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ABSTRACT

A space interferometer could reach a sensitivity and angular resolution which is unattainable on Earth due to
the distortion and absorption of the atmosphere. It would enable many unique science cases, including the direct
imaging and characterisation of temperate terrestrial exoplanets. This ambitious vision relies on the formation
flying of individual spacecrafts, and the demonstration of precision metrology measuring positions in to better
than 1mm in at least 2 dimensions, and velocities in the range of nm/s. These significant technical challenges are
one of the main reasons progress in space interferometry has been seriously hampered in the two last decades.
To overcome this obstacle, we propose a novel metrology concept operating in two steps. The coarse positioning
of the array elements is achieved through commercially demonstrated components, such as GPS, wide angle
cameras and time-of-flight sensors. For the critical fine metrology, multiple longitudinal mode Fabry-Perot lasers
in a central spacecraft are split and retro-reflected off each telescope bearing spacecraft. The reflected beams
are then coherently combined in the central spacecraft and the resulting fringes are spectrally dispersed. In this
manner, the phase difference is measured at the different Fabry-Perot wavelengths, allowing the unambiguous
differential position measurements over a couple of mm capture range. We present the concept together with a
prototype system in the laboratory.
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1. SPACE INTERFEROMETRY FOR EXO-EARTHS CHARACTERISATION

While most exoplanets discoveries have been made from indirect detections sufferring from selection biases,
direct observation techniques would allow their sought after characterisation. Extreme resolution and contrast
are required for this task, putting direct imaging techniques at the frontier of current instrumental capabilities.
Interferometry is a good candidate for directly exoplanets. In fact, it offers high angular resolution by combining
the light from telescopes separated over hundred of meters. Furthermore, a π-phase delay can be introduced into
one of the interferometric arms to destructively interfere on-axis starlight, dimming the starlight and increasing
the contrast of the planet/star light, a technique known as nulling interferometry.1

The mid-infrared region has been identified as an important window of observation for the study of young
terrestrial planets. In fact, the newly formed planets shine brightly in the mid-infrared as they start to cool down.
Many relevant bio-signatures are also found in this spectral region.2 Part of these wavelengths are absorbed by
the Earth’s atmosphere before reaching telescopes on the ground. The atmosphere also degrade starlight at all
wavelengths, severely diminishing the resolution and contrast of instruments. Lastly, ground based telescopes
suffer from background radiation in the mid-infrared.

A space based interferometer would be immune from the atmospheric problems and could potentially achieve
very high angular resolution and high contrast at high stability. A key technology to operate an interferometer
from space is the formation flying of spacecrafts as well as an accurate and precise metrology system. Current
GPS technologies have demonstrated mm precision metrology for example with the GRACE mission,3 but
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interferometers requires sub wavelength (wavelength of astrophysical observation) precision in order to coherently
interfere the starlight. In the late 90’s, both NASA and ESA were interested in space interferometry with two
key mission proposals; Terrestrial Planet Finder (TPF from NASA)4 and Darwin (from ESA).5 However, both
missions never came to fruition due to the immature state of the formation flying metrology technologies.

There is currently a renewal of interest for space interferometry, for example with the rebooting of a Darwin-
like mission as the Large Interferometer For Exoplanets (LIFE)6 proposal for ESA’s Voyage 2050 plan. Complex
metrology systems will be critical to enable the formation flying of such missions. A proposed metrology archi-
tecture of several sub-systems of coarse and fine metrology is presented in this manuscript.

2. FINE METROLOGY USING COHERENT LIGHT

Coarse metrology can be achieved using GPS, wide-angle imaging cameras, and time-of-flight (TOF) sensors
(fast cameras measuring the return time of retro-reflected pulsed light). These methods are readily available to
measure large distances but come at the cost of low precision.

Fine metrology can be achieved using interferometry to measure relative distances at sub-wavelength precision,
however absolute measurements can opnly be made for distances shorter than half of the wavelength used. For a
coherent source of wavelength λ, the phase φ of an interferogram relates to the pathlength difference ∆r between
the two interferometric arms as:

φ = 2π

(
∆r

λ
+ n

)
, (1)

with n the integer number of fringe. Unless using a time consuming technique of fringe scanning, n is not known,
so that ∆r can only be calculated instantaneously and unambiguously in the range [−λ2 ,

λ
2 ] known as the Non

Ambiguous Range (NAR). Using a longer metrology wavelength λ increases the unambiguous range but also
decreases the sensitivity of the measurement.

Two wavelength interferometry7 attempts to overcome this problem by using two different wavelengths λ1
and λ2 > λ1 to create a synthetic wavelength Λ12:

Λ12 =
λ1λ2
λ2 − λ1

. (2)

Eq. 1 can be written for each wavelength, and by subtracting one to another:

φ1 − φ2 = 2π

((
1

λ1
− 1

λ2

)
∆r + n1 − n2

)
, (3)

which simplifies to:

∆r = Λ12

(
φ1 − φ2

2π
+ ∆n12

)
, (4)

with ∆n12 = n2 − n1. Assuming λ1 and λ2 are close enough so that ∆n12 ≈ 0 an estimation of the pathlength

difference ∆̃r12 can be made from the measured phases φ̂1 and φ̂2:

∆̃r12 =
φ̂1 − φ̂2

2π
Λ12. (5)

This is used to estimate the fringe orders n1 and n2:
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ñ1 = Round

(
φ̂1
2π
− ∆̃r12

λ1

)
(6)

ñ2 = Round

(
φ̂2
2π
− ∆̃r12

λ2

)
, (7)

which are then used in Eq.1 to optain a better estimate of ∆r. In that manner the synthetic wavelength is used
to estimate the fringe order over a large NAR, and a more sensitive pathlength measurement is obtained using
the estimated fringe order with the individual wavelengths. For this technique, typically the wavelengths need
to be stabilised adding more instrumental complexity.

Multi wavelength interferometry is built on the principle of two wavelength interferometry, adding more wave-
lengths to increase even more the NAR. For example, the synthetic wavelength for a 4 wavelengths interferometer
is:

Λ1234 =
λ1λ2λ3λ4

(λ2 − λ1)λ3λ4 − (λ4 − λ3)λ1λ2
. (8)

The fine metrology proposed here uses two Fabry Perot laser diodes (FPD) of central wavelength 795 nm and
830 nm with modes spacing 0.3 nm and 0.25 nm respectivelly. Some of the resulting synthetic wavelengths are
tabulated in Tab. 1 where is seen that a larger NAR of 8.95 mm can be achieved.

This range is achievable with a coarse metrology system, so that the fine metrology can provide an absolute
precise measurement. In order to differentiate the different modes, the interference fringe are spectrally dispersed.
All phases are therefore measured simultaneously. This removes the need for high mechanical and optical stability.
Additionally, using FPD provides multiple phase measurements (Eq. 1) so that the wavelength stabilisation is
not required as for the the two wavelength interferometry.

λ1 795 nm
λ2 795.3 nm
λ3 830 nm
λ4 830.25 nm
Λ13 18.85 µm
Λ24 17.8 µm
Λ12 2.11 mm
Λ34 2.76 mm

Λ1234 8.95 mm
Table 1. The nomimal fine metrology FPD wavelengths with the corresponding constructed synthetic wavelengths.

3. METROLOGY IMPLEMENTATION FOR A SPACE INTERFEROMETER

3.1 Array configuration

Following the work from Hansen et al.8 Fig.1 illustrates a possible single baseline space interferometer configation.
Two ‘deputy’ satellites form the interferometric array. Each satellite carries a telescope reflecting the starlight
to a central ‘chief’ satellite which performs the science beam combinationas well as the metrology. All satellites
are equipped with their own star tracker to align to the astrophysical target.

Using the central satellite as reference, the optical path difference (opd) between deputy 1 and deputy 2 is:

opd = |d1| − d1.~s− |d2|+ d2.~s, (9)
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as shown in Fig. 1.

Figure 1. Illustration of a single baseline space interferometer array. Two ‘deputy’ satellites form the interferometric array.
The light between the two deputies is sent off to a central ‘chief’ satellite that performs the beam combination as well as
other operational tasks such as the metrology. The optical path difference between the two deputy needs to be measured
and compensated for. In this illustration the distances are exaggerated for clarity.

Fig. 2 depicts the metrology geometry from the chief to the deputies. One retro-reflector is centrally
positioned on each deputy. Inside the chief, the light from the two modulated FPD is split into 4 beams at
A, B, C, D, and each are retro reflected onto the deputies back into the chief along da, db, dc and dd forming 4
laser links. This allows for more degrees of freedom to be measured.

Figure 2. Metrology architecture. The metrology light is split into 4 outputs at A, B, C and D. The outputs are retro-
reflected on the deputies into the chief providing 4 laser links da, db, dc and dd to measure d1 and d2 in two dimensions.

Using trigonometry:

∆1 =
d2A − d2C

2h
+
h

2
, (10)
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and

d1 =
1

2

√
(dA + dC)2 + (dA − dC)2 − h2. (11)

Assuming h << d1 and performing a Taylor expansion at dA − dc → 0:

d1 ≈
1

2

√
(dA + dC)2 − h2 +

(dA − dC)2

4
√

(dA + dC)2 − h2
. (12)

√
(dA + dC)2 − h2 is rewritten as:

√
(dA + dC)2 − h2 = (dA + dC)

√
1−

(
h

dA + dC

)2

(13)

Which can be further simplified by performing a new Taylor expansion:√
1−

(
h

dA + dC

)2

≈ 1− 1

2

(
h

dA + dC

)2

, (14)

giving:

√
(dA + dC)2 − h2 ≈ (dA + dC)

(
1− h2

2(dA + dC)2

)
(15)

Finally

d1 ≈
dA + dC

2

(
1− h2

2(dA + dC)2

)
+

(dA − dC)2

4(dA + dC)
. (16)

(17)

The same reasoning is applied for d2 leading to

d1−d2 =
dA + dC − dB − dD

2
− h2

4(dA + dC)
+

h2

4(dB + dD)
+

(dA − dC)2

4(dA + dC)− 2h2

dA+dC

− (dB − dD)2

4(dB + dD)− 2h2

dB+dD

. (18)

Re-written as,

d1 − d2 =
1

4

(
1− h2

8d̄2

)
(∆AB + ∆AD + ∆CB + ∆CD) +

1

8d̄

(
∆2
AC −∆2

BD

)
, (19)

with d̄ = 1
4 (dA + dB + dC + dD) and ∆ij = di − dj , for readability.

The ∆ values are measured with the fine metrology, and the d̄ is measured with the coarse metrology. With
h = 0.3 m, d̄ = 5 m (the smallest useful space interferometer), and the ∆ values within an optimistic 1 cm capture
range, this equation is accurate to within 1.5 nm, which is well within what is required.
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3.2 Photonic technology for a compact metrology system

The metrology system is designed around a photonic chip. The chip is fabricated using the direct-write technique
which uses a high repetition pulsed laser to locally and permanently modify the refractive index inside a glass
substrate producing imbedded 3D waveguides. Complex waveguide circuits can be fabricated in that manner
that are robust, thermally and mechanically insulated (more stable than their bulk optics conterparts) and
very compact. Fig. 3 illustrates the design which dimensions are compatible with a 1U cubsat pathfinder or
a larger space array. The footprint of the photonic chip with it’s auxiliary components is shown in contrast
to the dimensions of a 1U cubesat. Two FPD’s (outside of the plane) are modulated and fiber injected into
the chip through a v-groove (left top corner). The light from the two FPD’s is combined through a directional
coupler (first waveguide device inside the top left corner of chip), and then split into 4 outputs (right side in
green). Another v-groove picks up the outputs into loose fibers, directed at the A, B, C and D exit of the chief
satellite (from Fig. 2). From there the beams are retro-reflected off the deputy satellites, and re-injected into
the fiber, v-groove and chip. Inside the chip, the waveguides are then split twice (green to purple and purple
to blue). The different colours of the waveguides represents the waveguides being in different planes so that
there is no cross talk between the waveguides. The blue path goes towards 4 photodiodes directly mounted on
the chip to perform the TOF coarse metrology. The purple path brings the 4 beams to a butt-coupled planar
chip, where the outputs propagate freely in one direction, so that the beams interfere at the output facet. A
free-space spectrographic back ends (in another plane) will then disperse the resulting fringe on a final sensor to
perform the multi-wavelength coherent metrology. In this fashion the coarse and fine metrology are performed
simultaneously removing the need for very high temporal stability.

Figure 3. Illustration of the photonic chip with it’s adjacent components fitting in a 1U cubSat. The dimensions of the
chip, auxiliariy components and cubeSat are to scale, but the waveguides dimensions have been exagerated. The system
is described in the text.
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4. TWO BEAMS FINE METROLOGY LABORATORY PROTOTYPE

A laboratory experiment of a two beams system is being developed. The main goals are to characterise the
contribution of spurious reflections to the metrology signals, characterise the FPD spectral response to the
applied power and demonstrate the absolute metrology of two distances.
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Figure 4. Schematic for the fine metrology laboratory experiment. Two FPD of λ1 = 730 nm and λ2 = 830 nm feed two
polarisation maintaining fibers and are coupled in a 2x2 coupler. The outputs are collimated and travel two distances
dA and dB to be measured and are reflected back with adjustable retro reflectors. The reflected beam are re-injected
into fibers and recollimated one of the beams is reflected with a D-mirror in order to position both beams next to each
others. A polariser is used in conjunction with the quarter wave plates (in dA and dB) to discriminate in polarisation
the beams coming from the retro-reflectors from that coming from potential back reflections in the system. The resulting
two beams go through an anamorphic prism pair that elongate the beams in one direction. They then hit a grating, and
their wavelength components are collected and focussed on a detector, so that the two beams interfere and their fringe
are recorded vertically and the spectrally dispersed horizontally.

The setup is displayed in Fig. 4. The two FPD are fed into polarisation maintenain (PM) fibers onto a fiber
coupler where they are superposed and then split 50/50. The outputs are fed into two PM fiber splitters with
one outputs being collimated and reflected onto retro-reflectors. The retro-reflectors can be moved along the
optical path to change the pathlength difference. The reflected beams traverse quarter wave plates (QWP) that
are rotated to remove any unwanted spurious reflections from the fiber end faces. The beams are re-injected into
the splitters which sends the beams to two collimaters. A D-mirror is used to bring the two beams on top of
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each others (in the y-direction). A polariser is used to increase the contrast of the fringe. The beams then go
through an anamorphic prism to elongate the beams horizontally (x-direction). A grating disperse the different
modes of the FPD which are then focussed on a detector where the beams interfere. The detector records the
spectrally dispersed fringe.

5. CONCLUSION

Formation flying of a space interferometer will require complex metrology systems to precisely measure the
position of the spacecrafts over large distances. Once the distances have been measured accurately, they can be
compensated for it with micro-thrusters on the spacecrafts and delay lines inside the science beam combiner.

The coarse metrology can be achieved by GPS, wide angle cameras and TOF sensors. For the fine metrology,
two laser links per satellite are needed to measure positions in 2D. FPD allow to increase the NAR through the
creation of synthetic wavelengths. The proposed architecture uses a photonic chip to simlutaneously produce
the coarse time-of-flight metrology and the fine metrology. A laboratory experiment is being developed to test
the FPD fine metrology as a first step towards a full scale space mission. A robotic ground based prototype
array will follow to show the metrology of a one baseline interferometer Following, a ground based robotic array
of 1 baseline with 6 degrees of freedom called Pyxis will implement the metrology with the photonics chip to
observe real astrophysical target. It is hoped to then have CubeSat demonstrator of same size of the ground
based pathfinder.

A pathway for a space interferometer imcludes first a laboratory demonstration for a two beams interferome-
ter. A ground based robotic array Pyxis will then be constructed to simulate a space array, with several degrees
of freedom. Finally we hope to implement and demonstrate the technology with a CubeSat array.
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