50th Anniversary of the Inauguration of the Anglo-Australian Telescope

Advancing Our Understanding of Cosmic Origins: Insights from AAT's Multi-object Spectroscopy

Dr Devika Kamath

Students: Kateryna Andrych, Meghna Menon, Maksym Mohorian, Silvia Tosi, Toon De Prins, Kayla Martin, Zara Osborne Collaborators: Hans Van Winckle, Paolo Ventura, Flavia Dell'Agli, Anish Amarsi, Amanda Karakas, Orsola De Marco, Mark Wardle, Anibal Garcia Hernandez

Astrophysics and Space Technologies Research Centre

Evolved stars as tracers for AGB nucleosynthesis

CN Violet System (0,0) band towards HD 56126 (Bakker et al., 1997)

Investigating the second-generation proto-planetary disks

Hillen et al., 2016

H-band reconstruction PIONIER/VLTI

Ertel, Kamath, et al., 2018

Chromospheric activity in stars

Maksym Mohorian

Meghna Menon

Silvia Tosi

Zara Osborne

Kateryna Andrych

Toon de Prins

Kayla Martin

Deepak Chahal

Key Questions Explored through AAT Observations

- contribute to cosmic chemical budget?
- 2. Dust production and evolution in evolved stars: How does dust form and evolve during and after the AGB phase?
- low- and intermediate-mass?

1. Origin of elements and refining stellar yields: How do low- and intermediate-mass stars

3. Binary interactions in evolved stars: How do binary interactions shape the evolution of

4. Second-generation proto-planetary disks: Can these astrophysical sites host planets?

Key Questions Explored through AAT Observations

- contribute to cosmic chemical budget?
- 2. Dust production and evolution in evolved stars: How does dust form and evolve during and after the AGB phase?
- low- and intermediate-mass?

1. Origin of elements and refining stellar yields: How do low- and intermediate-mass stars

3. Binary interactions in evolved stars: How do binary interactions shape the evolution of

4. Second-generation proto-planetary disks: Can these astrophysical sites host planets?

Making Heavy Elements by Neutron Capture

Making Heavy Elements by Neutron Capture

 $\begin{array}{l} \textbf{RAPID}\\ \textbf{NEUTRON CAPTURE}\\ \textbf{DROCESS}\\ \textbf{n-capture rate} < \beta \text{-decay rate}\\ N_n > 10^{20} \text{ n/cm}^3 \end{array}$

Making Heavy Elements by Neutron Capture

RAPID NEUTRON CAPTURE PROCESS n-capture rate < β -decay rate $N_n > 10^{20} n/cm^3$

 $\begin{tabular}{l} SLOW \\ NEUTRON CAPTURE \\ PROCESS \\ n-capture rate >> \beta-decay rate \\ N_n \sim 10^8 \ n/cm^3 \end{tabular}$

N, Li - INTERMEDIATE MASS STARS!

N, Li - INTERMEDIATE MASS STARS!

Origins from Low- and Intermediate-Mass Stars: CNO, Iron-Peak, *s*-Process Elements

Weak component from Fe to Sr $\tau \approx 0.06$ mbarn-1 Massive stars

Origins from Low- and Intermediate-Mass Stars: CNO, Iron-Peak, *s*-Process Elements

Weak componentfrom Fe to Sr $\tau \approx 0.06$ mbarn-1Massive starsMain componentfrom Sr to Pb $\tau \approx 0.3$ mbarn-1Low-mass AGBs

Origins from Low- and Intermediate-Mass Stars: CNO, Iron-Peak, *s*-Process Elements

Weak component from Fe to Sr $\tau \approx 0.06 \text{ mbarn} - 1$ **Massive stars** Main component from Sr to Pb $\tau \approx 0.3$ mbarn-1 Low-mass AGBs Strong component Pb $\tau \approx 7.0 \text{ mbarn} - 1$ Low-mass, Lowmetallicity AGBs

García-Hernández, D. A et al., 2011; 2017

Post-AGB Stars: Exquisite Tracers of the Origin of Elements

Third-DU increase in 4He and 12C and heavy elements (s-process elements) Hot Bottom Burning (in M > ~3M₀) decrease in 12C increase in 13C and 14N 7Li, Na, Mg, Al

Second-DU in M > $\sim 3M_{\odot}$ increase in 4He and 14N

First-DU increase in 4He, 13C, 14N, 17O decrease in 12C, 16O and 18O

Post-AGB Stars: Exquisite Tracers of the Origin of Elements

Third-DU increase in 4He and 12C and heavy elements (s-process elements) Hot Bottom Burning (in M > ~3M_o) decrease in 12C increase in 13C and 14N 7Li, Na, Mg, Al

Second-DU in M > $\sim 3M_{\odot}$ increase in 4He and 14N

First-DU increase in 4He, 13C, 14N, 17O decrease in 12C, 16O and 18O

Post-AGB Stars: Exquisite Tracers of the Origin of Elements

Third-DU increase in 4He and 12C and heavy elements (s-process elements) Hot Bottom Burning (in M > ~3M_o) decrease in 12C increase in 13C and 14N 7Li, Na, Mg, Al

Second-DU in M > $\sim 3M_{\odot}$ increase in 4He and 14N

First-DU increase in 4He, 13C, 14N, 17O decrease in 12C, 16O and 18O

Kwok et al., 1980; Reddy et al., 1999; Bakker et al., 1997; Bakker & Lambert 1998; Van Winckel 2003; Van Winckel et al.,

2009; Rao et al., 2012; Sczerba et al., 2009; and all others...

Single Post-AGB Stars as Exquisite Tracers of CNO, Fe-peak & *s*-process elements

MILKY WAY LMC SMC

Galaxy: Van Winckel 2003; Szczerba et al., 2007; Kamath et al., 2022; Kluska et al., 2022 LMC/SMC: Van Aarle et al., 2011; Kamath et al., 2014; 2015

Galaxy: Van Winckel 2003; Szczerba et al., 2007; Kamath et al., 2022; Kluska et al., 2022 LMC/SMC: Van Aarle et al., 2011; Kamath et al., 2014; 2015

Galaxy: Van Winckel 2003; Szczerba et al., 2007; Kamath et al., 2022; Kluska et al., 2022 LMC/SMC: Van Aarle et al., 2011; Kamath et al., 2014; 2015

Galaxy: Van Winckel 2003; Szczerba et al., 2007; Kamath et al., 2022; Kluska et al., 2022 LMC/SMC: Van Aarle et al., 2011; Kamath et al., 2014; 2015

- Candidate List: Low-Resolution Spectroscopic Analyses
- Final Catalogue: High-resolution Spectroscopic Analyses

<u>Current Sample:</u> Galaxy: 300 candidates LMC: 150 candidates SMC: 50 candidates

Single Post-AGB Stars as Exquisite Tracers of CNO, Fe-peak & s-process elements

Carbon and *s*-process rich stars:

- Z ~ 0.001
- $T_{eff} \sim 6000 \text{ K}$
- Log g ~1 to 1.5 dex

De Smedt et al., 2012, 2015; Kamath et al., 2017, Menon et al., 2023

Single Post-AGB Stars as Exquisite Tracers of CNO, Fe-peak & s-process elements

Carbon and *s*-process rich stars:

- Z ~ 0.001
- $T_{eff} \sim 6000 \text{ K}$
- Log g ~1 to 1.5 dex

De Smedt et al., 2012, 2015; Kamath et al., 2017, Menon et al., 2023

Single Post-AGB Stars as Exquisite Tracers of CNO, Fe-peak & s-process elements

Carbon and *s*-process rich stars:

- $M_{initial} \sim 1$ to 1.5 Msun
- [Fe/H] = -1.0 to -1.5
- Z ~ 0.001
- $T_{eff} \sim 6000 \text{ K}$
- Log g ~1 to 1.5 dex

De Smedt et al., 2012, 2015; Kamath et al., 2017, Menon et al., 2023

The revelation of chemical diversities in AGB nucleosynthesis...

Van Winckel 2003; Kamath et al., 2017; 2020; 2022; 2023; Menon et al., 2023

Chemical Diversities Within the Galactic and LMC/SMC Single Star Sample

Chemical Diversities Within the Galactic and LMC/SMC Single Star Sample

s-process rich versus non-enriched:

s-process rich non s-process enriched

Chemical Diversities Within the Galactic and LMC/SMC Single Star Sample

s-process rich versus non-enriched:

s-process rich non s-process enriched

AGB Nucleosynthesis is NOT homogenous!

Nucleosynthetic Yields from Stellar Models

$$ls = Y, Sr, Zr, Rb$$

$$h_{G} - R_{G} + I_{G} - NIA$$

Fishlock et al., 2014

• Parallaxes from Gaia EDR3

• Parallaxes from Gaia EDR3

• Parallaxes from Gaia EDR3

• Geometric distances from Bailer Jones et al., 2021

• Parallaxes from Gaia EDR3

• Geometric distances from Bailer Jones et al., 2021

- Parallaxes from Gaia EDR3
- Geometric distances from Bailer Jones et al., 2021
- SED Fitting: E(B-V)

- Parallaxes from Gaia EDR3
- Geometric distances from Bailer Jones et al., 2021
- SED Fitting: E(B-V)

- Parallaxes from Gaia EDR3
- Geometric distances from Bailer Jones et al., 2021
- SED Fitting: E(B-V)
- Luminosity

- Parallaxes from Gaia EDR3
- Geometric distances from Bailer Jones et al., 2021
- SED Fitting: E(B-V) • Luminosity

Positions of Galactic Post-AGB Stars in the HR-Diagram

Filled: Quality 1 - Filled, Open: Quality 2 (based on GAIA astrometric data) Red circles: s-process enriched Blue squares: non s-process rich Kamath et al., 2022; Kamath et al., 2023

Key Questions Explored through AAT Observations

- contribute to cosmic chemical budget?
- 2. Dust production and evolution in evolved stars: How does dust form and evolve during and after the AGB phase?
- low- and intermediate-mass?

1. Origin of elements and refining stellar yields: How do low- and intermediate-mass stars

3. Binary interactions in evolved stars: How do binary interactions shape the evolution of

4. Second-generation proto-planetary disks: Can these astrophysical sites host planets?

Key Questions Explored through AAT Observations

- contribute to cosmic chemical budget?
- 2. Dust production and evolution in evolved stars: How does dust form and evolve during and after the AGB phase?
- low- and intermediate-mass?

1. Origin of elements and refining stellar yields: How do low- and intermediate-mass stars

3. Binary interactions in evolved stars: How do binary interactions shape the evolution of

4. Second-generation proto-planetary disks: Can these astrophysical sites host planets?

Br eaking Symmetry

tidal interaction

Roche-lobe overflow

Br eaking Symmetry

- stars in binary systems can interact in various ways:

 - wind accretion & tidally enhanced winds
 - common envelope evolution

The Discovery of post-RGB Stars (in binary systems)

Kamath+2014, 2015, 2016

Spectroscopic binaries - time resolved spectroscopy

Van Winckel et al., 2009, Oomen et al., 2019

Kluska et al., 2018

Kluska et al., 2018

Kluska et al., 2018

10

0

-10

iras15469-5311

30

20

10

۵ð (mas)

H-band reconstruction PIONIER/VLTI

Δα (mas)

Kluska et al., 2018

Andrych et al., 2023

SPHERE/VLT/ESO

Imaging and Polarimetry K band VLT/SPHERE/IRDIS

iras15469-5311

30

20

10

H-band reconstruction PIONIER/VLTI

Δα (mas)

Kluska et al., 2018

Andrych et al., 2023

• NearIR excess with a broad onset: hot dust component is indicative of Keplerian disc

Kluska et al., 2022; Kamath et al., 2014, 2015, 2022

- NearIR excess with a broad onset: hot dust component is indicative of Keplerian disc
- Discs are fat
- L(IR) is large fraction of L(star) and the disc evolves...
- Long wavelength spectral index: large grains

Kluska et al., 2022; Kamath et al., 2014, 2015, 2022

• Most discs (Full discs) start at <u>sublimation</u> temperature • Transition discs (10%) start at larger radii

Kluska et al., 2022
The Effect of Binarity:

Photospheric Chemical Depletion in post-AGB binaries

Kamath & Van Winckel 2019; Oomen et al., 2021; Mohorian et al., 2024; Menon et al., 2024

The Effect of Binarity: Photospheric Chemical Depletion in post-AGB binaries

Feedback from disc => Loss of nucleosynthetic history

Kamath & Van Winckel 2019; Oomen et al., 2021; Mohorian et al., 2024; Menon et al., 2024

The Effect of Binarity: Photospheric Chemical Depletion in post-AGB binaries

Feedback from disc => Loss of nucleosynthetic history

- [C/Fe] > 0
- Depletion of refractory elements
- Refractory elements scale with Fe

Kamath & Van Winckel 2019; Oomen et al., 2021; Mohorian et al., 2024; Menon et al., 2024

10-micron silicate feature

IR spectra are very rich and strongly crystalline

ISM

Konstantopoulou+2022

ISM

Konstantopoulou+2022

Young Stars

Kama+2015

Note: for young stars, II are full discs, I/TD are transition discs

ISM

Konstantopoulou+2022

Young Stars

PAGB/PRGB Binaries

Kama+2015 Note: for young stars, II are full discs, I/TD are transition discs

Mohorian et al., 2024 to-be-submitted

Gas-Dust Separation and Dust Trapping

Britain et al. 2023; Kluska et all 2022

- Depletion in YSO is thought to be by dust trapping by planet formation
- Dust is trapped, clean gas can be accreted
- Depletion is correlated with SED shape (transition discs in Post-AGB stars are more depleted)
- Planet-Disc interaction also in post-AGB binaries?

A second chance for planet formation!?

Haro 6-5B first generation protoplanetary disk

500 AU

cones of light emanate from above and below the dark disk

gas ejected from outer Lagrangian points will gather into a circumbinary disk

companion star

AR Pup, second generation protoplanetary disk

Dark strip is disk seen almost edge-on

100AU @1kpc

1AU

\ giant primary star

Unravelling the Circumbinary Disk Structure: Near+Mid-IR Interferometry

• Interferometric Image Reconstruction: 1mass resolution! • Several instruments now (H to N band) •4-telescope combiners (Pionier, Gravity, Matisse)

Kluska et al., 2021, 2020, 2019, 2018; Hillen et al., 2016

INSPIRING: INterferometric Survey of Post-agb bInaries with their RING an imaging VLTI Large Programme

PI: Kluska, CI: Van Winckel, Kamath, et al.,

250h with PIONIER and GRAVITY - 11 targets

Main goals:

• Structure of the inner rim vs. binary phase

Circum-secondary accretion

Methodology:

- Image reconstruction
- Geometrical modelling
- Radiative transfer modelling

Kluska et al., 2020, 2021, 2022

VLT/SPHERE 12

Andrych et al., 2023, 2024 submitted

Andrych et al., 2023, 2024 submitted

SPHERE ZIMPOL (V and I bands) PI: Kamath IRDIS (H band) PI: Kluska

- 11 representative post-AGB stars
- 8 with IRDIS
- 6 with ZIMPOL
- Temperature range: 4250-7250 K
- Orbital period range: 300-2500 days
- Inclination range: 20-80°
- Range of chemical composition and SED

Andrych et al., 2023, 2024 submitted

- Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars
- Investigating the formation and evolution of second-generation proto-planetary disks
- Building a theoretical model for second-generation planet formation
- Establishing the nexus between planet formation in young and evolved systems

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

Evolved Stars' Metamorphosis: a Comprehensive Analysis of The AGB to PN Transition

Astrophysics and Space Technologies Research Centre

IRAS08544-4431: interferometric imaging

Hillen et al., 2016; Kluska et all 2018

ESO press release: eso1608a

INSPIRING: INterferometric Survey of Post-agb bInaries with their RING an imaging VLTI Large Programme

PI: Kluska, CI: Van Winckel, Kamath, et al.,

250h with PIONIER and GRAVITY - 11 targets

Main goals:

• Structure of the inner rim vs. binary phase

Circum-secondary accretion

Methodology:

- Image reconstruction
- Geometrical modelling
- Radiative transfer modelling

Kluska et al., 2020, 2021, 2022

post-AGB circumbinary discs: near & mid-IR interferometry

RT models of protoplanetary discs adapted to central luminous source fit very well.

CB-discs: time-resolved interferometry

Time

VLT/SPHERE

SPHERE ZIMPOL (V and I bands) PI: Kamath IRDIS (H band) PI: Kluska

- 11 representative post-AGB stars
- 8 with IRDIS
- 6 with ZIMPOL
- Temperature range: 4250-7250 K
- Orbital period range: 300-2500 days
- Inclination range: 20-80°
- Range of chemical composition and SED

Extended Disc Structure: Complex Morphologies

Andrych et al., 2023

Transition discs show more asymmetries than full disks!

Andrych et al., 2023

First direct measurement of the post-AGB disk scale-height

height above the mid-plane \sim 190AU for the separation from the central binary of \sim 1100AU

detected scattered emission to ~ 250AU

Multiwavelength results: IRAS 08544-4431

Presence of forward scattering peak is consistent with the porous dust aggregates of ~ 1µm size and suggest the northern part of the disk being closer to the observer!

Multiwavelength results: IRAS 08544-4431

Presence of forward scattering peak is consistent with the porous dust aggregates of ~ 1µm size and suggest the northern part of the disk being closer to the observer!

A 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0
-0002 N	0.9
	0.8
	0.7
VGUESIASA	0.6
	0.5
500000000	0.4
Conten of	0,3
145-00 01	0.2
	0.1
10 0 -10	0.0
Δα (mas)	
	1.0
•	0.9
	0.8
	0.7
	0.6
	0.5
	0.4
	0.3
	0.2
N	0.1
10 0 -10	0.0
Δα (mas)	
	_1.0
•	0.9
	0.8
	0.7
	0.6
	0.5
	0.4
	0.3
	0.2
N	0.1
10 0 -10	0.0

Comparison of post-AGB system IRAS 08544-4431 with protoplanetary disks

Post-AGB system shows relative polarized brightness similar to the brightest PPDs!

Grey polarized disc color is consistent with dust aggregates instead of single monomers!

 3×10^{0}

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

2

Multi-wavelength spectroscopy Time-resolved spectroscopy

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

2

Multi-wavelength spectroscopy Time-resolved spectroscopy

Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars

Multi-wavelength spectroscopy **Time-resolved spectroscopy**

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars

Multi-wavelength spectroscopy **Time-resolved spectroscopy**

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

- Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars
- Investigating the formation and evolution of second-generation proto-planetary disks

Multi-wavelength spectroscopy **Time-resolved spectroscopy**

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

- Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars
- Investigating the formation and evolution of second-generation proto-planetary disks

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

- Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars
- Investigating the formation and evolution of second-generation proto-planetary disks
- Building a theoretical model for second-generation planet formation

Multi-wavelength spectroscopy **Time-resolved spectroscopy**

- Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars
- Investigating the formation and evolution of second-generation proto-planetary disks
- Building a theoretical model for second-generation planet formation

Multi-wavelength spectroscopy **Time-resolved spectroscopy**

- Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars
- Investigating the formation and evolution of second-generation proto-planetary disks
- Building a theoretical model for second-generation planet formation
- Establishing the nexus between planet formation in young and evolved systems

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

RV (km/s)

RV (km/s)

- RT (constrains are the Balmer lines)
- •Jet opening angle
- •Jet tilt
- Angular Velocity structure
- Density structure
- •Binary (radius components, orbit)

Detection of JETS from Dynamic Spectra

Bollen et al., 2019, 2020, 2022

2

Multi-wavelength spectroscopy Time-resolved spectroscopy

2

Multi-wavelength spectroscopy Time-resolved spectroscopy

Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars

Multi-wavelength spectroscopy **Time-resolved spectroscopy**

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars

Multi-wavelength spectroscopy **Time-resolved spectroscopy**

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

- Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars
- Investigating the formation and evolution of second-generation proto-planetary disks

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

- Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars
- Investigating the formation and evolution of second-generation proto-planetary disks

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

- Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars
- Investigating the formation and evolution of second-generation proto-planetary disks
- Building a theoretical model for second-generation planet formation

Multi-wavelength spectroscopy **Time-resolved spectroscopy**

- Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars
- Investigating the formation and evolution of second-generation proto-planetary disks
- Building a theoretical model for second-generation planet formation

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

- Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars
- Investigating the formation and evolution of second-generation proto-planetary disks
- Building a theoretical model for second-generation planet formation
- Establishing the nexus between planet formation in young and evolved systems

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

(VLT/MIDI, Hillen et al. 2015, A&A, 578, A40).

Fig.1: Left Panel: SED and disk images of a PAGB binary with non-transition disk: IRAS08544-4431. Right Panel: SED and disk images of a PAGB binary with transition disk: AC Her. Top Panel: SEDs for both objects. Bottom Panel: Montage of disk images: a) SPHERE/IRDIS polarimetric differential imaging (PDI) in H band, b) near-infrared interferometric image reconstruction using PIONIER in H band: the disk inner rim for IRAS 08544-4431 (Kluska et al. 2018, A&A, 616A, 153) and star with over-resolved component for AC Her (Kluska et al. 2019, A&A, 631A, 108K), c) geometric model of the interferometric data in N band showing the extended disk structure for IRAS08544-4431 (MATISSE, Corporaal et al. 2021, A&A 650, L13) and the inner gap for AC Her