant for stability isδpφ/δρφ = 1. Very useful for solving
system since in this gauge everything is specified byw(a)

• Scalar field fluctuations are stable inside the horizon and are a
good candidate for the smooth dark energy

• More generally, continuity and Euler equations imply

φ̈1 = −2
ȧ

a
φ̇1 − (k2 + a2V ′′)φ1 + (Ȧ− 3ḢL − kB)φ̇0 − 2Aa2V ′ .



Inflationary Perturbations
• Classical equations of motion for scalar field inflaton determine

the evolution of scalar field fluctuations generated by quantum
fluctuations

• Since the Bardeen or comoving curvatureζ is conserved in the
absence of stress fluctuations (i.e. outside the apparent horizon,
calculate this and we’re done no matter what happens in between
inflation and the late universe (reheating etc.)

• But in the comoving gaugeφ1 = 0! no scalar-field perturbation

• Solution: solve the scalar field equation in the dual gauge where
the curvatureHL = 0 (andHT = 0 to fix the gauge completely, as
the “spatially unperturbed” or “spatially flat” gauge) and transform
the result to the comoving gauge



Transformation to Comoving Gauge
• Scalar field transforms as scalar field

φ̃1 = φ1 − φ̇0T

• To get to comoving framẽφ1 = 0, T = φ1/φ̇0, and
H̃T = HT + kL so

ζ = HL −
k

3
L− ȧ

a
T ,

= HL +
HT

3
− ȧ

a

φ1

φ̇0

• Transformation particularly simple from a gauge with
HT = HL = 0, i.e. spatially unperturbed metric

ζ = − ȧ
a

φ1

φ̇0



Scalar Field Eqn of Motion
• Scalar field perturbation in spatially unperturbed gauge is simply

proportional to resulting Bardeen curvature with the
proportionality constant as the expansion rate over roll rate –
enhanced

• Scalar field fluctuation satisfies classical equation of motion

φ̈1 = −2
ȧ

a
φ̇1 − (k2 + a2V ′′)φ1 + (Ȧ− kB)φ̇0 − 2Aa2V ′ .

• Metric terms may be eliminated through Einstein equations

A = 4πGa2

(
ȧ

a

)−1

(ρφ + pφ)(vφ −B)/k

= 4πG

(
ȧ

a

)−1

φ̇0φ1



Scalar Field Eqn of Motion
• And

kB = 4πGa2[

(
ȧ

a

)−1

δρφ + 3
ȧ

a
(ρφ + pφ)(vφ −B)/k]

= 4πG[

(
ȧ

a

)−1

(φ̇0φ̇1 + a2V ′φ1)−
(
ȧ

a

)−2

(4πGφ̇0)
2φ̇0φ1 + 3φ̇0φ1]

• SoȦ− kB ∝ φ1 with proportionality that depends only on the
background evolution – Einstein & scalar field equations reduce to
a single second order diff eq!

• Equation resembles a damped oscillator equation with a particular
dispersion relation

φ̈1 + 2
ȧ

a
φ̇1 + [k2 + f(η)]φ1



Exact Equation
• Rewrite equations of motion in terms of slow roll parameters but

do not require them to be small or constant.

• Deviation from de Sitter expansion

ε ≡ 3

2
(1 + wφ)

=
3
2
φ̇2

0/a
2V

1 + 1
2
φ̇2

0/a
2V

• Deviation from overdamped limit ofd2φ0/dt
2 = 0

δ ≡ φ̈0

φ̇

(
ȧ

a

)−1

− 1



Exact Equation
• Friedman equations:(

ȧ

a

)2

= 4πGφ̇2
0ε
−1

d

dη

(
ȧ

a

)
=

(
ȧ

a

)2

(1− ε)

• Homogenous scalar field equation

φ̇0
ȧ

a
(3 + δ) = −a2V ′

• Combination

ε̇ = 2ε(δ + ε)
ȧ

a



Exact equation
• Rewrite inu ≡ aφ to remove expansion damping

ü+ [k2 + g(η)]u = 0

whereMukhanov

g(η) ≡ f(η) + ε− 2

= −
(
ȧ

a

)2

[2 + 3δ + 2ε+ (δ + ε)(δ + 2ε)]− ȧ

a
δ̇

= − z̈
z

and

z ≡ a

(
ȧ

a

)−1

φ̇0



Slow Roll Limit
• Slow roll ε� 1, δ � 1, δ̇ � ȧ

a

ü+ [k2 − 2

(
ȧ

a

)2

]u = 0

• or for conformal time measured from the end of inflation

η̃ = η − ηend

η̃ =

∫ a

aend

da

Ha2
≈ − 1

aH

• Compact, slow-roll equation:

ü+ [k2 − 2

η̃2
]u = 0



Slow Roll Limit
• Slow roll equation has the exact solution:

u = A(k ± i

η̃
)e∓ikη̃

• For |kη̃| � 1 (early times, inside Hubble length) behaves as free
oscillator

lim
|kη̃|→∞

u = Ake∓ikη̃

• NormalizationA will be set by origin in quantum fluctuations of
free field



Slow Roll Limit
• For |kη̃| � 1 (late times,� Hubble length) fluctuation freezes in

lim
|kη̃|→0

u = ± i

η̃
A = ±iHaA

φ1 = ±iHA

ζ = ∓iHA
(
ȧ

a

)
1

φ̇0

• Slow roll replacement(
ȧ

a

)2
1

φ̇2
0

=
8πGa2V

3

3

2a2V ε
= 4πG =

4π

m2
pl

• Bardeen curvature power spectrum

∆2
ζ ≡

k3|ζ|2

2π2
=

2k3

π

H2

εm2
pl

A2



Quantum Fluctuations
• Simple harmonic oscillator� Hubble length

ü+ k2u = 0

• Quantize the simple harmonic oscillator

û = u(k, η)â+ u∗(k, η)â†

whereu(k, η) satisfies classical equation of motion and the
creation and annihilation operators satisfy

[a, a†] = 1, a|0〉 = 0

• Normalize wavefunction[û, dû/dη] = i

u(k, η) =
1√
2k
e−ikη̃



Quantum Fluctuations
• Zero point fluctuations of ground state

〈u2〉 = 〈0|u†u|0〉

= 〈0|(u∗â† + uâ)(uâ+ u∗â†)|0〉

= 〈0|ââ†|0〉|u(k, η̃)|2

= 〈0|[â, â†] + â†â|0〉|u(k, η̃)|2

= |u(k, η̃)|2 =
1

2k

• Classical equation of motion take this quantum fluctuation outside
horizon where it freezes in. Slow roll equation

• SoA = (2k3)1/2 and curvature power spectrum

∆2
ζ ≡

1

π

H2

εm2
pl



Tilt
• Curvature power spectrum is scale invariant to the extent thatH is

constant

• Scalar spectral index

d ln ∆2
ζ

d ln k
≡ nS − 1

= 2
d lnH

d ln k
− d ln ε

d ln k

• Evaluate at horizon crossing where fluctuation freezes

d lnH

d ln k

∣∣
−kη̃=1

=
k

H

dH

dη̃

∣∣
−kη̃=1

dη̃

dk

∣∣
−kη̃=1

=
k

H
(−aH2ε)

∣∣
−kη̃=1

1

k2
= −ε

whereaH = −1/η̃ = k



Tilt
• Evolution ofε

d ln ε

d ln k
= − d ln ε

d ln η̃
= −2(δ + ε)

ȧ

a
η̃ = 2(δ + ε)

• Tilt in the slow-roll approximation

nS = 1− 4ε− 2δ



Relationship to Potential
• To leading order in slow roll parameters

ε =
3
2
φ̇2

0/a
2V

1 + 1
2
φ̇2

0/a
2V

≈ 3

2
φ̇2

0/a
2V

≈ 3

a2V

a4V ′2

9(ȧ/a)2
, (3φ̇0

ȧ

a
= −a2V ′)

≈ 1

6

3

8πG

(
V ′

V

)2

,

(
ȧ

a

)2

=
8πG

3
a2V

≈ 1

16πG

(
V ′

V

)2

soε� 1 is related to the first derivative of potential being small



Relationship to Potential
• And

δ =
φ̈0

φ̇0

(
ȧ

a

)−1

− 1

(φ̇0 ≈ −a2

(
ȧ

a

)−1
V ′

3
)

(φ̈0 ≈ −a
2V ′

3
(1 + ε) + a4

(
ȧ

a

)−2
V ′V ′′

9
)

≈ − 1

a2V ′/3

(
−a

2V ′

3
(1 + ε) +

a2

9

3

8πG

V ′V ′′

V

)
− 1 ≈ ε− 1

8πG

V ′′

V

soδ is related to second derivative of potential being small. Very
flat potential.



Gravitational Waves
• Gravitational wave amplitude satisfies Klein-Gordon equation

(K = 0), same as scalar field

Ḧ
(±2)
T + 2

ȧ

a
Ḣ

(±2)
T + k2H

(±2)
T = 0 .

• Acquires quantum fluctuations in same manner asφ. Lagrangian
sets the normalization

φ1 → H
(±2)
T

√
3

16πG

• Scale-invariant gravitational wave amplitude (each component:
NB more traditional notationH(±2)

T = (h+ ± ih×)/
√

6)

∆2
H =

16πG

3 · 2π2

H2

2
=

4

3π

H2

m2
pl



Gravitational Waves
• Gravitational wave power∝ H2 ∝ V ∝ E4

i whereEi is the energy
scale of inflation

• Tensor tilt:

d ln ∆2
H

d ln k
≡ nT = 2

d lnH

d ln k
= −2ε

• Consistency relation between tensor-scalar ratio and tensor tilt

∆2
H

∆2
ζ

=
4

3
ε = −2

3
ε

• Measurement of scalar tilt and gravitational wave amplitude
constrains inflationary model in the slow roll context

• Comparision of tensor-scalar ratio and tensor tilt tests the idea of
slow roll itself



Gravitational Wave Phenomenology
• Equation of motion

Ḧ
(±2)
T + 2

ȧ

a
Ḣ

(±2)
T + k2H

(±2)
T = 0 .

• has solutions

H
(±2)
T = C1H1(kη) + C2H2(kη)

H1 ∝ x−mjm(x)

H2 ∝ x−mnm(x)

wherem = (1− 3w)/(1 + 3w)

• If w > −1/3 then gravity wave is constant above horizonx� 1

and then oscillates and damps

• If w < −1/3 then gravity wave oscillates and freezes into some
value, just like scalar field



Gravitational Wave Phenomenology
• A gravitational wave makes a quadrupolar (transverse-traceless)

distortion to metric

• Just like the scale factor or spatial curvature, a temporal variation
in its amplitude leaves a residual temperature variation in CMB
photons – here anisotropic

• Before recombination, anisotropic variation is eliminated by
scattering

• Gravitational wave temperature effect drops sharply at the horizon
scale at recombination

• Source to polarization goes asτ̇ /ḢT and peaks at the horizon not
damping scale

• B modes formed as photons propagate – the spatial variation in the
plane waves modulate the signal: described by Boltzmann eqn.
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Boltzmann Formalism



Boltzmann Equation
• CMB radiation is generally described by the phase space

distribution function for each polarization statefa(x,q, η), where
x is the comoving position andq is the photon momentum

• Boltzmann equation describes the evolution of the distribution
function under gravity and collisions

• Low order moments of the Boltzmann equation are simply the
covariant conservation equations

• Higher moments provide the closure condition to the conservation
law (specification of stress tensor) and the CMB observable – fine
scale anisotropy

• Higher moments mainly describe the simple geometry of source
projection



Liouville Equation
• In absence of scattering, the phase space distribution of photons is

conserved along the propagation path

• Rewrite variables in terms of the photon propagation direction
q = qn̂, sofa(x, n̂, q, η) and

d

dη
fa(x, n̂, q, η) = 0

=

(
∂

∂η
+
dx

dη
· ∂
∂x

+
dn̂

dη
· ∂
∂n̂

+
dq

dη
· ∂
∂q

)
fa

• For simplicity, assume spatially flat universeK = 0 then
dn̂/dη = 0 anddx = n̂dη

ḟa + n̂ · ∇fa + q̇
∂

∂q
fa = 0



Correspondence to Einstein Eqn.
• Geodesic equation gives the redshifting term

q̇

q
= − ȧ

a
− 1

2
ninjḢTij − ḢL + niḂi − n̂ · ∇A

• which is incorporated in the conservation and gauge
transformation equations

• Stress energy tensor involves integrals over the distribution
function the two polarization states

T µν =

∫
d3q

(2π)3

qµqν

E
(fa + fb)

• Components are simply the low order angular moments of the
distribution function



Angular Moments
• Define the angularly dependent temperature perturbation

Θ(x, n̂, η) =
1

4ργ

∫
q3dq

2π2
(fa + fb)− 1

and likewise for the linear polarization statesQ andU

• Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

Gm
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik · x)

±2G
m
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
±2Y

m
` (n̂) exp(ik · x)

• In a spatially curved universe generalize the plane wave part



Normal Modes
• Temperature and polarization fields

Θ(x, n̂, η) =

∫
d3k

(2π)3

∑
`m

Θ
(m)
` Gm

`

[Q± iU ](x, n̂, η) =

∫
d3k

(2π)3

∑
`m

[E
(m)
` ± iB

(m)
` ]±2G

m
`

• For eachk mode, work in coordinates wherek ‖ z and som = 0

represents scalar modes,m = ±1 vector modes,m = ±2 tensor
modes,|m| > 2 vanishes. Since modes add incoherently and
Q± iU is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Scalar, Vector, Tensor
• Normalization of modes is chosen so that the lowest angular mode

for scalars, vectors and tensors are normalized in the same way as
the mode function

G0
0 = Q(0) G0

1 = niQ
(0)
i G0

2 ∝ ninjQ
(0)
ij

G±1
1 = niQ

(±1)
i G±1

2 ∝ ninjQ
(±1)
ij

G±2
2 = ninjQ

(±2)
ij

where recall

Q(0) = exp(ik · x)

Q
(±1)
i =

−i√
2
(ê1 ± iê2)iexp(ik · x)

Q
(±2)
ij = −

√
3

8
(ê1 ± iê2)i(ê1 ± iê2)jexp(ik · x)



Geometrical Projection
• Main content of Liouville equation is purely geometrical and

describes the projection of inhomogeneities into anisotropies

• Spatial gradient term hits plane wave:

n̂ · ∇eik·x = in̂ · keik·x = i

√
4π

3
kY 0

1 (n̂)eik·x

• Dipole term adds to angular dependence through the addition of
angular momentum√

4π

3
Y 0

1 Y
m
` =

κm`√
(2`+ 1)(2`− 1)

Y m
`−1 +

κm`+1√
(2`+ 1)(2`+ 3)

Y m
`+1

whereκm` =
√
`2 −m2 is given by Clebsch-Gordon coefficients.



Temperature Hierarchy
• Absorb recoupling of angular momentum into evolution equation

for normal modes

Θ̇
(m)
` = k

[
κm`

2`+ 1
Θ

(m)
`−1 −

κm`+1

2`+ 3
Θ

(m)
`+1

]
− τ̇Θ

(m)
` + S

(m)
`

whereS(m)
` are the gravitational (and later scattering sources;

added scattering suppression of anisotropy)

• An originally isotropic` = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

• Original CMB codes solved the full hierarchy equations out to the
` of interest.



Integral Solution
• Hierarchy equation simply represents geometric projection,

exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

• In general, the solution describes the decomposition of the source
S

(m)
` with its local angular dependence as seen at a distance

x = Dn̂.

• Proceed by decomposing the angular dependence of the plane
wave

eik·x =
∑
`

(−i)`
√

4π(2`+ 1)j`(kD)Y 0
` (n̂)

• Recouple to the local angular dependence ofGm
`

Gm
`s =

∑
`

(−i)`
√

4π(2`+ 1)α
(m)
`s`

(kD)Y m
` (n̂)



Integral Solution
• Projection kernels:

`s = 0, m = 0 α
(0)
0` ≡ j`

`s = 1, m = 0 α
(0)
1` ≡ j′`

• Integral solution:

Θ
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τ
∑
`s

S
(m)
`s

α
(m)
`s`

(k(η0 − η))

• Power spectrum:

C` =
2

π

∫
dk

k

∑
m

k3〈Θ(m)∗
` Θ

(m)
` 〉

(2`+ 1)2

• Solving forC` reduces to solving for the behavior of a handful of
sources



Polarization Hiearchy
• In the same way, the coupling of a gradient or dipole angular

momentum to the spin harmonics leads to the polarization
hiearchy:

Ė
(m)
` = k

[
2κ

m
`

2`− 1
E

(m)
`−1 −

2m

`(`+ 1)
B

(m)
` − 2κ

m
`+1

2`+ 3

]
− τ̇E

(m)
` + E (m)

`

Ḃ
(m)
` = k

[
2κ

m
`

2`− 1
B

(m)
`−1 +

2m

`(`+ 1)
B

(m)
` − 2κ

m
`+1

2`+ 3

]
− τ̇E

(m)
` + B(m)

`

where2κ
m
` =

√
(`2 −m2)(`2 − 4)/`2 is given by the

Clebsch-Gordon coefficients andE , B are the sources (scattering
only).

• Note that for vectors and tensors|m| > 0 andB modes may be

generated fromE modes by projection. CosmologicallyB(m)
` = 0



Polarization Integral Solution
• Again, we can recouple the plane wave angular momentum of the

source inhomogeneity to its local angular dependence directly

E
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE (m)
`s

ε
(m)
`s`

(k(η0 − η))

B
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE (m)
`s

β
(m)
`s`

(k(η0 − η))

• The only source to the polarization is from the quadrupole
anisotropy so we only need̀s = 2, e.g. for scalars

ε
(0)
2` (x) =

√
3

8

(`+ 2)!

(`− 2)!

j`(x)

x2
β

(0)
2` = 0



Truncated Hierarchy
• CMBFast uses the integral solution and relies on a fastj` generator

• However sources are not external to system and are defined
through the Boltzmann hierarchy itself

• Solution: recall that we used this technique in the tight coupling
regime by applying a closure condition from tight coupling

• CMBFast extends this idea by solving a truncated hierarchy of
equations, e.g. out tò= 25 with non-reflecting boundary
conditions



Thomson Collision Term
• Full Boltzmann equation

d

dη
fa,b = C[fa, fb]

• Collision term describes the scattering out of and into a phase
space element

• Thomson collision based on differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

whereÊ′ andÊ denote the incoming and outgoing directions of
the electric field or polarization vector.



Scattering Calculation
• Start in the electron rest frame and in a coordinate system fixed by

the scattering plane, spanned by incoming and outgoing directional
vectors−n̂′ · n̂ = cos β, whereβ is the scattering angle

• Θ‖: in-plane polarization state;Θ⊥: ⊥-plane polarization state

• Transfer probability (constant set byτ̇ )

Θ‖ ∝ cos2 βΘ′
‖, Θ⊥ ∝ Θ′

⊥

• and with the45◦ axes as

Ê1 =
1√
2
(Ê‖ + Ê⊥), Ê2 =

1√
2
(Ê‖ − Ê⊥)



Stokes Parameters
• Define the temperature in this basis

Θ1 ∝ |Ê1 · Ê1|2Θ′
1 + |Ê1 · Ê2|2Θ′

2

∝ 1

4
(cos β + 1)2Θ′

1 +
1

4
(cos β − 1)2Θ′

2

Θ2 ∝ |Ê2 · Ê2|2Θ′
2 + |Ê2 · Ê1|2Θ′

1

∝ 1

4
(cos β + 1)2Θ′

2 +
1

4
(cos β − 1)2Θ′

1

or Θ1 −Θ2 ∝ cos β(Θ′
1 −Θ′

2)

• DefineΘ,Q, U in the scattering coordinates

Θ ≡ 1

2
(Θ‖ + Θ⊥), Q ≡ 1

2
(Θ‖ −Θ⊥), U ≡ 1

2
(Θ1 −Θ2)



Scattering Matrix
• Transfer of Stokes states, e.g.

Θ =
1

2
(Θ‖ + Θ⊥) ∝ 1

4
(cos2 β + 1)Θ′ +

1

4
(cos2 β − 1)Q′

• Transfer matrix of Stokes stateT ≡ (Θ,Q+ iU ,Q− iU )

T ∝ S(β)T′

S(β) =
3

4


cos2 β + 1 −1

2
sin2 β −1

2
sin2 β

−1
2
sin2 β 1

2
(cos β + 1)2 1

2
(cos β − 1)2

−1
2
sin2 β 1

2
(cos β − 1)2 1

2
(cos β + 1)2


normalization factor of 3 is set by photon conservation in scattering



Scattering Matrix
• Transform to a fixed basis, by a rotation of the incoming and

outgoing statesT = R(ψ)T where

R(ψ) =


1 0 0

0 e−2iψ 0

0 0 e2iψ


giving the scattering matrix

R(−γ)S(β)R(α) =

1

2

√
4π

5


Y 0

2 (β, α) + 2
√

5Y 0
0 (β, α) −

√
3
2
Y −2

2 (β, α) −
√

3
2
Y 2

2 (β, α)

−
√

6 2Y
0
2 (β, α)e2iγ 3 2Y

−2
2 (β, α)e2iγ 3 2Y

2
2 (β, α)e2iγ

−
√

6−2Y
0
2 (β, α)e−2iγ 3−2Y

−2
2 (β, α)e−2iγ 3−2Y

2
2 (β, α)e−2iγ





Addition Theorem for Spin Harmonics
• Spin harmonics are related to rotation matrices as

sY
m
` (θ, φ) =

√
2`+ 1

4π
D`
−ms(φ, θ, 0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by(−1)m

• Multiplication of rotations∑
m′′

D`
mm′′(α2, β2, γ2)D`

m′′m(α1, β1, γ1) = D`
mm′(α, β, γ)

• Implies

∑
m

s1
Y m∗
` (θ′, φ′) s2

Y m
` (θ, φ) = (−1)s1−s2

√
2`+ 1

4π s2
Y −s1
` (β, α)eis2γ



Sky Basis
• Scattering into the state (rest frame)

Cin[T] = τ̇

∫
dn̂′

4π
R(−γ)S(β)R(α)T(n̂′) ,

= τ̇

∫
dn̂′

4π
(Θ′, 0, 0) +

1

10
τ̇

∫
dn̂′

2∑
m=−2

P(m)(n̂, n̂′)T(n̂′) .

where the quadrupole coupling term isP(m)(n̂, n̂′) =


Y m∗

2 (n̂′) Y m
2 (n̂) −

√
3
2 2Y

m∗
2 (n̂′) Y m

2 (n̂) −
√

3
2 −2Y

m∗
2 (n̂′) Y m

2 (n̂)

−
√

6Y m∗
2 (n̂′) 2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′) 2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′) 2Y

m
2 (n̂)

−
√

6Y m∗
2 (n̂′)−2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′)−2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′)−2Y

m
2 (n̂)

 ,

expression uses angle addition relation above. We call this term
CQ.



Scattering Matrix
• Full scattering matrix involves difference of scattering into and out

of state

C[T] = Cin[T]− Cout[T]

• In the electron rest frame

C[T] = τ̇

∫
dn̂′

4π
(Θ′, 0, 0)− τ̇T + CQ[T]

which describes isotropization in the rest frame. All moments have
e−τ suppression except for isotropic temperatureΘ0.
Transformation into the background frame simply induces a dipole
term

C[T] = τ̇

(
n̂ · vb +

∫
dn̂′

4π
Θ′, 0, 0

)
− τ̇T + CQ[T]



Source Terms
• Temperature source termsS(m)

l (rows±|m|; flat assumption
τ̇Θ

(0)
0 − Ḣ

(0)
L τ̇ v

(0)
b + Ḃ(0) τ̇P (0) − 2

3
Ḣ

(0)
T

0 τ̇ v
(±1)
b + Ḃ(±1) τ̇P (±1) −

√
3

3
Ḣ

(±1)
T

0 0 τ̇P (±2) − Ḣ
(±2)
T


where

P (m) ≡ 1

10
(Θ

(m)
2 −

√
6E

(m)
2 )

• Polarization source term

E (m)
` = −τ̇

√
6P (m)δ`,2

B(m)
` = 0
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Secondary Anisotropy



Secondary Anisotropy
• CMB photons traverse the large-scale structure of the universe

from z = 1000 to the present.

• With the nearly scale-invariant adiabatic fluctuations observed in
the CMB, structures form from the bottom up, i.e. small scales
first, a.k.a. hierarchical structure formation.

• First objects reionize the universe betweenz ∼ 7− 30

• Main sources of secondary anisotropy

• Gravitational: Integrated Sachs-Wolfe effect (gravitational
redshift) and gravitational lensing

• Scattering: peak suppression, large-angle polarization, Doppler
effect(s), inverse Compton scattering



Transfer Function
• Transfer functiontransfers the initial Newtonian curvature to its

value today (linear response theory)

T (k) =
Φ(k, a = 1)

Φ(k, ainit)

Φ(knorm, ainit)

Φ(knorm, a = 1
)

• Conservation of Bardeen curvature: Newtonian curvature is a
constantwhenstress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

• When stress fluctuations dominate, perturbations are stabilized by
theJeans mechanism

• Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation∆ ≡ (δρ/ρ)com impliesΦ decays

(k2 − 3K)Φ = 4πGρ∆ ∼ η−2∆



Transfer Function
• Matter-radiation example: Jeans scale is horizon scale and∆

freezes into its value at horizon crossing∆H ≈ Φinit

• Freezingof ∆ stops atηeq

Φ ∼ (kηeq)
−2∆H ∼ (kηeq)

−2Φinit

• Conventionallyknorm is chosen as a scale between the horizon at
matter radiation equality and dark energy domination.

• Small correction since growth with a smooth radiation component
is logarithmic not frozen

• Run CMBfast to get transfer function or use fits



Transfer Function
• Transfer function has ak−2 fall-off beyondkeq ∼ η−1

eq

1

0.1

0.0001 0.001 0.01 0.1 1
0.01

T(
k)

k (h–1 Mpc)

wiggles

k–2

• Additional baryon wiggles are due to acoustic oscillations at
recombination – an interesting means of measuring distances



Growth Function
• Same physics applies to the dark energy dominated universe

• Under the dark energy sound horizon, dark energy density frozen.
Potential decays at the same rate for all scales

g(a) =
Φ(knorm, a)

Φ(knorm, ainit)

• Pressuregrowth suppression: δ ≡ δρm/ρm ∝ aφ

d2g

d ln a2
+

[
5

2
− 3

2
w(z)ΩDE(z)

]
dg

d ln a
+

3

2
[1− w(z)]ΩDE(z)g = 0 ,

wherew ≡ pDE/ρDE andΩDE ≡ ρDE/(ρm + ρDE) with initial
conditionsg = 1, dg/d ln a = 0

• As ΩDE → 0 g =const. is a solution. The other solution is the
decaying mode, elimated by initial conditions



ISW effect
• Potential decay leads to gravitational redshifts through the

integrated Sachs-Wolfe effect

• Intrinsically a large effect since2∆Φ = 6Ψinit/3

• But net redshift is integral along along line of sight

Θ`(k, η0)

2`+ 1
=

∫ η0

0

dηe−τ [2Φ̇(k, η)]j`(k(η0 − η))

= 2Φ(k, ηMD)

∫ η0

0

dηe−τ ġ(D)j`(kD)

• On small scales wherek � ġ/g, can pull source out of the integral∫ η0

0

dηġ(D)j`(kD) ≈ ġ(D = `/k)
1

k

√
π

2`

evaluated at peak, where we have used
∫
dxj`(x) =

√
π/2`



ISW effect
• Power spectrum

C` =
2

π

∫
dk

k

k3〈Θ∗
`(k, η0)Θ`(k, η0)〉
(2`+ 1)2

=
2π2

l3

∫
dηDġ2(η)∆2

Φ(`/D, ηMD)

• Or l2Cl/2π ∝ 1/` for scale invariant potential. This is the Limber
equation in spherical coordinates. Projection of3D power retains
only the transverse piece. For a general dark energy model, add in
the scale dependence of growth rate on large scales.

• Cancellation of redshifts and blueshifts as the photon traverses
many crests and troughs of a small scale fluctuation during decay.
Enhancement of thè< 10 multipoles. Difficult to extract from
cosmic variance and galaxy. Current ideas: cross correlation with
other tracers of structure



Gravitational Lensing
• Lensing is a surface brightness conservingremappingof source to

image planes by the gradient of theprojected potential

φ(n̂) = 2

∫ η0

η∗

dη
(D∗ −D)

DD∗
Φ(Dn̂, η) .

such that the fields are remapped as

x(n̂) → x(n̂ +∇φ) ,

wherex ∈ {Θ,Q, U} temperature and polarization.

• Taylor expansion leads toproductof fields and Fourier
mode-coupling



Flat-sky Treatment
• Talyor expand

Θ(n̂) = Θ̃(n̂ +∇φ)

= Θ̃(n̂) +∇iφ(n̂)∇iΘ̃(n̂) +
1

2
∇iφ(n̂)∇jφ(n̂)∇i∇jΘ̃(n̂) + . . .

• Fourier decomposition

φ(n̂) =

∫
d2l

(2π)2
φ(l)eil·n̂

Θ̃(n̂) =

∫
d2l

(2π)2
Θ̃(l)eil·n̂



Flat-sky Treatment
• Mode coupling of harmonics

Θ(l) =

∫
dn̂Θ(n̂)e−il·n̂

= Θ̃(l)−
∫

d2l1
(2π)2

Θ̃(l1)L(l, l1) ,

where

L(l, l1) = φ(l− l1) (l− l1) · l1

+
1

2

∫
d2l2
(2π)2

φ(l2)φ
∗(l2 + l1 − l) (l2 · l1)(l2 + l1 − l) · l1 .

• Represents a coupling of harmonics separated byL ≈ 60 peak of
deflection power



Power Spectrum
• Power spectra

〈Θ∗(l)Θ(l′)〉 = (2π)2δ(l− l′) CΘΘ
l ,

〈φ∗(l)φ(l′)〉 = (2π)2δ(l− l′) Cφφ
l ,

becomes

CΘΘ
l =

(
1− l2R

)
C̃ΘΘ
l +

∫
d2l1
(2π)2

C̃ΘΘ
|l−l1|C

φφ
l1

[(l− l1) · l1]2 ,

where

R =
1

4π

∫
dl

l
l4Cφφ

l . (3)



Smoothing Power Spectrum
• If C̃ΘΘ

l slowly varying then two term cancel

C̃ΘΘ
l

∫
d2l1
(2π)2

Cφφ
l (l · l1)2 ≈ l2RC̃ΘΘ

l .

• So lensing acts to smooth features in the power spectrum.
Smoothing kernel isL ∼ 60 the peak of deflection power spectrum

• Because acoustic feature appear on a scalelA ∼ 300, smoothing is
a subtle effect in the power spectrum.

• Lensing generates power below the damping scale which directly
reflect power in deflections on the same scale



Polarization Lensing
• Polarization field harmonics lensed similarly

[Q± iU ](n̂) = −
∫

d2l

(2π)2
[E ± iB](l)e±2iφlel·n̂

so that

[Q± iU ](n̂) = [Q̃± iŨ ](n̂ +∇φ)

≈ [Q̃± iŨ ](n̂) +∇iφ(n̂)∇i[Q̃± iŨ ](n̂)

+
1

2
∇iφ(n̂)∇jφ(n̂)∇i∇j[Q̃± iŨ ](n̂)



Polarization Power Spectra
• Carrying through the algebra

CEE
l =

(
1− l2R

)
C̃EE
l +

1

2

∫
d2l1
(2π)2

[(l− l1) · l1]2Cφφ
|l−l1|

× [(C̃EE
l1

+ C̃BB
l1

) + cos(4ϕl1)(C̃
EE
l1

− C̃BB
l1

)] ,

CBB
l =

(
1− l2R

)
C̃BB
l +

1

2

∫
d2l1
(2π)2

[(l− l1) · l1]2Cφφ
|l−l1|

× [(C̃EE
l1

+ C̃BB
l1

)− cos(4ϕl1)(C̃
EE
l1

− C̃BB
l1

)] ,

CΘE
l =

(
1− l2R

)
C̃ΘE
l +

∫
d2l1
(2π)2

[(l− l1) · l1]2Cφφ
|l−l1|

× C̃ΘE
l1

cos(2ϕl1) ,

• Lensing generatesB-modes out of the acoustic polaraization
E-modes contaminates gravitational wave signature if
Ei < 1016GeV.



Reconstruction from the CMB
• Correlation betweenFourier momentsreflectlensing potential

〈x(l)x′(l′)〉CMB = fα(l, l
′)φ(l + l′) ,

wherex ∈ temperature, polarization fieldsandfα is a fixed weight
that reflects geometry

• Each pair forms anoisy estimateof the potential or projected mass
- just like a pair of galaxy shears

• Minimum variance weightall pairs to form an estimator of the
lensing mass



Scattering Secondaries
• Optical depth during reionization

τ ≈ 0.066

(
Ωbh

2

0.02

)(
Ωmh

2

0.15

)−1/2(
1 + z

10

)3/2

• Anisotropy suppressed ase−τ . Integral solution

Θ`(k, η0)

2`+ 1
=

∫ η0

0

dηe−τS
(0)
0 j`(k(η0 − η)) + . . .

• Isotropic (lare scale) fluctuations not supressed since suppression
represents isotropization by scattering

• Quadrupole from the Sachs-Wolfe effect scatters into a large angle
polarization bump



Doppler Effects
• Velocity fields of10−3 and optical depths of10−2 would imply

large Doppler effect due to reionization

• Limber approximation says only fluctuations transverse to line of
sight survive

• In linear theory, transverse fluctuations have no line of sight
velocity and so Doppler effect is highly suppressed.

• Beyond linear theory: modulate the optical depth in the transverse
direction using density fluctuations or ionization fraction
fluctuations. Generate a modulated Doppler effect

• Linear fluctuations: Vishniac effect; Clusters: kinetic SZ effect;
ionization patches: inhomogeneous reionization effect



Thermal SZ Effect
• Thermal velocities also lead to Doppler effect but first order

contribution cancels because of random directions

• Residual effect is of orderv2τ ≈ Te/me τ and can reach a sizeable
level for clusters withTe ≈ 10keV.

• Raleigh-Jeans decrement and Wien enhancement described by
second order collision term in Boltzmann equation: Kompaneets
equation

• Clusters are rare objects so contribution to power spectrum
suppressed, but may have been detected by CBI/BIMA: extremely
sensitive to power spectrum normalizationσ8

• White noise on large-scales(l < 2000), turnover as cluster profile
is resolved



Astro 448

Data Pipeline



Gaussian Statistics
• Statistical isotropy says two-point correlation depends only on the

power spectrum

Θ(n̂) =
∑
`m

Θ`mY`m(n̂)

〈Θ∗
`mΘ`′m′〉 = δ``′δmm′CΘΘ

`

• Reality of field saysΘ`m = (−1)mΘ`(−m)

• For a Gaussian random field, power spectrum defines all higher
order statistics, e.g.

〈Θ`1m1Θ`2m2Θ`3m3Θ`4m4〉

= (−1)m1+m2δ`1`3δm1(−m3)δ`2`4δm2(−m4)C
ΘΘ
`1
CΘΘ
`2

+ all pairs



Idealized Statistical Errors
• Take a noisy estimator of the multipoles in the map

Θ̂`m = Θ`m +N`m

and take the noise to be statistically isotropic

〈N∗
`mN`′m′〉 = δ``′δmm′CNN

`

• Construct an unbiased estimator of the power spectrum
〈ĈΘΘ

` 〉 = CΘΘ
`

ĈΘΘ
` =

1

2`+ 1

l∑
m=−l

Θ̂∗
`mΘ̂`m − CNN

`

• Variance in estimator

〈ĈΘΘ
` ĈΘΘ

` 〉 − 〈ĈΘΘ
` 〉2 =

2

2`+ 1
(CΘΘ

` + CNN
` )2



Cosmic and Noise Variance
• RMS in estimator is simply the total power spectrum reduced by√

2/Nmodes whereNmodes is the number ofm-mode measurements

• Even a perfect experiment whereCNN
` = 0 has statistical variance

due to the Gaussian random realizations of the field. This cosmic
variance is the result of having only one realization to measure.

• Noise variance is often approximated as white detector noise.
Removing the beam to place the measurement on the sky

NΘΘ
` =

(
T

dT

)2

e`(`+1)σ2

=

(
T

dT

)2

e`(`+1)FWHM2/8 ln 2

wheredT can be thought of as a noise level per steradian of the
temperature measurement,σ is the Gaussian beam width, FWHM
is the full width at half maximum of the beam



Idealized Parameter Forecasts
• A crude propagation of errors is often useful for estimation

purposes.

• SupposeCαβ describes the covariance matrix of the estimators for
a given parameter setπα.

• DefineF = C−1 [formalized as the Fisher matrix later]. Making
an infinitesimal transformation to a new set of parameterspµ

Fµν =
∑
αβ

∂πα
∂pµ

Fαβ
∂πβ
∂pν

• In our caseπα are theC` the covariance is diagonal andpµ are
cosmological parameters

Fµν =
∑
`

2`+ 1

2(CΘΘ
` + CNN

` )2

∂CΘΘ
`

∂pµ

∂CΘΘ
`

∂pν



Idealized Parameter Forecasts
• Polarization handled in same way (requires covariance)

• Fisher matrix represents a local approximation to the
transformation of the covariance and hence is only accurate for
well constrained directions in parameter space

• Derivatives evaluated by finite difference

• Fisher matrix identifies parameter degeneracies but only the local
direction – i.e. all errors are ellipses not bananas



Beyond Idealizations: Time Ordered
Data

• For the data analyst the starting point is a string of “time ordered”
data coming out of the instrument (post removal of systematic
errors!)

• Begin with a model of the time ordered data as

dt = PtiΘi + nt

wherei denotes pixelized positions indexed byi, dt is the data in a
time ordered stream indexed byt. Number of time ordered data
will be of the order1010 for a satellite! number of pixels106− 107.

• The noisent is drawn from a distribution with a known power
spectrum

〈ntnt′〉 = Cd,tt′



Pointing Matrix
• The pointing matrixP is the mapping between pixel space and the

time ordered data

• Simplest incarnation: row with all zeros except one column which
just says what point in the sky the telescope is pointing at that time

P =



0 0 1 . . . 0

1 0 0 . . . 0

0 1 0 . . . 0

. . . . . . . . . . . . . . .

0 0 1 . . . 0


• More generally encorporates differencing, beam, rotation (for

polarization)



Maximum Likelihood Mapmaking
• What is the best estimator of the underlying mapΘi

• Likelihood function: the probability of getting the data given the
theoryL ≡ P [data|theory]. In this case, thetheoryis the set of
parametersΘi.

LΘ(dt) =
1

(2π)Nt/2
√

detCd

exp

[
−1

2
(dt − PtiΘi)C

−1
d,tt′ (dt′ − Pt′jΘj)

]
.

• Bayes theorem says thatP [Θi|dt], the probability that the
temperatures are equal toΘi given the data, is proportional to the
likelihood function times aprior P (Θi), taken to be uniform

P [Θi|dt] ∝ P [dt|Θi] ≡ LΘ(dt)



Maximum Likelihood Mapmaking
• Maximizing the likelihood ofΘi is simple since the log-likelihood

is quadratic.

• Differentiating the argument of the exponential with respect toΘi

and setting to zero leads immediately to the estimator

Θ̂i = CN,ijPjtC
−1
d,tt′dt′ ,

whereCN ≡ (PtrC−1
d P)−1 is the covariance of the estimator

• Given the large dimension of the time ordered data, direct matrix
manipulation is unfeasible. A key simplifying assumption is the
stationarity of the noise, thatCd,tt′ depends only ont− t′

(temporal statistical homogeneity)



Power Spectrum
• The next step in the chain of inference is the power spectrum

extraction. Here the correlation between pixels is modelled
through the power spectrum

CS,ij ≡ 〈ΘiΘj〉 =
∑
`

∆2
T,`W`,ij

• HereW`, the window function, is derived by writing down the
expansion ofΘ(n̂) in harmonic space, including smoothing by the
beam and pixelization

• For example in the simple case of a gaussian beam of widthσ it is
proportional to the Legendre polynomialP`(n̂i · n̂j) for the pixel
separation multiplied byb2` ∝ e−`(`+1)σ2



Band Powers
• In principle the underlying theory to extract from maximum

likelihood is the power spectrum at every`

• However with a finite patch of sky, it is not possible to extract
multipoles separated by∆` < 2π/L whereL is the dimension of
the survey

• So consider instead a theory parameterization of∆2
T,` constant in

bands of∆` chosen to match the survey forming a set of band
powersBa

• The likelihood of the bandpowers given the pixelized data is

LB(Θi) =
1

(2π)Np/2
√

detCΘ

exp

(
−1

2
ΘiC

−1
Θ,ijΘj

)
whereCΘ = CS + CN andNp is the number of pixels in the map.



Band Power Esitmation
• As before,LB is Gaussian in the anisotropiesΘi, but in this case

Θi arenot the parameters to be determined; the theoretical
parameters are theBa, upon which the covariance matrix depends.

• The likelihood function is not Gaussian in the parameters, and
there is no simple, analytic way to find the maximum likelihood
bandpowers

• Iterative approach to maximizing the likelihood: take a trial point
B

(0)
a and improve estimate based a Newton-Rhapson approach to

finding zeros

B̂a = B̂(0)
a + FB,ab

∂ lnLB
∂Bb

= B̂(0)
a +

1

2
F−1
B,ab

(
ΘiC

−1
Θ,ij

∂CΘ,jk

∂Bb

C−1
Θ,klΘl − C−1

Θ,ij

∂CΘ,ji

∂Bb

)
,



Fisher Matrix
• The expectation value of the local curvature is the Fisher matrix

FB,ab ≡
〈
−∂

2 lnLΘ

∂Ba∂Bb

〉
=

1

2
C−1

Θ,ij

∂CΘ,jk

∂Ba

C−1
Θ,kl

∂CΘ,li

∂Bb

.

• This is a general statement: for a gaussian distribution the Fisher
matrix

Fab =
1

2
Tr[C−1C,aC

−1C,b]

• Kramer-Rao identity says that the best possible covariance matrix
on a set of parameters isC = F−1

• Thus, the iteration returns an estimate of the covariance matrix of
the estimatorsCB



Cosmological Parameters
• The probability distribution of the bandpowers given the

cosmological parametersci is not Gaussian but it is often an
adequate approximation

Lc(B̂a) ≈
1

(2π)Nc/2
√

detCB

exp

[
−1

2
(B̂a −Ba)C

−1
B,ab(B̂b −Bb)

]
• Grid based approaches evaluate the likelihood in cosmological

parameter space and maximize

• Faster approaches monte carlo the exploration of the likelihood
space intelligently (“Monte Carlo Markov Chains”)

• Since the number of cosmological parameters in the working
model isNc ∼ 10 this represents a final radical compression of
information in the original timestream which recall has up to
Nt ∼ 1010 data points.



Parameter Forecasts
• The Fisher matrix of the cosmological parameters becomes

Fc,ij =
∂Ba

∂ci
C−1
B,ab

∂Bb

∂cj
.

which is the error propagation formula discussed above

• The Fisher matrix can be more accurately defined for an
experiment by taking the pixel covariance and using the general
formula for the Fisher matrix of gaussian data

• Corrects for edge effects with the approximate effect of

Fµν =
∑
`

(2`+ 1)fsky

2(CΘΘ
` + CNN

` )2

∂CΘΘ
`

∂pµ

∂CΘΘ
`

∂pν

where the sky fractionfsky quantifies the loss of independent
modes due to the sky cut


