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Acoustic Kinematics



Recombination

Equilibrium number densitgistribution of a non-relativistic
species

3/2
m; .
S ( 2T > e

Apply to thee™ + p «+» H system:Saha Equation
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where = m,+m, — myg = 13.6eV

Naive guess of ' = for recombination would put, ~ 45000.



Recombination

But thephoton-baryon raties very low

Ny = Np/Ny = 3 X 1078, h?
Eliminatein favor of,, and B /T through

Me

n, = 0.2447° = =376 10°*

Big coefficient

2

x B\??
c =316 x 10" | = —B/T
1 — . 5 (T) ‘

T=1/3eV —-2,=0.7,T =0.3eV — z, = 0.2

Further delayedty inablility to maintain equilibrium since net is
through2~ process and redshifting out of line




Thomson Scattering

Thomson scatteringf photons off of free electrons is the most

Important CMB process with a cross section (averaged over
polarization states) of

87
Dar =
3Im?2

Density of free electrons in a fully ionizeg = 1 universe

— 6.65 x 10”%°cm?

ne = (1-7Y,/2)z.ny = 107°Qh*(1 + 2)°cm ™,

whereY, ~ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomsompacity

T = N.OTa

where dots are conformal time= [ dt/a derivatives and is the
optical depth.



Temperature Fluctuations

Observe blackbody radiation with a temperature that differs at
10~° coming from the surface of last scattering, with distribution
function (specific intensity, = 47v° f(v) each polarization)

f(v) = lexp(2mv/T(R)) — 1]~
Decompose the temperature perturbation in spherical harmonics

T(A) = > TimYem(B)

For Gaussian random fluctuations, the statistical properties of the
temperature field are determined by the power spectrum

<T£>Ir<mT£’m’> — 5%’5mm’ OE

where the)-function comes from statistical isotropy



Spatial vs Angular Power

Take the radiation distribution at last scattering to also be
described by an isotropic temperature fi¢lgk) and
recombination to be instantaneous

T(h) = / dD T(x)5(D — D,)

whereD is the comoving distance and, denotes recombination.

Describe the temperature field by its Fourier moments

T(x) = / (;iﬂ_];:ST(k)eik.x

with a power spectrum

(T(k)'T(K)) = (2m)"6(k — K') Pr(k)



Spatial vs Angular Power

Note that the variance of the field

TeOT() = [ 5P

:/dlnkkgp(k) E/dlnkA%(k)

272
so it is more convenient to think in the log power spectidi( k)

Temperature field

Expand out plane wave in spherical coordinates

e “—47{)@,% (kD.)Y 5, (K)Yem (B)



Spatial vs Angular Power

Multipole moments

&k .
T = [ T 0047 (kD) Vi (0

Power spectrum

(TinTn) = [ G555 420" kD) (D) ;1Yo (K) P (1)

— 5gg/5mm/47'(' / dlnkgf(kD*)A%(k)
with [~ j7(z)dInz = 1/(2¢(¢ + 1)), slowly varyingAZ

4rAL(¢/D,) 2«
2000+1)  L(L+1)

so/l(¢ +1)C,/2m = A% is commonly used log power

Ce = A7(¢/D,)




Tight Coupling Approximation
Nearrecombinatiore ~ 10° and€,h* ~ 0.02, the (comoving)

mean free patiof a photon

1
Ao = — ~ 2.5Mpc
7

small by cosmological standards!

On scales\ > \» photons areightly coupledto the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

Specifically, their bulk velocities are defined bgiagle fluid
velocity v, = v, and the photons carrmyo anisotropyn the rest
frame of the baryons

— No heat conductior viscosity(anisotropic stress) in fluid



Zeroth Order Approximation

Momentum densitpf a fluid is(p + p)v, wherep is the pressure

Neglectthe momentum density of th#ryons

(ko +Pe)vs _ pot+po _ 3ps
(py +Py)vy  pytpy 4py

0 2
~ 0.0 bl ( - )
0.02 10-3
sincep., o< T* is fixed by the CMB temperaturE = 2.73(1 + 2)K
— OK substantiallypefore recombination

R

Neglectradiationin the expansion

2
P _ 36 (Ll ( d )
Oy 0.15 103




Number Continuity

Photons areot createmr destroyed. Without expansion

n,+V-(n,v,) =0

but theexpansioror Hubble flow causes., o« a—* or

a
My + 3n75 + V.- (n,vy) =0

Linearizeon., = n, — n,

(0ny) = —3577,72 —n,V v,

(5&) Vv
Tiy



Continuity Equation

Number density:., o< 7% so definedemperature fluctuatio®

%:36—T53@
ey T

Real spaceontinuity equation

: 1

@:—§V'V7
Fourier space

. 1

O =—-tk-v,



Momentum Conservation
No expansiong = F

De Brogliewavelengtlstretches with the expansion
. a
q+-q=F
a

for photons this theedshift for non-relativistic particles
expansion dragn peculiar velocities

Collection of particles: momentum momentundensity
(py + p)v, and force— pressure gradient

, a
(py + )V, = _45(:07 +Dy)Vy — Vi,
4 1
3PV = gvﬂv

v, = —VO



Euler Equation

Fourier space
v, = —1k©O

Pressure gradients (any gradient of a scalar field) generates a
curl-freeflow

For convenience defingslocity amplitude

A

v, = -k
Euler Equation:
vy, = kO
Continuity Equation:
: 1
0 =—=kv,



Osclllator: Take One

Combine these to form tr@mple harmonic oscillatagquation
O+ kO =0

where the adiabatic sound speed is defined through

_ Py

s

herec? = 1/3 since we are photon-dominated
General solution:
0(0)
kc,

where thesound horizoris defined as = [ c.dn

O(n) = ©(0) cos(k ) + sin(k )



Harmonic Extrema

All modes ardrozenin at recombination (denoted with a subscript
x) yielding temperature perturbationsaifferent amplituddor
different modes. For the adiabatic (curvature mogé)) = 0

O(n.) = O(0) cos(ks.)

Modes caught in thextremaof their oscillation will have
enhanced fluctuations

k.S, = nmw

yielding afundamental scaler frequency, related to the inverse
sound horizon

]{A:T(/S*

and aharmonic relationshipo the other extrema ds: 2 : 3...



Peak Location

The fundmentaphysical scalés translated into a fundamental
angular scalby simple projection according to the angular
diameter distanc® 4

0a = Aa/Day
la = kaDy

In a flat universe, the distance is simghy = D = ng — 1. = 1),
the horizon distance, angd, = /s, = /37 /7, SO

(914%&
o

In amatter-dominatedniversen o« a'/? so64 ~ 1/30 ~ 2° or

EA ~ 200



Curvature

In acurved universgthe apparent aaingular diameter distance
no longer the conformal distande, = Rsin(D/R) # D

Objects in aclosed universarefurtherthan they appear!
gravitationallensingof the background...

Curvature scale of the universe must be substantiaiyer than
current horizon

Flat universandicates critical density and implies missing energy
given local measures of the matter denstprk energy

D also depends odiark energy densit{2pr andequation of state

w = pDE/PDE-

Expansion rate at recombinationmatter-radiation rati@nters
Into calculation ofk 4.



Doppler Effect

Bulk motion of fluid changes the observed temperature via

Doppler shifts
(AT) -
— =
1 dop !

Averaged over directions

(AT) vy
T rms \/§
Acoustic solution

D —ﬁ@ = —3ch O (0)sin(ks)

V3 k k
= O(0)sin(ks)



Doppler Peaks?

Doppler effectfor the photon dominated system isaxfual
amplitudeandr /2 out of phaseextrema of temperature are
turning points of velocity

Effects add imquadrature

<%> = 07(0)[cos*(ks) + sin®(ks)] = ©%(0)

No peakan k£ spectrum! However the Doppler effect carries an
angular dependence that changegitgectionon the sky
n-v,xn-k

Coordinates wherg || k

Y10Y£0 — Yeﬂo

recouplingj;Yyp: no peaks in Doppler effect



Restoring Gravity

Take a simplgphoton dominategystemwith gravity

Continuity altered since a gravitational potential represents a
stretchingof the spatial fabriadhat dilutes number densities —
formally a spatiaturvature perturbation

Think of this as a perturbation to tlseale facton — a(1 + @) so
that the cosmogical redshift is generalized to

a a

(0n,) = —3dn, (g + <I>> —n,V v,

a

so that thecontinuity equatiorbecomes

. 1 .
@: _gkU’Y_(I)



Restoring Gravity

Gravitational forcan momentum conservatidl = —mVV
generalized to momentum density modifies Eheger equationo

0, = k(O + )

General relativity says that and¥ are the relativistic analogues
of the Newtonian potentiaand thatd ~ —W.

In our matter-dominated approximatioh represents matter
density fluctuations through the cosmologiPalisson equation

k*® = 4nGa’ p A\,

where the difference comes from the useomoving coordinates
for k (a* factor), the removal of thbackground densitinto the
background expansigpA,,) and finally acoordinate subtletthat
enters into the definition o\,



Acoustic Dynamics



Constant Potentials

In the matter dominated epoglotentials are constabecause
Infall generates velocitiessv,,, ~ kn¥

Velocity divergence generates dengogrturbations as

A, ~ —knv, ~ —(kn)*W

And density perturbations generate poterfiiattuations as

d ~ A,,/(kn)* ~ —¥, keeping them constant. Note that because

of the expansion, density perturbations myistw to keep
potentials constant.

Here we have used thlt&iedman equatio#/* = 87Gp,,/3 and
n= [dna/(aH) ~1/(aH)

More generally, ifstress perturbatioraze negligible compared
with density perturbationGdp < dp ) then potential will remain

roughly constant — more specifically a variant calledBlaedeen
Or comoving curvaturé Is constant



Osclllator: Take Two

Combine these to form tr@mple harmonic oscillatcgquation

. L2 .
@+éﬁ@:—§w—¢

In aCDM dominatedexpansion = ¥ = 0. Also for photon
dominationc? = 1/3 so the oscillator equation becomes

O+ U+ 2k*(O + ¥) =0
Solution Is just amffset versiorof the original
CERUIGIEICERAOREHUE)

© + W Is also theobserved temperature fluctuatisimce photons
lose energy climbing out afravitational potentialat
recombination



Effective Temperature

Photons climb out of potential wells at last scattering
Lose energy to gravitational redshifts

Observed oeffective temperature

O+ WV
Effective temperature oscillates aroungrowith amplitude given
by theinitial conditions

Note: initial conditions are set when the perturbationusside of
horizon need inflation or other modification to matter-radiation
FRW universe.

GR says thainitial temperatures given byinitial potential



Sachs-Wolfe Effect and the Magic 1/3

A gravitational potentiails a perturbation to the temporal
coordinate [formally ayjauge transformatign

0t
=V
t

Convert this to a perturbation in tlseale factar

e [ 20 3(0-+w)/2
ol ap1/2

wherew = p/p so that duringnatter domination

oa ot
a t
CMB temperature isoolingas? o« a~! so
o1 0
O+T="qgU=-"40= T

T a



Baryon Loading

Baryons add extrenassto the photon-baryon fluid
Controlling parameter is th@omentum density ratio

n= P + P ( a )
- Py 10-3
of order at recombination

Momentum density of th@int systemis conserved

(py + Py)vy + (o6 + Do) 0s = (Py + Dy + pb + py) 0y
— (1 + )(:07 ‘|‘pv)vvb

where the controlling parameter is theomentum density ratio

P+ Pp ( a )
Py + Py 10-3

of order at recombination

=




New Euler Equation

Momentum density ratio enters as

, a
L+ )(py +py)vapl = _45(1 + ) oy T 0y) Vo
—Vp, = (1+ )(py +py) VY
same as before except far+ ) terms so
(14+ vy =kO+ (1+ kU
Photon continuityemains the same

. 3 .
@ = —gvvb—q)

Modification ofoscillator equation

(14 )6 + k0 = —2R(L+ )0 — [+ )d]



Oscillator: Take Three

Combine these to form the not-quitesionple harmonic oscillator
equation

d . k2 d .
— FO=——"0——(c &
O+ KO =—ZU— (4

where = pVb/IO.Vb

I 1

T 31+

In aCDM dominatedexpansiond = ¥ = 0 and theadiabatic
approximation? /R < w = ke,

O+ (1+ V|(n)=©+(14+ )¥]0)cos(k )



Baryon Peak Phenomenology

Photon-baryon ratio enters three ways
Overall largeramplitude

O+ (14 )W) = 5(143)u(0)

Even-odd peaknodulationof effective temperature

O + Vlpears = [E(1+37) =3 ] é\IJ(O)

O+ U], — [0+ U], = [—6 ]%\p(o)

Shifting of thesound horizordown or/ 4 up

CyoxvV1+

Actual effectssmallersince evolves



Photon Baryon Ratio Evolution

Oscillator equation has timevolving mass

d .
—( © kO =0
GO

Effective massisis =3 = (1+ )

Adiabatic invariant

E 1 1
I wA? =23 L A2O<A2(1+ )1/2:00nst.
W 2 2

Amplitude of oscillation4 oc (1 + )~'/* decays adiabaticallgs
the photon-baryon ratio changes



Osclllator: Take Three and a Half

The not-quite-s@imple harmonic oscillatagquation is dorced
harmonic oscillator
d : k2 d
2 —2 27.2 2 —9
—(c,“O) + k'O = ——  —c,—(c

CS dn (CS ) CS 3 Sdn( S )
changes in thgravitational potentialalter the form of the
acoustic oscillations

If the forcing term has &emporal structuréhat is related to the
frequencyof the oscillation, this becomesoaiven harmonic
osclillator

Term involving V¥ is the ordinarygravitational force

Term involving® involves thed term in thecontinuity equatioras
a (curvature) perturbation to tisgale factor



Potential Decay

Matter-to-radiation ratio

'O_mz thz( @ )
Or 103

of orderunity at recombination in a lowl,,, universe

Radiation is not stress free andisgpedeghe growth of structure

k*® = 4nGa’p, A\,

A, ~ 40 oscillatesaround a constant valug, o« a~* so the
Netwoniancurvature decays

General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sou
horizon or Jeans scale



Radiation Driving

Decay is timed precisely torive the oscillator - close to fully
coherent

0+ U](n) = [O + U](0) + AT — AD
_ %xp(@) _20(0) = gqf(())

5x the amplitude of the Sachs-Wolfe effect!

Coherent approximation exactfor a photon-baryon fluid but
reality is reduced te- 4 x because oheutrino contributiorio
radiation

Actual initial conditionsare® + ¥ = ¥ /2 for radiation
domination but comparison to matter dominated SW correct



External Potential Approach

Solution tohomogeneous equation

(14 R) Ycos(ks), (1 + R)™Y4sin(ks)

Give the general solution for an external potential by propagating
Impulsive forces

(1+ R)V40(n) = ©(0)cos(ks) + ﬁ [@(O) + 1R(O)@(O) sin ks

k 4

n

+ g / dn'(1 + R")*/*sin[ks — ks']
0

where
. R . k2

— - 5Ty

1+ R 3

Useful if general form of potential evolution is known



Damping
Tight coupling equations assum@arfect fluid noviscosity, no

heat conduction

Fluid imperfections are related to thesan free path of the
photons in the baryons

L' where 7 =n.ora

Ao =T
IS the conformal opacity tdhompson scattering

Dissipation is related to tha@iffusion length random walk
approximation

Ap = VNI = /11/he Ao = V1o

thegeometric meabetween the horizon and mean free path

Ap/n. ~ few %, so expect thepeaks > 3 to be affected by
dissipation



Equations of Motion
Continuity

@:—gvv—q), 5[):—/62}5—3(13

where the photon equation remains unchanged and the baryons
follow number conservation with, = myn,,

Euler
. k .
v, = k(@4 V) — e T(vy — Vp)
Uy = —gfub—l—/~c\11+7'(fu7 — )/ R

where the photons gain an anisotropic stress terfnom radiation
viscosityand amomentum exchangerm with the baryons and
are compensated by tlo@posite termn the baryon Euler equation



Viscosity

Viscosityis generated from radiatisgtreamingrom hot to cold
regions

Expect

Ty ™ Uy

generated by streaming, suppresseddaiteringn a wavelength
of the fluctuation Radiative transfesays

T, ~ 24,0,
whereA, = 16/15

k
/DV — k(@—l—\lf) — §AU foy



Oscillator: Penultimate Take

Adiabatic approximatio w > a/a)
k

@ ~ —g’l}fy
Oscillator equation containsé@ damping term
d : : k2 d ;
cgd—n(cgz@) + A,O + k2O = —g\If — cgd—n(cs_QCI))

Heat conductiorterm similar in that it is proportional to, and Is
suppressed by scattering . Expansion otuler equation$o
leading order in  gives

RQ
T 14+R

since the effects are only significant if the baryons are dynamicall
Important

Ap



Oscillator: Final Take

Final oscillator equation

. . 1.2 d .
(c;20) + O + k*c’O = —g\If — c?d—n(cjcb)

2 d
Sdn

Solve In theadiabatic approximation

O exp(i/wdn)

—w? + (A, + Ap)iw + k*c2 =0 (1)



Dispersion Relation

Solve
w? = k¢ [1 +i (A, + Ah)}
w = tkc, _1 + % (A, + Ah)]
= 4 ke, _1 + % (A, + Ah)]
Exponentiate _

. _ 1
exp(i/wdn) — Liks exp_—k2/d77§ (Av+Ah)]

= "™ exp[—(k// )] (2)

Damping isexponentialinder the scale



Diffusion Scale

Diffusion wavenumber

_/ 6(11+R) Gg+(1}f}2)>

Limiting forms

, 116
lim = ——
R—0 615

. 1 /
lim — —
R—o0 0

Geometric mean between horizon and mean free path as expecte
from arandom walk

:Q_WNQ_W( )1/

V6



Polarization



Stokes Parameters

Polarization state of radiation in directiandescribed by the
intensity matrix( £;(n) £ (n)), wherekE is the electric field vector

and the brackets denote time averaging.
As a hermitian matrix, it can be decomposed into the Pauli basis

P = C(E(n)E'(n))
=0Mn)oy+Qn)os+U(n)o, +V(n)o,,

where

1 0 0 1 0 —2 I O
Oy — o1 — 09 = O3 —
0 1 10 t 0 0 —1

Stokes parameters recoveredlats;P) /2



Linear Polarization
Counterclockwise rotation of axes By= 45°
E,=(E, —E)/V2, E,=(E, +E)/V2
U x (BB — (EYES), difference of intensities alts° or Q’

More generallyP transforms as a tensor under rotations and

Q' = cos(20)Q + sin(20)U

U' = —sin(20)Q + cos(20)U
or

Q +iU = eT*[Q £+ iU

acquires a phase under rotation and is a splrobject



Coordinate Independent Representatio

Two directions: orientation of polarization and change in
amplitude, 1.e() andU In the basis of the Fourier wavevector for
small sections of sky are calldd and B components

BO) £ B(1) = — [ dlQ/() & iU ())e

— T2 /dﬁ[@(ﬂ) + iU(ﬂ)]e“'ﬁ

For the B-mode to not vanish, the polarization must point in a
direction not related to the wavevector - not possible for density
fluctuations in linear theory

Generalize to all-sky: plane waves are eigenmodes of the Laplace
operator on the tensa?.



Spin Harmonics

Laplace Eigenfunctions

VQ:I:Q}/Em[O'S Fio = —[l(l+1) — 4] Ym|os Fioy]

Spins spherical harmonics: orthogonal and complete

Z Y, (n), Yy, (n') =6(¢ — ¢')d(cosh — cos @)
where the ordinary spherical harmonics &g = Y,
Given in terms of the rotation matrix

Yin(Ba) = (—1)" 2200 a0




Statistical Representation

All-sky decomposition

Q(h) + iU (0)] = ) [Epm £ iBom]c2Yum(0)

m

Power spectra

<E2<mE€m> — 568’5mm’ EEE
<BZmB€m> — 5@6’5mm’ KBB
Cross correlation
<EZmE£m> — 566’5mm’C?E

others vanish if parity is conserved



Thomson Scattering

Differential cross section

do

3 A A
— — —|E - EI?
ds) 87’(" for,

whereo, = 8wa?/3m,. is the Thomson cross sectid, andE

denote the incoming and outgoing directions of the electric field o
polarization vector.

Summed over angle and incoming polarization

> [ G =or

1=1,2



Polarization Generation

Heuristic: incoming radiation shakes an electron in direction of
electric field vectoi’

Radiates photon with polarization also in directigh

But photon cannot be longitudinally polarized so that scattering
Into 90° can only pass one polarization

Linearly polarized radiation like polarization by reflection
Unlike reflection of sunlight, incoming radiation is nearly isotropic

Missing linear polarization supplied by scattering from direction
orthogonal to original incoming direction

Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization

Break down of tight-coupling leads to quadrupole anisotropy of

K

Ty = Uy

Scalingkp = (7/n.)Y? — 7 = k%,
Know: kps, = an* ~ 10
So:



Acoustic Polarization

Gradient of velocity is along direction of wavevector, so
polarization Is purg~-mode

Velocity 1s90° out of phase with temperature — turning points of
oscillator are zero points of velocity:

© + VU  cos(ks); v, o sin(ks)

Polarization peaks are at troughs of temperature power



Cross Correlation

Cross correlation of temperature and polarization

(© 4+ ¥)(v,) x cos(ks)sin(ks) o sin(2ks)
Oscillation at twice the frequency

Correlation: radial or tangential around hot spots

Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is highV or if bands do
not resolve oscillations

Good check for systematics and foregrounds

Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features



Relonization

lonization depth during reionization

T(2) = /dn’neUTa = /d]nazle(o-j; X (Qbh2)(th2)—1/2(1_|_Z)3/2
a

A2\ Q. h2\ Y2 114 2\ 2
:<0.02><0.15) (61)

Quasars say,; > 7sot > 0.04

During reionization, cosmic quadrupole ©f30uK from the
Sachs-Wolfe effect scatters info-polarization

Few percent optical depth leads to fraction gflasignal

Peaks at horizon scale at recombination: quadrupole source
J2(kD,) maximal atk D, ~ kn ~ 2



Breaking degeneracies

First objects, breaking degeneracy of initial amplitude vs optical
depth in the peak heights

Cyox e 27

only below horizon scale at reionization

Breaks degeneracies in angular diameter distance by removing a
ambiguity for ISW-dark energy measure, help$ips — wpg
plane



Gravitational Wave

Gravitational waves produce a quadrupolar distortion in the
temperature of the CMB like effect on a ring of test particles

Like ISW effect, source Is a metric perturbation with time
dependent amplitude

After recombination, is a source of observable temperature
anisotropy — but is therefore confined to low order multipoles

Generated during inflation by guandum fluctuations



Gravitational Wave Polarization

In the tight coupling regime, quadrupole anisotropy suppressed b
scattering

Since gravitational waves oscillate and decay at horizon crossing.
the polarization peaks at the horizon scale at recombination not tr
damping scale

More distinct signature in th8-mode polarization since
symmetry of plane wave is broken by the transverse nature of
gravity wave polarization



Linear Perturbation Theory



Covariant Perturbation Theory

Covariant= takes samé&rm in all coordinate systems
Invariant= takes the samealuein all coordinate systems

Fundamental equationkinstein equationgovariantconservation
of stress-energy tensor:

G, = 8nG1,,
v, 1" = 0

Preserve general covariance by keepinglatirees of freedoniO
for each symmetric 44 tensor

1123
5|6
8

O | N>

[N
o




Metric Tensor

Expand the metric tensor around thpeneral FRW metric

2 2
Joo = —a-, i = @ Vij -

where the “0” component isonformal timen = dt/a and~;; is a
spatial metric of constant curvatuié = HZ (Qior — 1).

Add in a general perturbatiom{rdeen 198)

g* = —a*(1-24),
gOi _  _g 2B |
g9 = a*(v9 —2H ¥ - 2HY).
A = a scalaipotentia] ~ B! avectorshift, = H; a

perturbation to the spatiaurvature H§2 atrace-freedistortion
to spatial metric =




Matter Tensor

Likewise expand the mattetress energtensor around a
homogeneous densipyand pressure:

TOO — —pP— 5p7
T% = (p+p)v—Bi),
TOi — _(p + p)v’t )

1% = (p+0p)d’; +pll';,
(1) op adensity perturbation(3) v; a vectorvelocity, (1) op a
pressure perturbatio®) II;; ananisotropic stresgerturbation

So far this isfully generaland applies to any type of matter or
coordinate choice including non-linearities in the matter, e.g.
cosmological defects.



Counting DOF’s

20  Variables (10 metric; 10 matter)
—10  EInstein equations
—4  Conservation eqguations
+4  Bianchi identities
—4  Gauge (coordinate choice 1 time, 3 space

6  Degrees of freedom

Without loss of generality these can be taken to besthe
component®f the matter stress tensor

For the background, specipf(a) or equivalently
w(a) = pla)/p(a) theequation of statparameter.



Scalar, Vector, Tensor

In linear perturbation theorperturbations may be separated by
their transformation propertiasnder rotation and translation.

The eigenfunctions of thieaplacian operatdiorm a complete set

V2Q<O) — —k2Q(O) 7
VQQ(il) _ _kQQ(il)
2 (£2) _ 2 (£2)

Vector and tensor modes satisfy divergence-free and
transverse-traceless conditions

viQ&tY =0
ViQy T =0

7Qi” =0



Vector and Tensor Modes
vs. Vector and Tensor Quantities

A scalar mode carries with it associated vector (curl-free) and
tensor (longitudinal) quantities

A vector mode carries and associated tensor (neither longitudinal
or transverse) guantities

These are built from the mode basis out of covariant derivatives
and the metric

QY = —k'v,QO,
1
0 _
Qz(j) = (k 2vivj + g%j)Q(O) ,
+1 1 41 +
Qfgj = —ﬁ[szg )‘|‘VjQ§ 1)]7



Spatially Flat Case

For a spatially flat background metric, harmonics are related to
plane waves

QY = exp(ik-x)
—
Q(il) — _(él + zég)zexp(zk y X)
i \/§
3
Q,E;l:z) — _\/g(él + Zég)z(él + Zég)]eXp(Zk . X)

wheree; || k. Chosen as spin states, c.f. polarization.

For vectors, the harmonic points in a direction orthogon&l to
suitable for thevortical componenof a vector

For tensors, the harmonic is transverse and traceless as appropri
for the decompositon afravitational waves



Perturbation:-Modes

For thekth eigenmode, thecalar componentsecome

Alx) = A(k)QWY,
op(x) = dp(k) QY

thevectors componentsecome

and thetensors components

HTZ]

Z B(m)(k) Q( )

m=—1

2

= > H"(k

m=—2

I1;(x) =

= Hp(k)QWY,

op(k) QY

> IM(k)Q;

m=—2



Homogeneous Einstein Equations

Einstein (Friedmann) equations:

1da\®  87G
a dt - 3

1 d*a B 47TG( + 3p)
adt2 g WP
so thatw = p/p < for acceleration

Conservation equatiow*7,,, = 0 implies

P = 31 +w)-
0 a



Homogeneous Einstein Equations

Counting exercise:

20  Variables (10 metric; 10 matter)
—17  Homogeneity and Isotropy

—2  Einstein equations

—1  Conservation equations

+1  Bianchi identities

1  Degree of freedom

without loss of generality choose ratio of homogeneous & isotropi
component of the to the densityiw(a) = p(a)/p(a).



Acceleration Implies Negative Pressure

Role ofstressem the background cosmology

Homogeneous&instein equation&,,, = 87G1,, Imply the two
Friedman equation@lat universe, or associating curvature
pr = —3K/8wGa?)

lda 3G
a dt 3 -
1 d*a AnG
- = 3
a dt? 3 —3 (P +3p)
so that the total equation of state= p/p < for acceleration

Conservation equatiow*T7,,, = 0 implies

1
P a

so thatp must scale more slowly thait?



Questions regarding Dark Energy

Coincidencegiven the very different scalings of matter and dark
energy witha, why are theycomparable no®

Stability: why doesn’t negative pressure img@ygcelerated
collaps®@ or why doesn’t the vacuum suck?

Answer:stability is associated with stress (pressyedientanot
stress (pressure) itself.

Example:thecosmological constant, = —1, a constant in time
and space — no gradients.

Example:ascalar fieldwherew = p/p # dp/dp = sound speed.



Covariant Scalar Equations

Einstein equationésuppressing) superscriptsHu & Eisenstein 199)

1 a1 .
(k* = 3K)[Hy, + 5 Hr + — 25 (kB — Hr),

= 4rGa? [5,0 - 3%(,0 +p)(v — B)/k] ,

1 d .
K2(A+ Hy + -Hr) + (— + 29) (kB — Hr)

3 dm a
= 87rGa’pll,
a : 1. K :
—-A—-H;, —-Hr— —<(kB—H
a bogtt k2( 2

= 4nGa*(p + p)(v — B)/k,

. e\ 2 . 2

2 _qlC) Le8 &

a a adn 3
5 1

= AnGa”(op + §5p).

d al, .- 1
A—|—+—-|(Hr+ kB
[dn—l—a]( L—|—3 )




Covariant Scalar Equations

Conservation equationsontinuityandNavier Stokes

. . |
[_+39] Sp+320p = —(p+p)(kv+3H1),
dn a a
d (v - B) 2 L€
& 4,2 = dp— =(1—-3=)pIl A
[d?7+ a] [(p+p) ; ] Pl e

Equations are not independent sinceG*” = 0 via theBianchi
identities

Related to the ability to choosecaordinate systerar “gaugé to
represent the perturbations.



Covariant Scalar Equations

DOF counting exercise

8  Variables (4 metric; 4 matter)
—4  Einstein equations
—2  Conservation equations
+2  Bianchi identities
—2  Gauge (coordinate choice 1 time, 1 space

2 Degrees of freedom

without loss of generality choose scalar components of ir:2
op, I1 .



Covariant Vector Equations

Einstein equations

1 — 2K /k2) (kB — b
T
= 167Ga?*(p + p)(v'FY — BEDY /|

d :
28] e —

— —8rGa’pll*+Y .

Conservation Equations

d 1 1
42| o+ P - B

1
—5(1- 2K /k2)pIIEY

Gravity providesno sourcdo vorticity — decay



Covariant Vector Equations

DOF counting exercise

8  Variables (4 metric; 4 matter)
—4  Einstein equations
—2  Conservation equations
+2  Bianchi identities
—2  Gauge (coordinate choice 1 time, 1 space

2 Degrees of freedom

without loss of generality choose vector components ot (1
[I+D.



Covariant Tensor Equation

Einstein equation

d? a d 5 (£2) 2. 17(£2)
d—772+2ad—77+(k +2K)| Hy ™/ = 8rGa pll'=~ .

DOF counting exercise

4 Variables (2 metric; 2 matter)
—2  Einstein equations
—(0  Conservation equations
+0  Bianchi identities
—0  Gauge (coordinate choice 1 time, 1 space

2  Degrees of freedom

wlog choose tensor components of e I (E2).



Arbitrary Dark Components

Total stress energy tensor can be broken upimievidual pieces

Dark componentsteract only through gravity and so satisfy
separate conservation equations

Einstein equation source remains the sum of components.

To specify an arbitrary dark component, give the behavior of the
stress tensoi6 componentsdp, 119, wherei = —2, ..., 2.

Many types of dark components (dark matter, scalar fields,
massive neutrinos,..) hagemple formsfor their stress tensor in
terms of the energy density, i.e. describedeyations of state

An equation of state for the background= p/p is not sufficient
to determine the behavior of the perturbations.



Gauge

Metric and matter fluctuations take driferent valuesn different
coordinate system

No such thing as a “gauge invariant” density perturbation!

Generalkoordinate transformation:

n = n+1T
P = '+ L

free to choos€T’, L') to simplify equations or physics.
Decompose these into scalar and vector harmonics.

G, and7),, transform asensorsso components in different
frames can be related



Gauge Transformation

Scalar Metric:

A = A-17-21,
a
B = B+ L+kT,
_ L :
H, = Hp—~-L-27,
3 a
I:IT = Hr+ kL,

Scalar Matter {th component):

5ﬁJ — 510,] _ pJT)
opy = opy;—pjT,
vy = v+ La

\Vector:

B(il) _ B(:I:l) 4 L(:I:l)’ I’_“]C%:I:l) _ Héil) 4 kL(il), 63:&1)

:v$”+L&Q



Common Scalar Gauge Choices

A coordinate system i&Illy specifiedif there is an explicit
prescription for(T’, ') or for scalargT, L)

Newtonian:
B = Hr=0
v = A
¢ = ﬁL
L = —Hp/k
T = —B/k+ Hp/k?

Intuitive Newtonian like gravity; matter and metric

algebraically related; commonly chosen foralytic CMBand
lensingwork

numericallyunstable



Example: Newtonian Reduction

In the general equations, sBt= Hy = O:

(k* —=3K)® = 4nGa* [5p+3%(p+p)v/k]
(U 4+ ®) = 8rGa?pll

soV = —& if anisotropic stres$l = 0 and

d ' ' :

[— I 39] op + 395]9 = —(p+p)(kv+3P),

dn a a
d a 2 K
— +4- = kop— =(1—-3-—=5)pkll kW
o +45] o+ B0 2 (1~ 35 )pRIL+ (p+ p) 0.

Competition betweentresqpressure and viscosity) apdtential
gradients



Common Scalar Gauge Choices

Comoving:

B = o (T)=0)
Hr = 0

¢ = A

¢ = Hg

A = ¢

T = (v—DB)/k
L = —Hp/k

Algebraic relations between matter and metric

Euler equation becomes an algebraic relation between stres:
and potential

2 K

(p+p)§ = —5p+§ (1—7> pll



Common Scalar Gauge Choices

Einstein equation lacks momentum density source

a . K

Combine:( is conservedf stress fluctuations negligible, e.g.
above the horizon ifK| < H*

: a op 2 3K D
L Kulk=<-|——2 4+ 21— | — 0
¢+ Ko/ a[ p+p 3< k2>p+p ]_>

explicitly relativistic choice



Common Scalar Gauge Choices

Synchronous:
A = B=0
- 1 -~
nL = —HL—§HT
hr = I:[T or h=6H;

A— a_l/dnaAJrcla_l
L = —/dn(B+kT)—|—02

stable, the choice of numerical codes

residualgauge freedorm constants;, c; must be
specified as an initial condition, intrinsically relativistic.



Common Scalar Gauge Choices
Spatially Unperturbed:

H, = Hr=0
L = —Hr/k
A,B = metric perturbations
a\ 1
= (o) (e ge)
a 3

eliminates spatial metric in evolution equations; useful in
Inflationary calculationgviukhanov et a)

Intrinsically relativistic.
perturbation evolution is governed by the behavior of

stress fluctuations and an isotropic stress fluctuatias gauge
dependent.



Hybrid “Gauge Invariant” Approach

With the gauge transformation relations, express variables®f
gaugen terms of those imnother allows a mixture in the
equations of motion

Newtonian curvature and comoving density

(k* — 3K)® = 4nGa’pA
ordinary Poisson equation then impl@sapproximately constant

If stresses negligible.

Exact Newtonian curvature above the horizon derived
through Bardeen curvature conservation

Gauge transformation

av
¢ = ——
C+a/~c



Hybrid “Gauge Invariant” Approach

Einstein equation to eliminate velocity

o o= ArGa’(p + p)v/k
a

Friedman equation with no spatial curvature

(d>2 G
a 3

With ® = 0 and¥ ~ —®

aw_ 2 4
ak 3(1 + w)




Hybrid “Gauge Invariant” Approach

Combining gauge transformation with velocity relation
343
p=""7¢
5+ 3
Usage: calculate from inflation determine® for any choice of
matter content or causal evolution.

Scalar field (“quintessence” dark energy) equations in
comoving gauge imply aound speedp/dp = 1 independent of
potentialV (¢). Solve in synchronous gauge.(1999.



Inflationary Perturbations



Scalar Fields

Stress-energy tensor of a scalar field

|
I", = Vi Vg = 5 (Vi Vap + 2V)d%, .

For the backgroundy) = ¢,

1 : 1 :
Py = §a_2gb(2) +V py= 5@‘%3 + -V

So for kinetic dominatedy = p,/ps — 1
And potential dominated, = ps/p, — —1

A slowly rolling (potential dominated) scalar field can accelerate
the expansion and so solve the horizon problem or act as a dark
energy candidate



Equation of Motion

Can use general equations of motion of dictated by stress energy
conservation

Pe = —3(pe +p¢)§ ,
to obtain the equation of motion of the background fig¢ld
do + Qgéo +a*V' =0,
Likewise for the perturbations = ¢y + ¢,
6ps = a”*(dodr — BA) + Ve,
0pg = a 2(god1 — B A) — V'
(po + Ps) (v — B) = a" ko ,
pgmg =0,



Equation of Motion

The stress of the perturbations is defined through

U¢—Bd

0pg = 0pg + 3(pg + Py) k 5(1 — c5)

wherecfb = py/ Py 1S the “adiabatic” sound speed

So for the comoving gauge whewg = B, dp, = 0p, SO the sound
speed relevant for stability i®,/0ps = 1. Very useful for solving
system since in this gauge everything is specifieaby)

Scalar field fluctuations are stable inside the horizon and are a
good candidate for the smooth dark energy

More generally, continuity and Euler equations imply

b1 = —2%&51 — (K2 4 a®V")éy + (A — 3H;, — kB)do — 2402V



Inflationary Perturbations

Classical equations of motion for scalar field inflaton determine
the evolution of scalar field fluctuations generated by quantum
fluctuations

Since the Bardeen or comoving curvatygrs conserved in the
absence of stress fluctuations (i.e. outside the apparent horizon,
calculate this and we’re done no matter what happens in between
Inflation and the late universe (reheating etc.)

But in the comoving gaugeé; = 0! no scalar-field perturbation

Solution: solve the scalar field equation in the dual gauge where
the curvaturedd; = 0 (andHy = 0 to fix the gauge completely, as
the “spatially unperturbed” or “spatially flat” gauge) and transform
the result to the comoving gauge




Transformation to Comoving Gauge
Scalar field transforms as scalar field
b1 = ¢1 — T

To get to comoving frameé; = 0, T = ¢, /¢, and
Hr = Hp + kL S0

v

(=H,—=L--T,
3 a
o

_H 4L _ 4%
3 a oy

Transformation particularly simple from a gauge with
Hr = H; = 0, I.e. spatially unperturbed metric
(=20
a pg



Scalar Field Egn of Motion

Scalar field perturbation in spatially unperturbed gauge is simply
proportional to resulting Bardeen curvature with the
proportionality constant as the expansion rate over roll rate —
enhanced

Scalar field fluctuation satisfies classical equation of motion

by = _zggbl — (K2 + a®V")$y + (A — kB)do — 242V .
Metric terms may be eliminated through Einstein equations

a

A =G (%) (o 4 o) — B

N\ —1
= 4nG (ﬁ) Q.Squl
a



Scalar Field Egn of Motion

And

k8 = 4Gl (5) dpat 3200s + po)vs — B)/H

Q| 2

a

N | —2
— 47TG[<%) (dodr + a*V'¢y) — (5) (47 G o) > Pod1 + 3dodu]

SoA — kB ¢, with proportionality that depends only on the
background evolution — Einstein & scalar field equations reduce t
a single second order diff eq!

Equation resembles a damped oscillator equation with a particula
dispersion relation

b1 + 2%651 + (&% + f(n)] ¢



Exact Equation

Rewrite equations of motion in terms of slow roll parameters but
do not require them to be small or constant.

Deviation from de Sitter expansion

3
e = (1 +wy)

e
1+ 3GV

Deviation from overdamped limit af*¢, /dt* = 0



Exact Equation

Friedman equations:

N
<ﬁ> :47TG$(2)6_1

a
d (a @\’
i () = (2) 49
Homogenous scalar field equation
éo%(i% +8) = —a’V’
Combination

é = 2¢(d + 6)9
a



Exact equation

Rewrite inu = a¢ to remove expansion damping

i+ [k* + g(n)]u =0

wheremukhanov

and



Slow Roll Limit

Slow rolle < 1,6 < 1,0 < &

i+ [k* — 2 (9>Q]u:o

or for conformal time measured from the end of inflation

ﬁ:n_nend
. * da _ 1
= Ha?2 = aH

Aend

Compact, slow-roll equation:



Slow Roll Limit

Slow roll equation has the exact solution:

u= Ak £ E)eﬂkﬁ

~

N

For k7| > 1 (early times, inside Hubble length) behaves as free
oscillator

lim u = AkeT™n

|k7j| =00

NormalizationA will be set by origin in quantum fluctuations of
free field



Slow Roll Limit

For |k7| < 1 (late times,;> Hubble length) fluctuation freezes in

lim u = j:éA = +1HaA
|kn|—0 n

b = +iHA

— FiHA é)i
‘= (a ®o

Slow roll replacement

N 2
1 2 4

(g) ._2:87TGCLV 3 o AT
%

a 3 202V e m2
Bardeen curvature power spectrum

kSKP B 2]€3 H2

2 2
27T T €my

A2

2
INE



Quantum Fluctuations
Simple harmonic oscillatok: Hubble length

i + k*u =0
Quantize the simple harmonic oscillator
o = u(k,n)a+u*(k,n)a’

whereu(k, n) satisfies classical equation of motion and the
creation and annihilation operators satisfy

a,a'] =1, al0) =0
Normalize wavefunctionu, du/dn| = ¢

1 o
u(kv 77) — e

oI



Quantum Fluctuations

Zero point fluctuations of ground state
(u?) = (0]utu|0)

(w*a’ + ua)(ua + u*ah)|0)

aa’|0)|u(k, )|

0|[a, a"] + a'al0)|u(k, 7)[*

1
p— k o 2 - —

Classical equation of motion take this quantum fluctuation outside
horizon where it freezes in. Slow roll equation

o O

=
= {
= {
=

SoA = (2k*)'/2 and curvature power spectrum

2

A2:l ol
C T mem?
pl




Tilt
Curvature power spectrum is scale invariant to the extentAhiat

constant

Scalar spectral index

d1n Ag B 1
dlnk
B 2dlnH dln e
- “dlnk  dlnk
Evaluate at horizon crossing where fluctuation freezes
dln H  kdH dn
dInk }—’fﬁzl B Ed_ﬁ‘—kﬁ:1%|—kzﬁ:1
k ) 1
— E(—CLH €)|—k7~7=1ﬁ = —¢

whereaH = —1/n =k



Tilt

Evolution ofe

dlne dlne a
— 0 o+ =20
dnk =~ dmp -~ 20t en=20+¢

Tilt in the slow-roll approximation

77,5:1—46—25



Relationship to Potential

To leading order in slow roll parameters
__3d/ev
1+ 2¢2/a?V

3 .
~ §gb(2)/a2V

3 a'V” . a e sy
" a2V 9(a/a)?’ (3607, = —a'V)

13 (V'Y a\® 8rG ,
NESWG(V)’ (5) R
1 (VY
N167TG(V>

Soe < 1 Is related to the first derivative of potential being small




Relationship to Potential

- alV/’ 0 —2 \VAAVAL
N — 1 Y=
Bom =S g et (3) 50
1 a2V’(1+ )+a2 3 VIV BRL
~ — — € —1 =~e—
2vV73 \ 3 087GV T 8GV

S0o¢ Is related to second derivative of potential being small. Very
flat potential.



Gravitational Waves

Gravitational wave amplitude satisfies Klein-Gordon equation
(K =0), same as scalar field

HE? 4 22}'17(?2) +K2HED = 0.

Acquires quantum fluctuations in same mannep.asagrangian
sets the normalization

3
H(i2)
1= Hr 167G

Scale-invariant gravitational Wave amplitude (each component:
NB more traditional notatiod\"> = (h. + ihy)//6)

167G H? 4 H?

3om2 2 Brmd

AZ, =



Gravitational Waves

Gravitational wave powex H” « V « E! wherekL; is the energy
scale of inflation

Tensor tilt;

dln A? 5 dln H
— N = —
dlnk T T dnk
Consistency relation between tensor-scalar ratio and tensor tilt

—2¢€

AL 42

Measurement of scalar tilt and gravitational wave amplitude
constrains inflationary model in the slow roll context

Comparision of tensor-scalar ratio and tensor tilt tests the idea of
slow roll itself



Gravitational Wave Phenomenology

Equation of motion

HED 4 2%1#2) +2HEY = 0.

has solutions

HY = C Hy(kn) + CoHa(kn)
Hy o<z g, (x)
Hy o< 27" (x)
wherem = (1 — 3w) /(1 + 3w)

If w > —1/3 then gravity wave is constant above horizor« 1
and then oscillates and damps

If w < —1/3 then gravity wave oscillates and freezes into some
value, just like scalar field



Gravitational Wave Phenomenology

A gravitational wave makes a quadrupolar (transverse-traceless)
distortion to metric

Just like the scale factor or spatial curvature, a temporal variation
In its amplitude leaves a residual temperature variation in CMB
photons — here anisotropic

Before recombination, anisotropic variation is eliminated by
scattering

Gravitational wave temperature effect drops sharply at the horizor
scale at recombination

Source to polarization goes agHT and peaks at the horizon not
damping scale

B modes formed as photons propagate — the spatial variation in tl
plane waves modulate the signal: described by Boltzmann eqgn.



Boltzmann Formalism



CM
dist
X IS

Boltzmann Equation

B radiation is generally described by the phase space
ribution function for each polarization stafgx, q,n), where
the comoving position anglis the photon momentum

Boltzmann equation describes the evolution of the distribution
function under gravity and collisions

Low order moments of the Boltzmann equation are simply the
covariant conservation equations

Higher moments provide the closure condition to the conservatior

law
sca

Hig

(specification of stress tensor) and the CMB observable — fine
e anisotropy

ner moments mainly describe the simple geometry of source

Proj

ection



Liouville Equation
In absence of scattering, the phase space distribution of photons
conserved along the propagation path

Rewrite variables in terms of the photon propagation direction
q= Qfl, SOfa(X7 fl) q, 77) and

d

d_nfa(xa ﬂa q, 77) =0

0 dx 0 dn 0O dg O
— T i =+ = T+ . fa
on dn Ox dn on dn 0Oq
For simplicity, assume spatially flat univerg&e= 0 then
dn/dn = 0 anddx = ndn

fa_l—n vfa—l_q fa—o



Correspondence to Einstein Eqn.

Geodesic equation gives the redshifting term

' a 1 . .. ; "
g = —— — —TLZTL]HTZ']' — HL i nZBi —n- VA
q a 2
which is incorporated in the conservation and gauge

transformation equations

Stress energy tensor involves integrals over the distribution
function the two polarization states

N R
= T

Components are simply the low order angular moments of the
distribution function



Angular Moments

Define the angularly dependent temperature perturbation

1 3d
O(x, i, 1) = 5/ 9(fut fy) -

and likewise for the linear polarization statg@aandU

Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

G (k,x,n Yg n) exp(ik - x)

2€

4
20+ 1

In a spatially curved universe generalize the plane wave part

1

_I_

N

:|:2G£ ( ’ 7

LY, () exp(ik - x)



Normal Modes

Temperature and polarization fields

X Ak )
@(le’l,?’]) = WZ@K GE

31,
Q £:U|(x,n, _/ o E ™ £ iB™] Gy

For eachk mode, work in coordinates wheke|| z and som = 0
represents scalar modes,= +1 vector modes;n = +2 tensor
modes,|m| > 2 vanishes. Since modes add incoherently and
() £ U Is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Scalar, Vector, Tensor

Normalization of modes is chosen so that the lowest angular mod
for scalars, vectors and tensors are normalized in the same way &

the mode function
G =Q0 GY=n'Q” GYxninQy)
Glil — niQEﬂ) G;tl X niang;tl)

G§t2 = n'n? QSEQ)

where recall
QY = exp(ik-x)
Qgil) — _—Z(él + zég)zexp(zk . X)

V2
3 . . . . :
QS-EQ) —\/g(el + 1€5);(€1 £ i€2),exp(ik - x)



Geometrical Projection

Main content of Liouville equation is purely geometrical and
describes the projection of inhomogeneities into anisotropies

Spatial gradient term hits plane wave:

: : 4 :
n- Ve ™ =in - ke™™ = iy %leo(fl)eZk'x

Dipole term adds to angular dependence through the addition of
angular momentum

4 K" Ky
—YOYm: 1 Y’riL + (+1 Ym
Vs 't T Jeirnei-1 7t Jeirneits) P

wherex}* = /2 — m? is given by Clebsch-Gordon coefficients.




Temperature Hierarchy

Absorb recoupling of angular momentum into evolution equation
for normal modes

N(m) (m) Kpy -y (m m

0, = ©,-1 — 20+ 3@€+1 — 70, )+Sé )
WhereSém) are the gravitational (and later scattering sources;
added scattering suppression of anisotropy)

An originally isotropic/ = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

Original CMB codes solved the full hierarchy equations out to the
¢ of interest.



Integral Solution

Hierarchy equation simply represents geometric projection,
exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

In general, the solution describes the decomposition of the source
Sém) with its local angular dependence as seen at a distance

x = Dn.

Proceed by decomposing the angular dependence of the plane
wave

e * =3 (—i)'\/4m(20 + 1)j,(kD)Y, (n)

Recouple to the local angular dependencé’f

Gy = (—i)'\/4r (20 + 1)oyy (kD) Y™ (1)




Integral Solution

Projection kernels:
68 = O, m =0 OZOE — jg
68 — 1, m = O Oélﬁ p— jﬁ

Integral solution:

@(m)(k7 o) 0 » .
P /0 dne™™ Y Sy (k(m — )

Power spectrum:

2 [ dk ~ k30" el™)
CK_%/?; (20 + 1)
Solving forC, reduces to solving for the behavior of a handful of
sources




Polarization Hiearchy

In the same way, the coupling of a gradient or dipole angular

momentum to the spin harmonics leads to the polarization
hiearchy:

. m 2m 2/‘€m
E(m) — L 2y E(m) _ B(m) . +1 | 'E(m) g(m)
¢ [%—J ELoge+1)f wy3| T T

: [ ) oKy,
B(m) — L 2hy B(m) B(m) . 41 | -E(m) B(m)
¢ [%—J€1+€w+1)e 2w0+3| o

wherey s} = /(2 — m?)(¢2 — 4) /(2 is given by the
Clebsch-Gordon coefficients aédg 5 are the sources (scattering
only).

Note that for vectors and tensdrs| > 0 and B modes may be
generated fronty modes by projection. Cosmologicalﬁém) =0



Polarization Integral Solution

Again, we can recouple the plane wave angular momentum of the
source inhomogeneity to its local angular dependence directly

E(m) k o
, (k,m0) :/ dne_ng( )eé g)(k(ﬁo — 1))
0

20+ 1 ;

By (ko) [ ) g
et = [ dne e 8 ow )

The only source to the polarization is from the quadrupole
anisotropy so we only nee = 2, e.g. for scalars

0 (2) \/§ (C+2) ) o
2t 8(£—2) 2?2 2t




Truncated Hierarchy

CMBFast uses the integral solution and relies on ajiagénerator

However sources are not external to system and are defined
through the Boltzmann hierarchy itself

Solution: recall that we used this technique in the tight coupling
regime by applying a closure condition from tight coupling

CMBFast extends this idea by solving a truncated hierarchy of
equations, e.g. out to= 25 with non-reflecting boundary
conditions



Thomson Collision Term

Full Boltzmann equation

d%fa,b — C[fa, i

Collision term describes the scattering out of and into a phase
space element

Thomson collision based on differential cross section
do 3 s, =
— — —|E - EI?
dS? 871" For,
whereE’ andE denote the incoming and outgoing directions of
the electric field or polarization vector.



Scattering Calculation

Start in the electron rest frame and in a coordinate system fixed b
the scattering plane, spanned by incoming and outgoing direction
vectors—n’ - n = cos 3, whereg is the scattering angle

©,: In-plane polarization stat&) , : | -plane polarization state

Transfer probability (constant set by

O o cos’ B, O, x O

and with the45° axes as

A

B, =

(EH + EJ_) EQ — %(E — EJ_)

&\H



Stokes Parameters

Define the temperature Iin this basis
0, x |[E; - E,|?0) + |E; - E,|*6),

1 1
X Z(cosﬁ +1)%0] + Z(Cosﬂ —1)%0),

@2 X ’EQ . E2|2@/2 -+ ‘EQ . E1|2@/1

1 1
X Z(Cosﬁ +1)*0, + Z(Cosﬁ —1)°6}

or ©; — O3 x cos G(O] — 65)

Define®, ), U in the scattering coordinates

1 1 1
O = 5(@“ +0,.), Q= 5(@” -0,), U= 5(@1 — 0Oy)



Scattering Matrix

Transfer of Stokes states, e.g.

1 1 1
O = 5(@“ +0,) x Z(Coszﬁ +1)0" + Z(C0825 - 1)@’

Transfer matrix of Stokes state = (0, Q + U, () — iU)

T < S(6)T
; / cos 3 + 1 —2sin’ 3 —1sin? 3 \
S(8) = A —% sin? 15 %(Cosﬁ = 1)2 %(COSﬁ _ 1)2
\ —isin’8  L(cosB—1)>  L(cosB+ 1) )

normalization factor of 3 is set by photon conservation in scatterin



Scattering Matrix

Transform to a fixed basis, by a rotation of the incoming and

outgoing stated” = R ()T where

(1 0 0 )

0 e 2%

\0 0 &)

giving the scattering matrix

R(vy) =

R(—7)S(B)R(a) =

4— YQO (ﬁa Oé) T 2\/5Y00 (57 Oé) %Y2_2(67 Oé)
\/?7T —\/EQYQO(ﬁa 04)627;7 3 2Y2_2(5> 04)621‘7
—\/6—23/20(57 Oé)e_m .

_\/§Y22 (ﬁa Oé)
3 2Y22 (67 a)e2i7
3 oYy (8, O‘)e_m



Addition Theorem for Spin Harmonics

Spin harmonics are related to rotation matrices as

20 1
V7(0,6) = || = D",0u(6,0,0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by—1)™

Multiplication of rotations

ZD m'! @2762772) (041,61,’}/1) :Dfnm’(chﬁf)/)

Implies

m* m S1—S2 2€ T 1 —81 159
Z 31Y£ ((9/7 ¢,) SQYVE ((97 ¢) — (_1) 47T SQYE (ﬂ7 Cl{)e !

m




Sky Basis

Scattering into the state (rest frame)

d’\/
Ciu|T] =7 4n R(—7)S(8)R(a)T (1),
TC
da’ N
/ —(©',0,0) + —T/d ZPm)nn (1)
m=—2
where the quadrupole coupling termB§™ (i, i) =
Y E)YR) =Y @) Y h) -y /8 oY) Y (R)
—/6Y3™* () Y3 () 3,Yy™ () Y3 (1) 3 _, Yo" () Y™ () ;

—VOYS"(R) LYo (n)  3,YM () LYo (n) 3 _,Yg™(R) L, Y3 (n)

expression uses angle addition relation above. We call this term
Co.



Scattering Matrix

Full scattering matrix involves difference of scattering into and out
of state

In the electron rest frame

C[T] = T'/ i—“(@’, 0,0) — 7T + Co[T]
70

which describes isotropization in the rest frame. All moments hawv:
e~ suppression except for isotropic temperatage

Transformation into the background frame simply induces a dipole
term

Jiy
O[T]I%(ﬂ-Vb—F 4—n@,,0,0>—7.'T—|—CQ[T]
m



Source Terms

, flat assumption

Temperature source terrﬂ#m) (rows=|m

(00 —HY #0+BO PO _20 )

0 fog) ¢ BED s pED) 8 el
\ 0 0 7P _ g
where

1
10
Polarization source term

P = 2(0y" = V6Ey™)

Sg(m) = —7V6P™ 5y,
B =0



Secondary Anisotropy



Secondary Anisotropy

CMB photons traverse the large-scale structure of the universe
from z = 1000 to the present.

With the nearly scale-invariant adiabatic fluctuations observed Iin
the CMB, structures form from the bottom up, i.e. small scales
first, a.k.a. hierarchical structure formation.

First objects reionize the universe betweer 7 — 30
Main sources of secondary anisotropy

Gravitational: Integrated Sachs-Wolfe effect (gravitational
redshift) and gravitational lensing

Scattering: peak suppression, large-angle polarization, Doppler
effect(s), inverse Compton scattering



Transfer Function

Transfer functiortransfers the initial Newtonian curvature to its
value today (linear response theory)

O(k,a=1) P(kuorm, Ginit)

O(k, anit) P(knorm,a = 1)

Conservation of Bardeen curvature: Newtonian curvature is a
constantwhenstress perturbations are negligibébove the

horizon during radiation and dark energy domination, on all scale:
during matter domination

T(k) =

When stress fluctuations dominate, perturbations are stabilized b
theJeans mechanism

Hybrid Poisson equatiarNewtonian curvature, comoving density
perturbationA = (0p/p)com iMmplies® decays

(k* — 3K)® = 47nGpA ~ 5 A



Transfer Function

Matter-radiation example: Jeans scale is horizon scaledand
freezes into its value at horizon crossig; ~ ;i

Freezingof A stops atye,

 ~ ( neq)_QAH ~ ( neq)_2q)init

Conventionallyk,..., IS chosen as a scale between the horizon at
matter radiation equality and dark energy domination.

Small correction since growth with a smooth radiation component
IS logarithmic not frozen

Run CMBfast to get transfer function or use fits



Transfer Function

Transfer function has &~ fall-off beyondk., ~ 7./

1:_...

0.0001 0.001 0.01 0.1 1

0.01

Additional baryon wiggles are due to acoustic oscillations at
recombination — an interesting means of measuring distances



Growth Function

Same physics applies to the dark energy dominated universe

Under the dark energy sound horizon, dark energy density frozen
Potential decays at the same rate for all scales

¢ (knorma a)
o (knorm s Qinit )

Pressur@rowth suppression = dp,,/pm < ap

gla) =

d*qg 5 3 dg 3

> 1 — 0
dlna2+ 2 dlna—l_Q[ | I ’

wherew = pDE/;ODE andQDE — PDE/(Pm -+ ,ODE) with initial
conditionsg = 1, dg/dIna =0

As Q)pr — 0 g =const. Is a solution. The other solution is the
decaying mode, elimated by initial conditions



ISW effect

Potential decay leads to gravitational redshifts through the
Integrated Sachs-Wolfe effect

Intrinsically a large effect sinceA® = 6W;,;; /3
But net redshift is integral along along line of sight

@E(kan())
20 + 1

- / " dne T2k, m)]je(k(no — 1))
— 2(13(]{, nMD) /0770 d?’]e_Tg(D)]g(kD)

On small scales where>> ¢/g, can pull source out of the integral

[ ana(D)ikD) = (D = e/ 7

evaluated at peak, where we have ugettj,(z) = /m/2(



ISW effect

Power spectrum

CE _ z / dk k3<62(k7770)@€(k7770)>
) k (20 +1)2
27T 5
= dnDg*(n)A% /D, mup)
Or [*C; /2w  1/¢ for scale invariant potential. This is the Limber
equation in spherical coordinates. Projectior3 bf power retains
only the transverse piece. For a general dark energy model, add |

the scale dependence of growth rate on large scales.

Cancellation of redshifts and blueshifts as the photon traverses
many crests and troughs of a small scale fluctuation during decay
Enhancement of thé < 10 multipoles. Difficult to extract from
cosmic variance and galaxy. Current ideas: cross correlation with
other tracers of structure



Gravitational Lensing

Lensing is a surface brightness conserviagnappingof source to
Image planes by the gradient of thejected potential

1o )
n) = 2 d(Dn,n).
o) =2 | iy s e(Dny
such that the fields are remapped as

r(n) — x(n+ Vo),

wherex € {0, Q, U} temperature and polarization.

Taylor expansion leads fmroductof fields and Fourier
mode-coupling



Flat-sky Treatment

Talyor expand

~

O(n) =6(n + Vo)
= O() + V.o(0) V'O(R) + £ Vio() V,0(0) VWO (M) + ...

Fourier decomposition

o) = [ Fzoet®
6 = [ GO0




Flat-sky Treatment

Mode coupling of harmonics

where
LLL)=¢0(1-1)1-1) L

1 d212 *
3 / 52002007+ 1 =1 (Il 1)+ 1y = 1) -1y

Represents a coupling of harmonics separatefl by60 peak of
deflection power




Power Spectrum

Power spectra

©*1)e)) = 2r)%5(1-1) CP°,
(" (Mo(l)) = (2m)*6(1 - 1) CF*,
becomes
0P = (1= PR)CP® + [ SILCRR,CErl -1 1
where
R="1 [ Lpcpe ©)

47T [



Smoothing Power Spectrum

If C2° slowly varying then two term cancel

- d?1, -
G / (277)2Cz(b¢(1 1)’ = PRCP®.

So lensing acts to smooth features in the power spectrum.
Smoothing kernel i4. ~ 60 the peak of deflection power spectrum

Because acoustic feature appear on a sSgate 300, smoothing Is
a subtle effect in the power spectrum.

Lensing generates power below the damping scale which directly
reflect power in deflections on the same scale



Polarization Lensing

Polarization field harmonics lensed similarly

&l
(27)

Q@+ iU)(n) = - / [E £ B](1)e*??1e!®

so that
Q£ iU(h) = [Q £ iU](A+ V)
~ [Q +4U)(h) + Vip(R)VI[Q + U] (1)

+ %Vﬂ(fl)vﬂ(ﬁ)vivj Q £iU](R)



Polarization Power Spectra
Carrying through the algebra

X 1 [ d21,
CFF = (1= PR O+ 5 [ sl -1 1P e,
x [(CEF + CPB) + cos(4yy, ) (CEE — CPP)),
X 1 [ d21,

x [(C" + CJ7) — cos(4pn, ) (C/ — CJP)],

- d?1
CrF = (L-FR)CP" + / e (= 1) - LGRS,

X CN'Z(?E cos(2vy, ) ,

Lensing generateB-modes out of the acoustic polaraization
FE-modes contaminates gravitational wave signature if
E;, < 10'°GeV.



Reconstruction from the CMB

Correlation betweeRourier momentseflectlensing potential

(z(M)z"(I))ems = fa(,1)o(1+1),

wherex € temperaturgpolarization fieldsand f,, is a fixed weight
that reflects geometry

Each pair forms aoisy estimat®f the potential or projected mass
- Just like a pair of galaxy shears

Minimum variance weighall pairs to form an estimator of the
lensing mass



Scattering Secondaries

Optical depth during reionization

2 2\ —1/2 3/2
o~ 0.066 QOph Q.. h 1+ 2
0.02 0.15 10

Anisotropy suppressed as”. Integral solution

@e(kﬂ%) _/770 —7 o(0) .
T dne="Sy " je(k(no —m)) + ...

Isotropic (lare scale) fluctuations not supressed since suppressiotl
represents isotropization by scattering

Quadrupole from the Sachs-Wolfe effect scatters into a large ang|
polarization bump



Doppler Effects

Velocity fields of 10~ and optical depths afd— would imply
large Doppler effect due to reionization

Limber approximation says only fluctuations transverse to line of
sight survive

In linear theory, transverse fluctuations have no line of sight
velocity and so Doppler effect is highly suppressed.

Beyond linear theory: modulate the optical depth in the transverse
direction using density fluctuations or ionization fraction
fluctuations. Generate a modulated Doppler effect

Linear fluctuations: Vishniac effect; Clusters: kinetic SZ effect;
lonization patches: inhomogeneous reionization effect



Thermal SZ Effect

Thermal velocities also lead to Doppler effect but first order
contribution cancels because of random directions

Residual effect is of ordar’t ~ T, /m. 7 and can reach a sizeable
level for clusters with/,. ~ 10keV.

Raleigh-Jeans decrement and Wien enhancement described by
second order collision term in Boltzmann equation: Kompaneets
equation

Clusters are rare objects so contribution to power spectrum
suppressed, but may have been detected by CBI/BIMA: extremel
sensitive to power spectrum normalization

White noise on large-scalés < 2000), turnover as cluster profile
IS resolved



Data Pipeline



Gaussian Statistics

Statistical isotropy says two-point correlation depends only on the
power spectrum

@(ﬂ) — Z @Emnm(ﬁ)

<@Zm@£’m’> — 5@@’5mm’ [@@
Reality of field say®,,, = (—1)"Oy_m)

For a Gaussian random field, power spectrum defines all higher
order statistics, e.g.

<@£1 m1 @€2m2 @€3m3 @£4m4 >

— (—1)m1+m2561635m1(_m3)55254(5m2(_m4)02602@ + all pairs



|dealized Statistical Errors

Take a noisy estimator of the multipoles in the map

éﬁm — @Em + Nﬁm

and take the noise to be statistically isotropic

<NékmN€’m’> — 5%’5mm’ éNN

Construct an unbiased estimator of the power spectrum
(CF°) = o°

l
A 1 aN A
06 * NN
Cg — M——I—l E @Em@em — Cg

m=—I

Variance in estimator
R N A 2
(CPPCP) — (CP°)? = %—H(Cz@@ + CNY?



Cosmic and Noise Variance

RMS in estimator is simply the total power spectrum reduced by
\/Q/J\Lm()deS where N, .4.s IS the number ofn-mode measurements

Even a perfect experiment whef8'"¥ = 0 has statistical variance
due to the Gaussian random realizations of the field. This cosmic
variance Is the result of having only one realization to measure.

Noise variance Is often approximated as white detector noise.
Removing the beam to place the measurement on the sky

2 2

NO® _ z 6@(£+1)02 _ Z €£(£+1)FWHM2 /81n2
‘ dr dr

whered; can be thought of as a noise level per steradian of the

temperature measurementis the Gaussian beam width, FWHM

IS the full width at half maximum of the beam



|dealized Parameter Forecasts

A crude propagation of errors is often useful for estimation
purposes.

Suppose&’, s describes the covariance matrix of the estimators for
a given parameter set,.

DefineF = C~! [formalized as the Fisher matrix later]. Making
an infinitesimal transformation to a new set of parametgrs

Z aﬂ'a 67Tg
Opy fap Opy

In our caser,, are the(, the covariance Is diagonal apd are
cosmological parameters

2W+1  BC® HCO®
F —Z (

T 2a9(CP8 + CFN Op, Op,



|dealized Parameter Forecasts

Polarization handled in same way (requires covariance)

Fisher matrix represents a local approximation to the
transformation of the covariance and hence is only accurate for
well constrained directions in parameter space

Derivatives evaluated by finite difference

Fisher matrix identifies parameter degeneracies but only the local
direction — I.e. all errors are ellipses not bananas



Beyond ldealizations: Time Ordered
Data

For the data analyst the starting point is a string of “time ordered”
data coming out of the instrument (post removal of systematic

errors!)
Begin with a model of the time ordered data as

dy = P,;0; + ny

where: denotes pixelized positions indexedfy/; is the data in a
time ordered stream indexed hyNumber of time ordered data
will be of the orderL0'Y for a satellite! number of pixels0°® — 10°.

The noisen; Is drawn from a distribution with a known power
spectrum

<ntnt’> — Cd,tt’



Pointing Matrix

The pointing matriXxP is the mapping between pixel space and the
time ordered data

Simplest incarnation: row with all zeros except one column which
just says what point in the sky the telescope is pointing at that tim

(001...0\

I 0 0 ... O
P = o 1 0 ... 0

\ 0o 0 1 ... 0 )
More generally encorporates differencing, beam, rotation (for
polarization)



Maximum Likelihood Mapmaking
What is the best estimator of the underlying ntp

Likelihood function: the probability of getting the data given the

theory L = P|dataltheory]. In this case, théheoryis the set of
parametere,.

1 1
,C d — ——d—Pz@Z C_l/ dl—Pl'@'
@( t) (27-‘-)Nt/2\/me}{p 2( t t ) d,tt ( t t'g ])
Bayes theorem says th&tO,|d;|, the probability that the
temperatures are equal@® given the data, is proportional to the

likelihood function times grior P(©;), taken to be uniform

P|O;|d;] < P|d;|©;] = Leo(d;)



Maximum Likelihood Mapmaking

Maximizing the likelihood of©; is simple since the log-likelihood
IS quadratic.

Differentiating the argument of the exponential with respeéd o
and setting to zero leads immediately to the estimator

éi = CN,z‘ijth_;t/dt’ 7
whereCy = (P C;'P) ! is the covariance of the estimator

Given the large dimension of the time ordered data, direct matrix
manipulation is unfeasible. A key simplifying assumption is the
stationarity of the noise, that,,;, depends only ot — ¢’

(temporal statistical homogeneity)



Power Spectrum

The next step in the chain of inference is the power spectrum
extraction. Here the correlation between pixels is modelled
through the power spectrum

Csi; = (0;0;) ZA Wi

HerelV,, the window function, is derived by writing down the
expansion oB(n) in harmonic space, including smoothing by the
beam and pixelization

For example in the simple case of a gaussian beam of widtis
proportional to the Legendre polynomigl(n; - n;) for the pixel
separation multiplied by? oc e~ ¢+



Band Powers

In principle the underlying theory to extract from maximum
likelihood Is the power spectrum at every

However with a finite patch of sky, it is not possible to extract
multipoles separated b/ < 27 /L wherelL is the dimension of
the survey

So consider instead a theory parameterizatioﬁ%q); constant in
bands ofA¢ chosen to match the survey forming a set of band

powerss,

The likelihood of the bandpowers given the pixelized data is

1 1
L @z — ——@z-C_l-.@-
B( ) (27T)Np/2\/det C@ eXp ( 9 0,17 ])

whereCg = Cg + Cy and N, is the number of pixels in the map.




Band Power Esitmation

As before,L I1s Gaussian in the anisotropi€s, but in this case
O, arenotthe parameters to be determined, the theoretical
parameters are th8,, upon which the covariance matrix depends.

The likelihood function is not Gaussian in the parameters, and
there is no simple, analytic way to find the maximum likelihood
bandpowers

lterative approach to maximizing the likelihood: take a trial point
B and Improve estimate based a Newton-Rhapson approach to
finding zeros

N N (9111[:3
B, =B y Fg,
a Tt L'Bab OB,
A 1 0Cq - 0Co j;
= BY + §F]§,2b (@zC@Z @g’jkc@]ﬂ@l Covi ag:) :



Fisher Matrix

The expectation value of the local curvature is the Fisher matrix

I _ _82ln£@
B =\" 0B,0B,
1 3C@ﬂc0 1 0Ce ;i
27 83 O,kl aB :

This Is a general statement: for a gaussian distribution the Fisher
matrix

1
F, = §Tr[c—1c,ac—1c,b]

Kramer-Rao identity says that the best possible covariance matrix
on a set of parameters@G = F~1

Thus, the iteration returns an estimate of the covariance matrix of
the estimator€ 5



Cosmological Parameters

The probabillity distribution of the bandpowers given the
cosmological parametersis not Gaussian but it is often an
adequate approximation

Co(B,) . LB, BOCSL (B, — By

C a) ~ X A a Ha _
2m)Ne2/detCp | 2 Bab\Ob b

Grid based approaches evaluate the likelihood in cosmological
parameter space and maximize

Faster approaches monte carlo the exploration of the likelihood
space intelligently (“Monte Carlo Markov Chains”)

Since the number of cosmological parameters in the working
model isN,. ~ 10 this represents a final radical compression of
Information in the original timestream which recall has up to
N; ~ 10! data points.



Parameter Forecasts

The Fisher matrix of the cosmological parameters becomes

0B 0B,
Fluy= —2Cgh—2.
0] aci B.ab acj

which is the error propagation formula discussed above

The Fisher matrix can be more accurately defined for an
experiment by taking the pixel covariance and using the general
formula for the Fisher matrix of gaussian data

Corrects for edge effects with the approximate effect of

. (20+1)fay  OCL© DCEO

- Y e ot

where the sky fractiorfy, quantifies the loss of independent
modes due to the sky cut



