GAMA survey at the AAT Exploring star formation in the local Universe

Madusha Gunawardhana University of Sydney

AAT 50th Anniversary

1st to 4th October, 2024

- Introduction to the Galaxy And Mass Assembly (GAMA) survey
- Exploring the evolution of star-forming galaxies:
 - **\star** GAMA H α luminosity functions & their parameterisations
 - ★ Exploring the cosmic star formation history over the past 4 Gyrs
 - **★** Bivariate luminosity functions (e.g. Hα versus stellar mass)
 - ★ Enhancement of star formation in small-scales

AAT 50th Anniversary

1st to 4th October, 2024

Galaxy And Mass Assembly (GAMA)

GAMA Galaxy G144491 (z=0.005, r_{AB}=14.08) [GALEX+SDSS+UKIDSS+WISE+HERSCHEL]

High spatial and redshift completeness

GAMA

- 20-band photometry:
 FUV, NUV, ugriz, YJHK, WISE,
 HERSCHEL (ASKAP, GMRT)
- Data Release I IV S.P. Driver et al., 2011, 2022

See the GAMA website: http://www.gama-survey.org/

- Spectroscopic analysis
 - A.M. Hopkins et al., 2013, MNRAS, 430, 2047
 - M.L.P. Gunawardhana et al., 2011, 2013, 1015, MNRAS
- Stellar masses
 - E.N. Taylor et al., 2011, MNRAS, 418, 1587

Star formation timescales

PEGASE view of the evolution of continuum luminosity for a galaxy with continuous star formation, which was truncated at ~10 Myr

The advantages of having spectra...

- Dust obscuration based on the ratio of Balmer lines (H α /H β)
- Active Galactic Nuclei/Star-forming selection is based on emission line ratio diagnostics (i.e. BPT)
- The GAMA star-forming sample covers: SFR \longrightarrow 0.01 < SFR [M₀ yr ⁻¹] < 100 stellar mass \longrightarrow 10⁷ < M/M₀ < 10¹² Redshift $\longrightarrow z \leq 0.35$

 $\log(M_*/M_{\odot})$

Hα Luminosity functions

- Depth, sky coverage and completeness (spectroscopic and spatial) are key in exploring the evolution of star formation through statistical studies
- The z<0.1 LF samples a wide range in luminosity and extends about one magnitude in luminosity towards both fainter and brighter luminosities

• For GAMA:

- Depth 19.8 in *r*-band mag.
- **Coverage** ~144 sq. degrees (equatorial fields)
- **Completeness** ~ ~ 98.5% in redshift (equatorial fields)

Star formation in the Local Universe

- Cosmic star formation history as probed by different star formation rate indicators
 - Nebula emission lines:
 [OII], [OIII], Hα, Hβ
 - Photometric measures: UV, mid-IR, far-IR, radio)
- With GAMA, we were able to constrain the star formation rate density over the last 4 Gyrs of cosmic history

Redshift \longrightarrow_{z}

The mass dependence of star formation

The contribution to SFR density progressively increases with increasing stellar mass Solution Bivariate H α - stellar mass function, exploring the stellar mass dependence of star formation rate density

Star formation on sub-Mpc scales

Very close pairs can show greatly enhanced star formation, but it can be dust obscured

In the local Universe, the enhancement in specific SFR at close separations shows a dependence on the optical brightness of galaxies

Surveys with very high spatial completeness are needed to study the fraction of star formation taking place in mergers with redshift.

Summary

Star formation in galaxies follows a Gaussian-like (or two-power law) distribution, NOT a Schechter function (i.e. an exponential decrease)

 \bigcirc GAMA H α luminosity functions confirm this, making H α consistent with other wavelength estimators of SFR, such as IR and radio.

Sivariate selection influences ANY star-forming sample drawn from a magnitude-limited survey. As a consequence, the resulting SFR densities can be underestimated.

One way to correct this is to model the bivariate distribution