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ABSTRACT

We present a detailed analysis of redshift-space distortions in the two-point correla-
tion function of the 6dF Galaxy Survey (6dFGS). The K-band selected sub-sample
which we employ in this study contains 81 971 galaxies distributed over 17 000 deg2

with an effective redshift zeff = 0.067. By modelling the 2D galaxy correlation func-
tion, ξ(rp, π), we measure the parameter combination f(zeff)σ8(zeff) = 0.423± 0.055,
where f ≃ Ωγ

m
(z) is the growth rate of cosmic structure and σ8 is the r.m.s. of matter

fluctuations in 8h−1Mpc spheres.
Alternatively, by assuming standard gravity we can break the degeneracy between
σ8 and the galaxy bias parameter, b. Combining our data with the Hubble constant
prior from Riess et al. (2011), we measure σ8 = 0.76± 0.11 and Ωm = 0.250± 0.022,
consistent with constraints from other galaxy surveys and the Cosmic Microwave Back-
ground data from WMAP7.
Combining our measurement of fσ8 with WMAP7 allows us to test the cosmic growth
history and the relationship between matter and gravity on cosmic scales by constrain-
ing the growth index of density fluctuations, γ. Using only 6dFGS and WMAP7 data
we find γ = 0.547±0.088, consistent with the prediction of General Relativity. We note
that because of the low effective redshift of 6dFGS our measurement of the growth
rate is independent of the fiducial cosmological model (Alcock-Paczynski effect). We
also show that our conclusions are not sensitive to the model adopted for non-linear
redshift-space distortions.
Using a Fisher matrix analysis we report predictions for constraints on fσ8 for the
WALLABY survey and the proposed TAIPAN survey. The WALLABY survey will be
able to measure fσ8 with a precision of 4− 10%, depending on the modelling of non-
linear structure formation. This is comparable to the predicted precision for the best
redshift bins of the Baryon Oscillation Spectroscopic Survey (BOSS), demonstrating
that low-redshift surveys have a significant role to play in future tests of dark energy
and modified gravity.

Key words: cosmology: observations, cosmological parameters, large-scale structure
of Universe, surveys, galaxies: statistics

⋆ E-mail: florian.beutler@icrar.org

1 INTRODUCTION

The distribution of matter in the cosmos depends on the
gravitational interaction and the expansion history of the
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2 Beutler et al.

Universe. Assuming that galaxies trace the mass distribu-
tion, a measurement of galaxy clustering can be used to
derive fundamental properties of the Universe.

On large scales the movement of galaxies is dominated
by the Hubble recession, while on small scales the gravi-
tational field introduces so-called peculiar velocities. Indi-
vidual galaxy redshifts combine both Hubble recession and
peculiar velocities indistinguishably. However, these effects
can be statistically distinguished in a large sample of galaxy
redshifts. This is the purpose of this paper. The difference
between the redshift-inferred distance and the true distance
is known as redshift-space distortion. Redshift-space distor-
tions effectively couple the density and velocity fields, com-
plicating the models needed to accurately describe observed
galaxy samples. On the other hand they permit measure-
ments of the properties of the galaxy velocity field, which
are difficult to access otherwise. In standard gravity we can
use the amplitude of peculiar velocities to measure param-
eters that describe the matter content of the Universe such
as Ωm and σ8.

In this paper we report measurements of the parame-
ter combination f(zeff)σ8(zeff), where f = d ln(D)/d ln(a) is
the growth rate of cosmic structure (in terms of the linear
growth factor D and cosmic scale factor a) and σ8 is the
r.m.s. of the matter fluctuations in spheres of 8h−1 Mpc.
The measurement of f(zeff)σ8(zeff) can be used to test the-
ories of dark energy and modified gravity, since a stronger
gravitational interaction causes a larger growth rate f . It
is interesting to note in this context the fact that a differ-
ent form of gravitational interaction on large scales could
be responsible for the accelerating expansion of the Uni-
verse (e.g. Dvali, Gabadadze & Porrati 2000; Wang 2008).
Probes such as type Ia supernovae, the Cosmic Microwave
Background (CMB) or Baryon Acoustic Oscillations, which
have proven the existence of the current acceleration of the
expansion of the Universe (e.g. Blake et al. 2011c), cannot
distinguish between acceleration due to a dark energy com-
ponent with negative pressure or due to a modification of
General Relativity. However, measurements of the growth
of structure are able to distinguish between these models.

In order to measure f(zeff)σ8(zeff) we have to model the
effect of redshift-space distortions on the correlation func-
tion. While on large scales linear theory can be used to
model these effects, on smaller scales non-linear contribu-
tions complicate the process. Several new approaches have
been suggested in recent years to extend linear theory. We
will discuss some of these models and apply them to our
dataset.

Redshift-space distortions have previously been anal-
ysed using both the correlation function and power
spectrum using data from the 2dF Galaxy Redshift
Survey (2dFGRS; Peacock et al. 2001; Hawkins et al.
2003; Cole et al. 2005) and the Sloan Digital Sky
Survey (SDSS; Tegmark et al. 2004; Zehavi et al. 2005;
Tegmark et al. 2006; Cabre & Gaztanaga 2009; Song et al.
2010; Samushia et al. 2011). More recently it has become
possible to do similar studies at higher redshift using the
VVDS (Guzzo et al. 2008), WiggleZ (Blake et al. 2011a)
and VLT VIMOS surveys (Bielby et al. 2010).

Redshift-space distortion measurements are also sensi-
tive to the overall amplitude of the clustering pattern of
matter, commonly parameterised by σ8 (Lahav et al. 2002).

This parameter is used to normalise the amplitude of clus-
tering statistics such as the correlation function, ξ ∝ σ2

8 .
From the CMB we have a very accurate measurement of the
matter fluctuations in the early universe (the scalar ampli-
tude As) at the time of decoupling, z∗. In order to derive
σ8(z=0) we have to extrapolate this measurement to redshift
zero, involving assumptions about the expansion history of
the Universe. The CMB constraint on σ8 heavily depends
on these assumptions. Hence there is a clear advantage in
obtaining low-redshift measurements of this parameter. The
6dF Galaxy Survey, which we analyse in this study, is one of
the largest galaxy redshift surveys available. Its very small
effective redshift and wide areal coverage (41% of the sky)
make it a powerful sample for the study of the local galaxy
distribution.

Galaxy surveys usually have to consider degeneracies
between redshift-space distortions and the Alcock-Paczynski
effect, which arises from the need to assume a cosmological
model to transform redshifts into distances. At low redshift
this effect is very small, meaning that our measurement is
fairly independent of the choice of the fiducial cosmological
model.

While at high redshift (z > 1) the matter density dom-
inates both the expansion of the Universe and the growth of
perturbations, at low redshift these two are partially decou-
pled, with dark energy mostly dominating the background
expansion and the matter density dominating the growth
of perturbations. As a result in ΛCDM and most proposed
modified gravity models, low redshift measurements of the
growth rate have a better constraining power than high red-
shift measurements. The measurement of the growth rate in
6dFGS therefore not only provides a new independent data
point at very low redshift, but also promises to make a valu-
able contribution to tests of General Relativity on cosmic
scales.

The outline of this paper is as follows: In section 2 we
introduce the 6dF Galaxy Survey. In section 3 we describe
the details of the correlation function estimate and introduce
the 2D correlation function of 6dFGS. In section 4 we de-
rive the covariance matrix for the 2D correlation function. In
section 5 we summarise the theory of redshift-space distor-
tions, including extensions to the standard linear approach.
We also discuss wide-angle effects and other systematics,
such as the Alcock-Paczynski effect. In section 6 we fit the
2D correlation function to derive gθ(zeff) = f(zeff)σ8(zeff)
and σ8. Cosmological implications are investigated in sec-
tion 7. In section 8 we make Fisher matrix predictions for
two future low redshift galaxy surveys, WALLABY and the
proposed TAIPAN survey. We conclude in section 9.

Throughout the paper we use r to denote real space
separations and s to denote separations in redshift-space.
Our fiducial model assumes a flat universe with Ωfid

m = 0.27,
wfid = −1 and Ωfid

k = 0. The Hubble constant is set to
H0 = 100h km s−1Mpc−1.

2 THE 6dF GALAXY SURVEY

The 6dF Galaxy Survey (6dFGS; Jones et al. 2004, 2006,
2009) is a near-infrared selected (JHK) redshift survey of
125 000 galaxies across four-fifths of the southern sky, with
secondary samples selected in bJ and rF. The |b| < 10◦ re-
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Figure 1. The solid black line shows the 6dFGS redshift dis-
tribution, while the dashed black line shows one of the random
mock catalogues containing the same number of galaxies. The
blue solid and dashed lines show the distribution after weighting
with P0 = 1600h3 Mpc−3 (see section 3.1 for more details on the
employed weighting scheme).

gion around the Galactic Plane is avoided by the JHK sur-
veys to minimise Galactic extinction and foreground source
confusion in the Plane (as is |b| < 20◦ for bJ and rF).
The near-infrared photometric selection was based on to-
tal magnitudes from the Two-Micron All-Sky Survey – Ex-
tended Source Catalog (2MASS XSC; Jarrett et al. 2000).
The spectroscopic redshifts of 6dFGS were obtained with
the Six-Degree Field (6dF) multi-object spectrograph of the
UK Schmidt Telescope (UKST) between 2001 and 2006.
The effective volume of 6dFGS is about the same as the
2dF Galaxy Redshift Survey (2dFGRS; Colless et al. 2001)
and is a little under a third that of the Sloan Digital Sky
Survey main spectroscopic sample at its Seventh Data Re-
lease (SDSS DR7; Abazajian et al. 2009). A subset of early-
type 6dFGS galaxies (approximately 10 000) have measured
line-widths that will be used to derive Fundamental Plane
distances and peculiar motions.

The 6dFGS K-selected sample used in this paper con-
tains 81 971 galaxies selected to a faint limit of K = 12.75.
The 2MASS magnitudes are on the Vega system. The mean
completeness of the 6dFGS is 92 percent and median red-
shift is z = 0.05. Completeness corrections are derived by
normalising completeness-apparent magnitude functions so
that, when integrated over all magnitudes, they equal the
measured total completeness on a particular patch of sky.
This procedure is outlined in the luminosity function eval-
uation of Jones et al. (2006) and also in Jones et al., (in
prep). The original survey papers (Jones et al. 2004, 2009)
describe in full detail the implementation of the survey and
its associated online database.

The clustering in a galaxy survey is estimated relative to
a random (unclustered) distribution which follows the same
angular and redshift selection function as the galaxy sample
itself. We base our random mock catalogue generation on the
6dFGS luminosity function, where we use random numbers
to pick volume-weighted redshifts and luminosity function-
weighted absolute magnitudes. We then test whether the

redshift-magnitude combination falls within the 6dFGS K-
band faint and bright apparent magnitude limits (8.75 6

K 6 12.75).
Figure 1 shows the redshift distribution of the 6dFGS

K-selected sample (black solid line) compared to a mock
catalogue with the same number of galaxies (black dashed
line).

3 CORRELATION FUNCTION

MEASUREMENT

We calculate the co-moving distances for each galaxy using
the measured redshift

DC =
c

H0

∫ z

0

dz′

E(z′)
(1)

with

E(z) =
[

Ωfid
m (1 + z)3 + Ωfid

Λ

]1/2

, (2)

where we assume a flat universe with Ωfid
k = 0 and Ωfid

Λ =
1−Ωfid

m and describe dark energy as a cosmological constant
(wfid = −1). Given the low redshift of our dataset, these
assumptions have a very small impact on our final results
(see section 5.5).

We define the positions of two galaxies as ~s1 and ~s2. The
redshift-space separation is then given by ~h = ~s1 −~s2, while
~s = (~s1 + ~s2)/2 is the mean distance to the pair of galaxies.
Now we can calculate the separation along the line-of-sight
π and the separation across the line-of-sight rp

π =
|~s · ~h|
|~s| , (3)

rp =

√

|~h|2 − π2. (4)

The absolute separation is then given by s =
√

π2 + r2p.
We measure the separation between all galaxy pairs in

our survey and count the number of such pairs in each sepa-
ration bin. We do this for the 6dFGS data catalogue, a ran-
dom catalogue with the same selection function, and a com-
bination of data-random pairs. We call the pair-separation
distributions obtained from this analysis step DD, RR and
DR, respectively. In the analysis we used 30 random cat-
alogues with the same size as the real data catalogue and
average DR and RR. The redshift-space correlation function
itself is then given by Landy & Szalay (1993):

ξ′data = 1 +
DD

RR

(

nr

nd

)2

− 2
DR

RR

(

nr

nd

)

, (5)

where the ratio nr/nd is given by

nr

nd
=

∑Nr

i wi
∑Nd

j wj

(6)

and the sums go over all random (Nr) and data (Nd) galax-
ies. The galaxies are weighted by the inverse completeness
Ci of their area of the sky

wi(z) = Ci. (7)

We will discuss further weighting techniques in the next sec-
tion.
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Figure 2. The 2D correlation function of 6dFGS using a density
weighting with P0 = 1600h3 Mpc−3. For reasons of presentation
we binned the correlation function in 0.5h−1 Mpc bins, while in
the analysis we use larger bins of 2h−1 Mpc. Both redshift-space
distortion effects are visible: the “finger-of-God” effect at small
angular separation rp, and the anisotropic (non-circular) shape
of the correlation function at large angular separations.

There is a possible bias in the estimation of the correla-
tion function due to the fact that we estimate both the mean
density and the pair counts from the same survey. This leads
to a non-zero difference between the true correlation func-
tion estimate of an ensemble of surveys and the ensemble
average of ξ(s) from each survey. This is commonly known
as the integral constraint (e.g. Peebles 1980), which can be
calculated as (see e.g. Roche et al. 2002)

ic =

∑

ξmodelRR
∑

RR
(8)

and enters our correlation function estimate as

ξdata = ξ′data + ic, (9)

where ξ′data is the redshift-space correlation function from
eq. 5 and ξmodel is the model for the correlation function.
In 6dFGS ic is typically around 6 × 10−4 and so has no
significant impact on the final result.

In Figure 2 we show the 2D correlation function calcu-
lated from the 6dFGS dataset. In this Figure we use bins
of 0.5h−1 Mpc, while for the analysis later on we use larger
bins of 2h−1 Mpc (see Figure 6). The figure shows clearly
the two effects of redshift-space distortions which we will
discuss later in section 5, the “finger-of-God” effect at small
rp, and the linear infall effect at larger rp which gives the
correlation function a non-circular shape.

3.1 Density weighting

In Fourier space the error in measuring the amplitude of a
mode of the linear power spectrum1 is given by

σP (k) = (b+ fµ2)2P (k) + 〈N〉, (10)

where b is the linear bias, f is the growth rate, µ is the
cosine of the angle to the line of sight and P (k) is the matter
power spectrum. The first term on the right hand side of
this equation represents the sample-variance error, while the
second term (〈N〉) represents the Poisson error.

If the sample-variance error is dominant we can reduce
the power spectrum error by employing a weighting scheme
which depends upon the galaxy density n(z), such as the
one suggested by Feldman, Kaiser & Peacock (1994)

wi(z) =
1

1 + n(z)P0
, (11)

where P0 describes the amplitude of the weighting. A
stronger weighting (larger value of P0) yields a smaller
sample-variance error since it increases the survey volume
by up-weighting sparsely sampled regions. However, such a
weighting scheme also increases the Poisson error because it
shifts the effective redshift to larger values with a smaller
galaxy number density. This is illustrated in Figure 3(a)
and 3(b). Such a weighting scheme is standard for large scale
structure analyses.

In a magnitude-limited sample such as 6dFGS, up-
weighting higher redshift galaxies also has the effect of shift-
ing the galaxy bias to larger values. The sample-variance
error is proportional to the clustering amplitude, and so a
larger bias results in a larger error. However, the weight-
ing will still ensure that the relative error of the power
spectrum, σP (k)/P (k), is minimised. The redshift-space dis-
tortion signal is inversely proportional to the galaxy bias,
β ≃ Ωγ

m(z)/b. If weighting increases the bias b, it also re-
duces the signal we are trying to measure. We therefore must
investigate whether the advantage of the weighting (the re-
duced relative error) outweighs the disadvantage (increasing
galaxy bias).

The situation is very different for measuring a signal
that is proportional to the clustering amplitude, such as the
baryon acoustic peak. In this case the error and the sig-
nal are proportional to the bias, and so weighting will al-
ways be beneficial. We stress that an increasing bias with
redshift is expected in almost all galaxy redshift surveys.
Therefore redshift-space distortion studies should first test
whether galaxy weighting improves the measurement. The
6dF Galaxy Survey is quite sensitive to the weighting scheme
employed because it has a high galaxy density, making the
sample-variance error by far the dominant source of error.

Finally, we have to consider the correlation between the
bins in the measured power spectrum or correlation func-
tion. If the error is sample-variance dominated, the bins will
show large correlation (especially in the correlation func-
tion), while in the case of Poisson-noise dominated errors,
the correlation is much smaller. Weighting will always in-
crease the Poisson noise and hence reduce the correlation
between bins.

1 As the correlation function and power spectrum are related by
a Fourier transform, the following discussion also holds true for a
correlation function measurement.
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All of the density weighting effects discussed above need
to be considered, before deciding which weighting is best
suited to the specific analysis. We summarise as follows:

• If a galaxy sample is sample-variance limited, density
weighting will reduce the (relative) error of the clustering
measurement.

• In most galaxy redshift surveys, the density weighting
increases the galaxy bias, which reduces the redshift-space
distortion signal, by flattening the clustering anisotropy.

• Galaxy weighting also reduces the correlation between
bins in the power spectrum and correlation function.

Whether the signal-to-noise is actually improved by den-
sity weighting depends on the specific sample. For the
6dFGS redshift-space distortion analysis we found P0 ≈
1600h−3 Mpc3 leads to the most accurate constraint on the
growth rate.

This discussion also indicates that low-biased galaxy
samples have an advantage over a highly biased galaxy sam-
ple in measuring redshift-space distortions. We will discuss
this point further in section 8.

4 ERROR ESTIMATE

In this section we will derive a covariance matrix for the 2D
correlation function using jack-knife re-sampling. We also
use log-normal realisations to test the jack-knife covariance
matrix.

4.1 Jack-knife re-sampling

We divide the dataset into N = 480 subsets, selected in R.A.
and Dec. Each re-sampling step excludes one subset before
calculating the correlation function. The N − 1 remaining
subsets have a volume which is (N −1)/N times the volume
of the original data. The covariance matrix is then given by

Cij =
(N − 1)

N

N
∑

k=1

[

ξk(si)− ξ(si)
] [

ξk(sj)− ξ(sj)
]

, (12)

where ξk(si) is the correlation function estimate at separa-
tion si with the exclusion of subset k. The mean value is
defined as

ξ(si) =
1

N

N
∑

k=1

ξk(si). (13)

The case i = j gives the error ignoring correlations between
bins σ2

i = Cii.

4.2 Log-normal realisations

We can create a log-normal realisation (Coles & Jones 1991;
Cole et al. 2005; Percival et al. 2007; Blake et al. 2011a;
Beutler et al. 2011) of a galaxy survey by deriving a density
field from a model power spectrum, P (k), assuming Gaus-
sian fluctuations. This density field is then Poisson sam-
pled, taking into account the window function and the total
number of galaxies. The assumption that the input power
spectrum has Gaussian fluctuations can only be used if the
fluctuations are much smaller than the mean density, oth-
erwise the Gaussian model assigns a non-zero probability

Mpc)-1 = 11h
p

Mpc] (r-1 [hπ
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-210

-110
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10
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(a)
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Figure 3. (a) The relative error in the 2D correlation function as
a function of line-of-sight separation π at a fixed rp = 11h−1 Mpc.
Other regions of the 2D correlation function behave in a similar
manner. The solid lines show the Poisson error for different values
of P0, while the data points show the total (Poisson + sample vari-
ance) error obtained as the diagonal of the covariance matrix de-
rived using jack-knife re-sampling. The purpose of the weighting
(P0) is to minimise the total error, which is achieved for a value of
P0 ≈ 1600h−3 Mpc3. The weighting reduces the error by almost
a factor of two on most scales. The dashed line shows the error
derived from log-normal realisations using P0 = 1600h−3 Mpc3

and is in very good agreement with the jack-knife error. (b) same
as (a) for a fixed line-of-sight separation π = 11h−1 Mpc.

to regions of negative density. A log-normal random field,
LN(~x), can avoid this unphysical behaviour. It is obtained
from a Gaussian field G(~x) by

LN(~x) = exp[G(~x)]− 1, (14)

which is positive-definite but approaches G(~x) whenever the
perturbations are small. As an input power spectrum for the
log-normal field we use the linear model (Kaiser 1987), given
by

Pg(k, µ) = b2(1 + βµ2)2Pδδ(k) (15)

with b = 1.47 and β = 0.35, which is consistent with the
parameters we measure for 6dFGS (see section 6). Pδδ(k)

c© 0000 RAS, MNRAS 000, 000–000



6 Beutler et al.

Figure 4. The correlation matrix for the 2D correlation function
ξ(rp, π) with a bin size of 2 × 2h−1 Mpc. The upper-left corner
shows the jack-knife estimate, while the lower-right corner shows
the result of using 1500 log-normal realisations. Since this plot
shows the correlation of all 15 × 15 bins it contains 225 × 225
entries.

is a linear density power spectrum in real space obtained
from CAMB (Lewis et al. 2000) and Pg(k, µ) is the galaxy
power spectrum in redshift-space. Our method is explained
in more detail in Beutler et al. (2011), appendix A.

We produce N = 1500 such realisations and calculate
the 2D correlation function for each of them, deriving a co-
variance matrix

Cij =
1

N − 1

N
∑

n=1

[

ξin(rp, π)− ξi(rp, π)
]

×
[

ξjn(rp, π)− ξj(rp, π)
]

,

(16)

where the mean value ξi(rp, π) is defined as

ξi(rp, π) =
1

N

N
∑

n=1

ξin(rp, π) (17)

and ξin(rp, π) is the 2D correlation function estimate of re-
alisation n at a specific separation (rp, π).

4.3 Discussion: Error analysis

Figure 4 shows the correlation matrix

rij =
Cij

√

CiiCjj

, (18)

derived from the two different covariance matrices, Cij . We
plot the jack-knife result in the upper-left corner and the
log-normal result in the lower-right corner. Both the cor-
relation and covariance matrix are symmetric. While the
log-normal correlation matrix indicates somewhat more cor-
relation between bins, overall the correlation matrices are

Mpc]-1 [hpr
0 5 10 15 20 25 30

M
pc

]
-1

 [hπ

0

5

10

15

20

25

30

-1

-0.5

0

0.5

1

Figure 5. This plot shows the correlation of bin 127 (rp =
13h−1 Mpc, π = 17h−1 Mpc) with all other bins in the 2D correla-

tion function, derived using jack-knife re-sampling. It corresponds
to row/column 127 of the jack-knife correlation matrix which is
shown in Figure 4 (upper-left corner).

in rough agreement. The diagonal errors for both the log-
normal and jack-knife covariance matrices are plotted in Fig-
ures 3(a) and 3(b) and show very good agreement at large
scales.

Every row/column in Figure 4 shows the correlation
of one bin with all other bins in ξ(rp, π). Figure 5 shows
an example of such a row/column obtained from jack-knife
re-sampling as a 15 × 15 matrix, in this case for bin 127
(rp = 13h−1 Mpc, π = 17h−1 Mpc).

Log-normal realisations do not account for non-linear
mode coupling and are very model-dependent in the quasi-
linear and non-linear regime. Since our analysis relies on fits
to fairly small scales, we decided to use the jack-knife co-
variance matrix in our analysis. However, we find that none
of the results reported in this paper depend significantly on
which of the two covariance matrices is used.

5 MODELLING THE 2D CORRELATION

FUNCTION

In this section we discuss the theory of redshift-space distor-
tions, starting with the standard linear perturbation theory.
We then describe different approaches for extending the lin-
ear model to include non-linear structure formation. We also
discuss deviations from the plane-parallel approximation.

5.1 Linear redshift-space distortions

The position of a galaxy in real space ~r = (x, y, z) is mapped
to the position in redshift-space, ~s, via

~s = ~r +
vz(~r)

aH(z)
ẑ, (19)

c© 0000 RAS, MNRAS 000, 000–000



6dFGS: z ≈ 0 measurements of fσ8 and σ8 7

where the unit vector ẑ indicates the line-of-sight direction,
and the quantity vz is the line-of-sight component of the ve-
locity field, namely vz = ~v · ẑ. The scale factor a is defined as
1/(1+z) and H(z) is the Hubble constant at redshift z. The
second term in the equation above represents peculiar ve-
locities caused by gravitational interaction. On small scales
this elongates structures along the line-of-sight and leads
to the so-called “finger-of-God” effect (Jackson 1972). On
large scales matter falls in towards over-dense regions and
systematically influences our distance measurement, making
the over-densities appear more over-dense. The latter effect
can be described by linear theory, while the “finger-of-God”
effect is a non-linear phenomenon.

The model of linear redshift-space distortions has been
developed by Kaiser (1987) and Hamilton (1992) assuming
a plane-parallel approximation. In Fourier space the linear
model can be written as

Pg(k, µ) = b2(1 + βµ2)2Pδδ(k), (20)

where Pδδ(k) is the matter density power spectrum and
Pg(k, µ) is the galaxy density power spectrum. In this model,
linear redshift-space distortions are quantified by the param-
eter β, which is defined as

β =
1

b

d lnD(z)

d ln(a)
≃ Ωγ

m(z)

b
, (21)

where b is the linear galaxy bias factor, D(z) is the growth
factor and γ is the gravitational growth index, which takes
the value γ = 0.55 in ΛCDM (Linder 2005). Ωm(z) is the
matter density at redshift z, and is defined as

Ωm(z) =
H2

0

H(z)2
Ωm(z = 0)(1 + z)3 (22)

with

H2
0

H(z)2
=

[

Ωm(1 + z)3 + ΩΛ

]−1
, (23)

where we again follow our fiducial model of Ωfid
k = 0 and

wfid = −1. Modifications of the gravitational force mainly
affect γ, while changes in the expansion history of the Uni-
verse affect Ωm(z).

5.2 Parameterisation

From now on we will formulate our equations in terms of
gθ(z) = f(z)σ8(z) and gb(z) = bσ8(z). We choose the pa-
rameter set [gθ, gb] instead of [β, σ8, b], because σ8 and
the linear bias, b, are degenerate and difficult to disen-
tangle (White, Song & Percival 2008; Song & Percival 2009;
Song et al. 2010). Within this parameterisation the power
spectrum is expressed as

Pg(k) = b2Pδδ(k) = g2bQδδ(k), (24)

where Qδδ(k) is the unnormalised matter density power
spectrum (see eq. 30). In terms of our new parameters, we
can write

β =
gθ
gb

. (25)

5.3 Extensions to linear theory

For the remainder of this section we will discuss possible
extensions of the linear model to include non-linear struc-
ture formation and wide-angle effects. The simplest model
of non-linearities is the so-called streaming model (Peebles
1980; Hatton & Cole 1998). Here, the redshift-space corre-
lation function is just a convolution of the linear correlation
function in redshift-space with a pairwise velocity probabil-
ity density function, F (v),

ξst(rp, π) =

∫ ∞

−∞

ξ

(

rp, π − v

H(zeff)aeff

)

F (v)dv, (26)

where aeff = 1/(1+zeff ) is the scale factor and H(zeff) is the
Hubble constant at the effective redshift. We chose F (v) to
be an exponential distribution (Peacock & Dodds 1996)

F (v) =
1

σp

√
2
exp

[−
√
2|v|

σp

]

, (27)

which has been shown to successfully describe ob-
servations (Davis & Peebles 1982; Fisher et al. 1994;
Marzke et al. 1995; Landy 2002). Although the pairwise
velocity dispersion within a halo is expected to follow a
Gaussian distribution instead of an exponential, galaxies
populate halos of a wide range of masses and velocity
dispersions, which combine to approximately form an
exponential function (Sheth 1996; Diaferio & Geller 1996;
Seto & Yokoyama 1998). The parameter σp depends on
galaxy type (e.g. Madgwick et al. 2003) and hence its use
for cosmological constraints is limited.

In recent years many improvements to the model dis-
cussed above have been suggested. We will initially discuss
these models in Fourier space because the theoretical moti-
vation is clearer and many expressions needed for these mod-
els simplify considerably. However, since our data is in real
space we will also give real-space expressions later on. We
start with the streaming model of eq. 26, which in Fourier
space is given by

Pg(k, µ) = b2(1 + βµ2)2Pδδ(k)
1

1 + k2µ2σ2
p/2

. (28)

Hence in Fourier space, the convolution with an exponential
function becomes a multiplication by a Lorentzian distribu-
tion.

The model above assumes that there is a perfect corre-
lation between the velocity field and the density field, which
is given by Pδδ(k) = Pδθ(k) = Pθθ(k) where Pδδ(k) is the
matter density power spectrum as before. Pθθ(k) = 〈|θk|2〉
is the velocity divergence power spectrum where θ = ~∇·~v is
the velocity divergence, and Pδθ(k) is the cross power spec-
trum. Non-linear effects will violate these assumptions, since
the density power spectrum is expected to increase in am-
plitude at small scales because of non-linear effects, while
the velocity field becomes randomised at small scales (e.g.
within virialized galaxy clusters) and hence Pθθ(k) will de-
crease in amplitude (e.g. Carlson 2009). Scoccimarro (2004)
suggested expressing the 2D power spectrum without the
assumption of linear relations between the density field and
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8 Beutler et al.

velocity field, by

Pg(k, µ) = Fq(k, µ, σv)

×
[

b2Pδδ(k) + 2µ2bfPδθ(k) + µ4f2Pθθ(k)
]

= Fq(k, µ, σv)

×
[

g2bQδδ(k) + 2µ2gbgθQδθ(k) + µ4g2θQθθ(k)
]

,

(29)

where the different Qxy are defined as

Qδδ(k) = Pδδ(k)/σ8(zeff)
2,

Qδθ(k) = Pδθ(k)/σ8(zeff)
2,

Qθθ(k) = Pθθ(k)/σ8(zeff)
2.

(30)

and the damping function Fq(k, µ, σv) is usually chosen to
be a Gaussian of the form

Fq(k, µ, σv) = e−(kµσv)
2

. (31)

The parameter σv quantifies the non-linear dispersion in the
bulk motion of halos. It is different to the σp parameter
we introduced earlier that describes small-scale randomised
motion (e.g. of galaxies within a halo). We can derive σv

from the velocity power spectrum as

σ2
v(z) =

gθ(z)
2

6π2

∫ ∞

0

Qθθ(k)dk. (32)

Jennings, Baugh & Pascoli (2011a) provide fitting formu-
lae for Pδθ(k) and Pθθ(k) derived from N-body simulations.
They find the following relation between the different power
spectra

Pxy(k) =
α0

√

Pδδ(k) + α1P
2
δδ(k)

α2 + α3Pδδ(k)
, (33)

where Pδδ(k) can be obtained from CAMB by including
halofit (Smith et al. 2003). For the cross power spectrum
Pxy(k) = Pδθ(k) we use the (updated) parameters (α0,
α1, α2, α3) = (−12 483.8, 2.55430, 1 381.29, 2.54069) and
for Pxy(k) = Pθθ(k) we use (−12 480.5, 1.52404, 2 165.87,
1.79640). The fitting formula reproduces Pθθ to better than
1% for k < 0.4hMpc−1, to 10% for 0.4 < k < 0.7hMpc−1,
and to 15% for 0.7 < k < 1hMpc−1. It also reproduces Pδθ

to less than 4% over the whole range k < 1hMpc−1 (Jen-
nings, private communication). We cut off the integral when
the Jennings formula predicts negative values, although be-
cause of the high precision of the fitting formula up to large
k, such a cut-off will not affect our measurement.

We can express eq. 29 in real-space as

ξSc(rp, π) =

[

g2bξ0,δδ(r) +
2

3
gbgθξ0,δθ(r) +

1

5
g2θξ0,θθ(r)

]

P0(µ)

+

[

4

3
gbgθξ2,δθ(r) +

4

7
g2θξ2,θθ(r)

]

P2(µ)

+
8

35
g2θξ4,θθ(r)P4(µ),

(34)

where Pℓ(µ) are the Legendre polynomials and the spherical
harmonic moments ξℓ,xy(r) are given by

ξℓ,xy(r) =

∫ ∞

0

∫ 1

−1

k2dkdµ

(2π)2
e−(kµσv)

2

× cos(krµ)Qxy(k)Pℓ(µ).

(35)

Appendix A shows a partial analytic solution for the double
integral above.

We therefore have two different models which we will
apply to our data: The simple streaming model ξst(rp, π)
and the Scoccimarro models ξSc(rp, π). Note that ξSc(rp, π)
does not include the parameter σp and hence has one less
free parameter than the streaming model.

All equations above are based on the plane-parallel ap-
proximation. In the case of 6dFGS we also need to account
for wide-angle effects. This means we will replace the equa-
tions above with more general descriptions, which we discuss
in the next section.

5.4 Wide-angle formalism

So far we have assumed that the separation between galaxy
pairs is much smaller than the distance of the galaxies
from the observer. The 6dF Galaxy Survey has a maxi-
mum opening angle of 180◦ and the (effective) redshift is
fairly low at zeff = 0.067 (see section 3). We therefore in-
clude wide-angle correction terms. The wide-angle descrip-
tion of redshift-space distortions has been laid out in several
papers (Szalay et al. 1997; Szapudi 2004; Matsubara 2004;
Papai & Szapudi 2008; Raccanelli et al. 2010). Here we will
expand on this work by formulating the equations in terms of
gθ and gb and by distinguishing between the density-density,
velocity-velocity and density-velocity contributions (ξδδ, ξθθ
and ξδθ). The model will then correspond to the Scoccimarro
model (eq. 34) in the last section.

The general redshift-space correlation function (ignor-
ing the plane-parallel approximation) depends on φ, θ and
s. Here, s is the separation between the galaxy pair, θ is the
half opening angle, and φ is the angle of s to the line-of-
sight (see Figure 1 in Raccanelli et al. 2010). The angles φ
and θ are not independent, but the relation between them
is usually expressed through the two angles φ1 and φ2 given
by φ = 1

2
(φ1 + φ2) and θ = 1

2
(φ1 − φ2). The total corre-

lation function model, including O(θ2) correction terms, is
then given by (Papai & Szapudi 2008)

ξ(φ, θ, s) = a00 + 2a02 cos(2φ) + a22 cos(2φ) + b22 sin
2(2φ)

+
[

− 4a02 cos(2φ)− 4a22 − 4b22 − 4a10 cot
2(φ)

+ 4a11 cot
2(φ)− 4a12 cot

2(φ) cos(2φ) + 4b11

− 8b12 cos
2(φ)

]

θ2 +O(θ4).

(36)

This equation reduces to the plane-parallel approximation if
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θ = 0. The factors axy and bxy in this equation are given by

a00 = g2bξ
2
0,δδ(r) +

2gbgθ
3

ξ20,δθ(r) +
2g2θ
15

ξ20,θθ(r)

− gbgθ
3

ξ22,δθ(r) +
2g2θ
21

ξ22,θθ(r) +
3g2θ
140

ξ24,θθ(r)

a02 = −gbgθ
2

ξ22,δθ(r) +
3g2θ
14

ξ22,θθ(r) +
g2θ
28

ξ24,θθ(r)

a22 =
g2θ
15

ξ20,θθ(r)−
g2θ
21

ξ22,θθ(r) +
19g2θ
140

ξ24,θθ(r)

b22 =
g2θ
15

ξ20,θθ(r)−
g2θ
21

ξ22,θθ(r)−
4g2θ
35

ξ24,θθ(r)

a10 =

[

2gbgθξ
1
1,δθ(r) +

4g2θ
5

ξ11,θθ(r)

]

1

r
− g2θ

5r
ξ13,θθ(r)

a11 =
4g2θ
3r2

[

ξ00,θθ(r)− 2ξ02,θθ(r)
]

a12 =
g2θ
5r

[

2ξ11,θθ(r)− 3ξ13,θθ(r)
]

b11 =
4g2θ
3r2

[

ξ00,θθ(r) + ξ02,θθ(r)
]

b12 =
2g2θ
5r

[

ξ11,θθ(r) + ξ13,θθ(r)
]

,

(37)

where the spherical harmonic moments, ξmℓ,xy(r), are

ξmℓ,xy(r) =

∫ ∞

0

∫ 1

−1

kmdkdµ

(2π)2
e−(kµσv)

2

× cos(krµ)Qxy(k)Pℓ(µ),

(38)

with Qδδ(k), Qδθ(k) and Qθθ(k) as defined in equation 30
(see appendix A for an analytic solution).

In order to obtain a model for the 2D correlation func-
tion (including wide-angle effects), we can simply integrate
eq. 36 over θ. In case of the plane-parallel approximation
this would correspond to eq. 34. To reduce the equation
to the simple streaming model we have to set σv = 0,
Qδδ(k) = Qδθ(k) = Qθθ(k) and convolve with F (v).

Samushia et al. (2011) studied wide angle effects in the
SDSS-LRG sample and found that such effects are very
small. The lower redshift and larger sky coverage of the 6dF
Galaxy Survey mean that wide-angle effects are certainly
larger in our data set than SDSS-LRG. However, we found
no significant impact of such effects on our results. This
is mainly because our analysis includes only rather small
scales (π < 30h−1 Mpc, rp < 30h−1 Mpc, see section 6).
This agrees with the findings of Beutler et al. (2011).

We stress that the correction terms discussed above only
capture first-order effects and so we additionally restrict our
analysis to θ < 50◦.

Many authors have found, using N-body simulations,
that both the simple streaming and Scoccimarro mod-
els do not capture all non-linear and quasi-linear effects
present in redshift surveys (e.g. Jennings, Baugh & Pascoli
2011b; Kwan, Lewis & Linder 2011; Torre & Guzzo 2012
and references therein). For example the linear bias model
seems to be too simplistic at small scales. In this study
we restrict ourselves to the models discussed above but
would like to point out that many other models have been
suggested (Matsubara 2008a,b; Taruya, Nishimichi & Saito
2010; Reid & White 2011; Seljak & McDonald 2011) which
could be compared to our data in future work.

5.5 Systematics and the Alcock-Paczynski effect

A dataset such as 6dFGS, containing galaxies with a high
linear bias factor, may be prone to scale-dependent galaxy
bias on small scales. We used the GiggleZ simulations (Poole
et al., in preparation) to derive the form of the scale-
dependent bias. We find a 1.7% correction to a linear bias at
scales of s = 10h−1 Mpc, and note that this correction has
a small but non-negligible impact on our results, depending
on the smallest scales included in the fit.

A further systematic uncertainty comes from the so-
called Alcock-Paczynski (AP) effect (Alcock & Paczynski
1979). By assuming a cosmological model for the con-
version of redshifts and angles to distances (see sec-
tion 3) we could introduce an additional anisotropic sig-
nal in the correlation function which depends on the
angle to the line-of-sight, if the true cosmology differs
from our fiducial cosmological model. These distortions
are degenerate with the linear redshift-space distortion
signal and hence both effects need to be modelled to
avoid systematic bias (Ballinger, Peacock & Heavens 1996;
Simpson & Peacock 2010). Using the two scaling factors

f‖ =
Hfid(z)

H(z)
(39)

f⊥ =
DA(z)

Dfid
A (z)

, (40)

we can account for the AP effect by rescaling the correspond-
ing axis

π′ =
π

f‖
(41)

r′p =
rp
f⊥

. (42)

While this is a matter of concern for high-redshift surveys,
the 6dF Galaxy Survey is very nearly independent of the
Alcock-Paczynski distortions because the distances π and
rp are almost independent of the fiducial cosmological model
when expressed in units of h−1Mpc. For example the value
of f⊥ at z = 0.067 changes by only (0.3%, 1.5%) for 10%
changes in (Ωm, w). The corresponding values for f‖ are
(0.7%, 1.6%). The relative tangential/ radial distortion de-
pends on the value of (1 + z)DA(z)H(z)/c relative to the
fiducial model:

DA(z)H(z)

Dfid
A (z)Hfid(z)

=
f⊥
f‖

. (43)

This parameter combination changes by only 0.3 (0.1)% for
10% changes in Ωm (w).

Finally, it has been shown that γ has a degener-
acy with the equation of state parameter for dark energy,
w (Simpson & Peacock 2010). High redshift measurements
usually assume w = −1, which could introduce a bias in the
measured value of γ if dark energy is not exactly a cosmo-
logical constant. Again 6dFGS is robust against such effects.

6 FITTING THE 2D CORRELATION

FUNCTION

We now fit the two models for the 2D correlation function
we developed earlier (ξst(rp, π) and ξSc(rp, π)) to our data.
For the final constraints on fσ8 we use the ξSc(rp, π) model
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Table 1. Cosmological parameters derived from the 6dFGS 2D

correlation function. The effective redshift is zeff = 0.067. The
last column indicates the priors/assumptions which go into each
individual parameter measurement. The prior on the Hubble
constant comes from Riess et al. (2011) and the WMAP7 prior
from Komatsu et al. (2011). The asterisks denote parameters
which are derived from fitting parameters.

Summary of parameter measurements from 6dFGS

gθ(zeff ) 0.423± 0.055
gb(zeff ) 1.134± 0.073
β∗ 0.373± 0.054

σ8 0.76± 0.11 [H0 = 73.8± 2.4, γ = 0.55]
Ωm 0.250± 0.022 [H0 = 73.8± 2.4, γ = 0.55]
b 1.48± 0.27 [H0 = 73.8± 2.4, γ = 0.55]
f∗(zeff ) 0.58± 0.11 [gθ + σ8 from 6dFGS]

γ 0.547± 0.088 [WMAP7]
Ωm 0.271± 0.027 [WMAP7]

since it gives similar results to the streaming model with one
less free parameter.

Other studies (e.g. Samushia et al. 2011) prefer to anal-
yse the correlation function moments ξ0, ξ2 (and if possible
ξ4), which carry the same information as the 2D correlation
function. The correlation function moments have the advan-
tage that the number of bins grows linearly with the highest
scales analysed, while for ξ(rp, π) the number of bins grows
quadratically. This makes it easier to get reliable covariance
matrices. Samushia et al. (2011) also show that the measure-
ment errors of ξℓ are more Gaussian. However, the correla-
tion function moments are integrals over µ and hence carry
information from all directions, including µ = 0. Finger-of-
God distortions can influence the correlation function mo-
ments up to large scales (20− 30h−1 Mpc), while in the 2D
correlation function they can be excluded via a cut in rp.
In 6dFGS we have found that these non-linear effects have
a strong impact on the correlation function moments up to
30h−1 Mpc. We have therefore decided to focus on the 2D
correlation function instead of the correlation function mo-
ments.

6.1 Derivation of the growth rate, gθ = fσ8

In Figure 6 we show the 6dFGS 2D correlation function.
For our analysis we bin the data in 2× 2h−1 Mpc bins from
0 to 30h−1 Mpc in rp and π. Including larger scales does
not add further information. At small rp, the finger-of-God
effect becomes dominant and we expect any linear model to
fail. Since our description of non-linearities, in both of our
models, is limited in its capability to capture all non-linear
effects, it is necessary to include a cut-off scale rcutp marking
a lower limit of the fitting range in rp.

Figure 7 shows the measured value of gθ as a function
of the cut-off scale rcutp for our two different models. Above
rcutp ≈ 8h−1 Mpc the streaming model, ξst(rp, π), approaches
a constant value of gθ. Our second model, ξSc(rp, π), con-
tains a systematic error up to much larger scales, before it
comes into agreement with the streaming model at about
rcutp = 16h−1 Mpc. This is expected since this model does
not include a description of effects in the non-linear regime.

Mpc]-1 [hpr
-30 -20 -10 0 10 20 30

M
pc

]
-1

 [hπ
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-10

0

10

20
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-110
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Figure 6. The 2D correlation function in 2h−1 Mpc bins. The
fitting area is indicated by the dashed lines, where black corre-

sponds to the streaming model, (ξst(rp, π)) and red corresponds
to the Scoccimarro model (ξSc(rp, π)). The black and red contours
show the best fitting models for ξst(rp, π) (black) and ξSc(rp, π)
(red). The deviations seen in the two contours at large scales
are well within the error bars of the two models, which can be
seen in Figure 8. At small scales (< 14h−1 Mpc) the Scoccimarro
model predicts much more clustering, while in the real data this
clustering is smeared out along the line of sight because of the
finger-of-God effect.

For the final constraints we choose rcutp = 10h−1 Mpc for the
streaming model and rcutp = 16h−1 Mpc for the Scoccimarro
model. We also note that since the Scoccimarro model is
based on only two free parameters (gθ and gb), the error is
generally smaller compared to the streaming model, which
has three free parameters (gθ, gb and σp). Other studies fit
for the parameter σv (e.g. Torre & Guzzo 2012) in the Scoc-
cimarro model, but we derive it using eq. 32.

For ξSc(rp, π) we use the fitting range 0 < π <
30h−1 Mpc and 16 < rp < 30h−1 Mpc, which results in a to-
tal of 105 bins. The best-fitting results are gθ = 0.423±0.055
and gb = 1.134 ± 0.073, where the errors for each parame-
ter are derived by marginalising over all other parameters.
The χ2 of this fit is 115 with 103 degrees of freedom (d.o.f.),
indicating a good fit to the data.

For ξst(rp, π), we have the fitting range 0 < π <
30h−1 Mpc and 10 < rp < 30h−1 Mpc, which results in
a total of 150 bins. The best fitting parameters are gθ =
0.389±0.067, gb = 1.084±0.036 and σp = 198±81 km/s. The
reduced χ2 of this fit is given by χ2/d.o.f. = 202/147 = 1.37.
We compare the constraints on gθ and gb from both models
in Figure 8.

In the Scoccimarro model we could use the param-
eter σv ∝ gθ instead of gθ to test cosmology, as sug-
gested by Song et al. (2010). Our best fit gave σv = 2.59 ±
0.34h−1 Mpc. However, this parameter depends on an addi-
tional integral over the velocity power spectrum, which adds
a theoretical uncertainty. We therefore prefer to use gθ in the
following discussions.
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Figure 7. The value of gθ(zeff ) = f(zeff )σ8(zeff ) as a function of
the cut-off scale rcutp , obtained by fitting the 6dFGS 2D correla-
tion function with two different models (as described in section 5.3
and 5.4). At large scales the two models converge to similar val-
ues, while on small scales the models deviate from each other
because of the different descriptions of non-linear evolution. For
the final parameter measurements in Table 1 we chose model 2,
ξSc(rp, π), with a conservative cut-off scale of rcutp = 16h−1 Mpc.
In the lower panel we plot the reduced χ2 as an indicator of the
quality of the fit.

We can also express our results in terms of β which
is given by β = gθ/gb = 0.373 ± 0.054. We summarise all
measured and derived parameters in Table 1.

6.2 Derivation of σ8 and Ωm

In this section we use redshift-space distortions to directly
measure σ8. The angular dependence of the redshift-space
distortion signal in the 2D correlation function allows us
to measure β, which quantifies the amplitude of redshift-
space distortions. Together with Ωm(z) and γ = 0.55, this
constrains the linear bias b through the equation

b ≃ Ωγ
m(z)

β
. (44)

Knowing b we can use the absolute amplitude of the
correlation function, [bσ8(z)]

2, to constrain σ8(z=0) =
[D(z=0)/D(zeff )]× σ8(zeff).

For computational reasons we use our first model,
ξst(rp, π), in this sub-section and fit the five parameters
σ8, Ωm, b, H0 and σp using an MCMC approach. Since
the shape of the correlation function is only sensitive to
Γ = Ωmh, we cannot constrain Ωm and H0 at the same
time. For the final results we include a prior on the Hubble
constant (H0 = 73.8 ± 2.4 kms−1 Mpc−1, Riess et al. 2011,
from now on referred to as HST prior) and marginalise over
it. We use the same binning and fitting ranges as in the
previous section.

The best-fitting model results in χ2/d.o.f = 1.35. We
find σ8 = 0.76 ± 0.11, Ωm = 0.250 ± 0.022, b = 1.48 ± 0.27
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Figure 8. Likelihood distribution of gθ and gb derived from the
fit to the 2D correlation function. The solid black contours show

model ξSc(rp, π), while the dashed contours show the streaming
model (see section 5.3 and 5.4 for details of the modelling). The
fitting range is 0 < π < 30h−1 Mpc and 10 < rp < 30h−1 Mpc
for ξst(rp, π) and 0 < π < 30h−1 Mpc and 16 < rp < 30h−1 Mpc
for ξSc(rp, π). The black cross indicates the best-fitting value for
the solid black contours.
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 prior from Beutler et al. (2011)0H

Figure 9. This plot shows the likelihood distribution of the
galaxy bias b and σ8, which we obtained by fitting the 6dFGS
2D correlation function assuming γ = 0.55. The solid black
line shows the result using a prior on the Hubble constant of
H0 = 73.8±2.4 km s−1 Mpc−1 from Riess et al. (2011), while the
dashed black line uses a prior of H0 = 67 ± 3.2 kms−1 Mpc−1

from Beutler et al. (2011). Although the detection of redshift-
space distortions can partially break the degeneracy between b

and σ8 which exists in the 1D correlation function, there is still a
significant residual degeneracy. The black cross marks the maxi-
mum likelihood value for the solid black lines.
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and σp = 174±73 km/s. The remaining degeneracy between
the bias b and σ8 is illustrated in Figure 9. We include all
these results in Table 1.

Figure 10 compares the 6dFGS Ωm−σ8 probability dis-
tribution to measurements from several other datasets: The
CFHT wide synoptic Legacy Survey (CFHTLS) (Fu et al.
2008), the SFI++ peculiar velocity survey (Nusser & Davis
2011), cluster abundance from X-ray surveys (Mantz et al.
2010) and WMAP7 (Komatsu et al. 2011). Many of the ex-
periments shown in this figure have systematic modelling
uncertainties when extrapolating to z = 0 arising from
assumptions about the expansion history of the Universe.
Only 6dFGS and SFI++ are at sufficiently low redshift to
be independent of such effects. To illustrate the impact of
these effects we plot in Figure 11 the probability distribution
Ωm − σ8 from WMAP7 for different cosmological models.
The CMB measures the scalar amplitude As, which needs
to be extrapolated from redshift z∗ ≈ 1100 to redshift zero
to obtain σ8. Every parameter that influences the expansion
history of the Universe in this period affects the value of σ8

derived from the CMB alone. The relation between As and
σ8 is given by (e.g. Takada, Komatsu & Futamase 2004)

σ2
8(z) = As

(

2c2

5ΩmH2
0

)2 ∫ ∞

0

k3dkD2(k, z)T 2(k)

(

k

k∗

)ns−1

×
[

3 sin(kR)

(kR)3
− 3 cos(kR)

(kR)2

]2

,

(45)

where R = 8h−1 Mpc, k∗ = 0.02Mpc−1 and As = (2.21 ±
0.09) × 10−9 (Komatsu et al. 2009). D(k, z) is the growth
factor at redshift z and T (k) is the transfer function. If
higher-order cosmological parameters such as the dark en-
ergy equation of state parameter w are marginalised over,
then the measurements of Ωm and σ8 weaken considerably
(see Figure 11).

We now assess the influence of the H0 prior. We re-
place the result of Riess et al. (2011) with a measurement
derived from the 6dFGS dataset using Baryon Acoustic Os-
cillations (Beutler et al. 2011). The prior from this study
is lower than the former value and is given by H0 =
67±3.2 km s−1 Mpc−1. Using the 6dFGS value of H0 results
in σ8 = 0.75±0.13, Ωm = 0.279±0.028, b = 1.52±0.29 and
σp = 174 ± 106 km/s. The quality of the fit is χ2/d.o.f. =
1.35, very similar to the value obtained with the HST prior.
Comparing the two results shows that a different prior in H0

shifts the constraint in σ8 and b along the degeneracy shown
in Figure 9. However, we note that the 6dFGS measurement
of H0 is derived from the same dataset as our present study
and hence could be correlated with our measured growth
rate. We use these results only for comparison, and include
the values obtained using the HST prior in Table 1 as our
final results of this section.

Alternative methods for deriving σ8 or fσ8 at
low redshift are provided by peculiar velocity surveys
(e.g. Gordon, Land & Slosar 2007; Abate & Erdogu 2009;
Nusser & Davis 2011; Turnbull et al. 2011; Davis et al.
2011; Hudson & Turnbull 2012). 6dFGS will soon provide
its own peculiar velocity survey of around 10 000 galaxies.
Velocity surveys have the advantage of tracing the matter
density field directly, without the complication of a galaxy
bias. However, they are much harder to obtain and current
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(E. Komatsu 2010)
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Figure 10. This plot shows the likelihood distribution in σ8

and Ωm for different cosmological probes. The solid blue con-

tours show the 6dFGS result, the magenta dotted dashed con-
tours shows the currently best result of weak lensing from the
CFHT wide synoptic Legacy Survey (Fu et al. 2008), the red
solid contours show the result of the SFI++ peculiar velocity sur-
vey (Nusser & Davis 2011), the green dashed contours show the
result of Mantz et al. (2010) using cluster abundances and the
black dotted contours are from WMAP7 (Komatsu et al. 2011).
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Figure 11. Likelihood distribution of σ8 − Ωm from WMAP7
for a ΛCDM model (solid black line), wCDM model (dashed red
line), oCDMmodel (dotted dashed green line) and owCDMmodel

(dotted magenta line). In blue we show the 6dFGS result. Both
parameters are defined at redshift zero and WMAP constraints
on these parameters depend on assumptions about the expansion
history of the Universe. We use CosmoMC (Lewis & Bridle 2002),
together with the WMAP7.2 (Komatsu et al. 2011) dataset to
produce these likelihood distributions.
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Figure 12. Comparison of measurements of the growth of struc-
ture using galaxy surveys at different redshifts. The different
data points belong to 6dFGS (solid blue circle, this paper),
2dFGRS (solid black circle; Hawkins et al. 2003), SDSS (solid
black boxes; Samushia et al. 2011), WiggleZ (solid black trian-
gles; Blake et al. 2011a) and VVDS (empty circle; Guzzo et al.
2008). We also included a WALLABY forecast with a 4% error-
bar in red (see section 8). For the WiggleZ survey we also include
the data points from Blake et al. (2011b) (empty triangles, shifted
by ∆z = 0.005 to the right for visibility), where the Alcock-
Paczynski effect has been taken into account. We plot a ΛCDM
model as well as a DGP model for comparison.

velocity surveys are 1− 2 orders of magnitude smaller than
galaxy redshift surveys.

7 COSMOLOGICAL IMPLICATIONS

In this section we test General Relativity by mea-
suring the growth index γ. We would like to stress
that the γ-parameterisation of modified gravity has
its limitations and other more general parameterisa-
tions have been proposed (see e.g. Silvestri & Trodden
2009; Bean & Tangmatitham 2010; Daniel & Linder
2010; Clifton et al. 2011; Hojjati, Pogosian & Zhao 2011;
Baker et al. 2011). However, this is going beyond the scope
of this paper.

We combine our result for gθ(zeff) with the latest
results from WMAP7 (Komatsu et al. 2011), where we
use the WMAP7.2 dataset provided on the NASA web-
page2. While ΛCDM predicts γ ≈ 0.55, alternative the-
ories of gravity deviate from this value. One example of
such an alternative model is the DGP braneworld model
of Dvali, Gabadadze & Porrati (2000), in which our observ-
able Universe is considered to be a brane embedded in a
higher dimensional bulk space-time and the leakage of grav-
ity force propagating into the bulk can lead to the current ac-
celerated expansion of the Universe. Because of the missing
dark energy component, this model predicts a larger growth
index of γ ≈ 0.69 (Linder 2005).

In Figure 12 we compare measurements of the growth
of structure gθ from different galaxy redshift surveys. For

2 http://lambda.gsfc.nasa.gov/product/map/dr4/likelihood_get.cfm

the WiggleZ survey we include data points which assume
a correct fiducial cosmology (solid black triangles) as well
as data points which account for the Alcock-Paczynski ef-
fect (empty black triangles). The degeneracy between the
Alcock-Paczynski effect and the linear redshift-space distor-
tion signal increases the error by about a factor of two. As
we showed in section 5.5, the Alcock-Paczynski effect is very
small in 6dFGS, which therefore yields a direct measurement
of the redshift-space distortion signal.

All data points seem to be in good agreement with the
ΛCDM model (black solid line), while the DGP model gen-
erally predicts smaller values of gθ. The value of σ8 for the
two different models has been derived from the CMB scalar
amplitude As (Komatsu et al. 2011), where we use the cor-
responding Friedmann equation to calculate σ8.

The analysis method we apply in this section is sum-
marised in the following four points:

(i) We produce a Monte Carlo Markov Chain (MCMC)
with CosmoMC (Lewis & Bridle 2002) for a ΛCDM universe
by fitting the WMAP7 dataset. The CMB depends on dark
energy through the distance of last scattering and the late-
time Integrated Sachs-Wolfe (ISW) effect. We avoid the con-
tributions of the ISW effect by limiting the WMAP7 dataset
to multipole moments ℓ > 100.

(ii) Now we importance-sample the CosmoMC chain by
randomly choosing a value of γ in the range 0 6 γ 6 1 for
each chain element. Since the value of σ8(zeff) depends on
γ we have to recalculate this value for each chain element.
First we derive the growth factor

D(aeff) = exp

[

−
∫ 1

aeff

da′ f(a′)/a′

]

, (46)

where aeff is the scale factor at the effective redshift aeff =
1/(1 + zeff). In order to derive σ8,γ(zeff) we have to extrap-
olate from the matter dominated region to the effective red-
shift,

σ8,γ(zeff) =
Dγ(zeff)

D(zhi)
σ8(zhi), (47)

where we use σ8(zhi) from eq. 45 and zhi = 50, well in the
matter-dominated regime.

(iii) We now calculate the growth rate using fγ(zeff) ≃
Ωγ

m(zeff) and construct gθ,γ(zeff) = fγ(zeff)σ8,γ(zeff).
(iv) Finally we compare the model with gθ = 0.423 ±

0.055 from Table 1 and combine the likelihood from this
comparison with the WMAP7 likelihood.

The result is shown in Figure 13. Marginalising over
the remaining parameters we get γ = 0.547 ± 0.088 and
Ωm = 0.271± 0.027, which is in agreement with the predic-
tion of a ΛCDM universe (γ ≈ 0.55). Our analysis depends
only on the growth rate measured in 6dFGS and WMAP7.
This makes our measurement of γ independent of systematic
effects like the Alcock-Paczynski distortion which is a matter
of concern for galaxy redshift surveys at higher redshift.

8 FUTURE LOW-REDSHIFT GALAXY

SURVEYS: WALLABY AND TAIPAN

In this section we make predictions for the accuracy of fσ8

measurements from future low-redshift galaxy surveys using
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Figure 13. Likelihood distribution of γ − Ωm for our fit to
gθ = 0.423 ± 0.055 from 6dFGS and WMAP7 (Komatsu et al.

2011). The 6dFGS contours (black) include a normalisation prior
from WMAP7. Marginalising over the different parameters in the
MCMC chain gives Ωm = 0.271±0.027 and γ = 0.547±0.088. The
low redshift of 6dFGS makes this measurement particularly sen-
sitive to γ and independent of systematic effects like the Alcock-
Paczynski distortion.

a Fisher matrix analysis based on White, Song & Percival
(2008)

The Wide-field ASKAP L-band Legacy All-sky Blind
surveY (WALLABY)3 is an HI survey planned for the Aus-
tralian SKA Pathfinder telescope (ASKAP), currently un-
der construction at the Murchison Radio-astronomy Obser-
vatory (MRO) in Western Australia. The survey will cover
75% of the sky and a proposal exists to fill up the remaining
25% using the Westerbork Radio Telescope. In this analysis
we follow the survey parameters employed by Beutler et al.
(2011) (see also Duffy et al., in preparation), where for WAL-
LABY we assume a 4π survey containing 600 000 galaxies
at a mean redshift of z = 0.04. The linear bias of a typi-
cal WALLABY galaxy is 0.7 (Basilakos et al. 2007) and the
volume of the survey is 0.12h−3Gpc3.

The TAIPAN survey4 proposed for the UK Schmidt
telescope at Siding Spring Observatory in New South Wales
will cover a similar sky area as 6dFGS but will extend to a
larger redshift such that z = 0.08. For our TAIPAN forecast
we assumed the same sky-coverage as 6dFGS (fsky = 0.41),
a bias of b = 1.4, a total of 400 000 galaxies and a volume of
0.23h−3 Gpc3.

First we test the Fisher matrix prediction for fσ8 in the
case of 6dFGS. We assume a survey volume of 0.08h−3 Gpc3,
with 81 971 galaxies. Using kmax = 0.1hMpc−1 we forecast a
measurement of fσ8 of 23%, while using kmax = 0.2hMpc−1

produces a 8.3% error. The actual error in fσ8 we found in

3 http://www.atnf.csiro.au/research/WALLABY
4 TAIPAN: Transforming Astronomical Imaging surveys through
Polychromatic Analysis of Nebulae

this paper is 13%, somewhere between these two values. For
WALLABY and TAIPAN we will report constraints for both
kmax = 0.1hMpc−1 and kmax = 0.2hMpc−1.

With the specifications given above and using kmax =
0.1 (0.2)hMpc−1, the Fisher matrix forecast for WALLABY
is a measurement of fσ8 with 10.5 (3.9)% error. We in-
cluded the WALLABY forecast with a 4% error-bar in Fig-
ure 12. The model TAIPAN survey produces forecast errors
of 13.2 (4.9)%, improving the results from 6dFGS by almost
a factor of two. Although TAIPAN maps a larger volume of
the Universe compared to WALLABY, it does not produce a
better measurement of fσ8. WALLABY has a smaller galaxy
bias, which increases the redshift-space distortion signal by
a factor of two compared to TAIPAN. This will also be very
useful for breaking the degeneracy between bias and σ8 using
the technique of section 6.2.

The WALLABY survey will target galaxies rich in HI
gas. Such galaxies will mostly populate under-dense regions
of the Universe, because in groups and clusters galaxies are
stripped of their gas by interactions with other galaxies and
the intra-group and intra-cluster medium. This is the reason
that HI-selected galaxies possess a low bias (∼ 0.7). How-
ever, this fact also implies that WALLABY galaxies sample
the density field in a manner that avoids high-density re-
gions. These high-density regions are an important source
of non-linear redshift-space distortions (“finger-of-God” ef-
fect). We can hence suppose that non-linear effects will be
smaller in amplitude in an HI survey compared to highly-
biased surveys such as 6dFGS (see e.g. Simpson et al. 2011
or Figure 4 in Reid & White 2011). This should allow the
inclusion of much smaller scales in the analysis, producing
more accurate measurements. A more detailed analysis us-
ing WALLABY mock catalogues is in preparation.

McDonald & Seljak (2009) have suggested that mul-
tiple tracers within the same cosmic volume can be used
to reduce the sampling variance and improve cosmological
parameter constraints (see also Seljak 2009; Slosar 2009;
Bernstein & Cai 2011). Using the ratio of the perturbation
amplitudes of two surveys with different bias factors gives

b1 + fµ2

b2 + fµ2
=

αb2 + fµ2

b2 + fµ2
, (48)

where α = b1/b2. The angular dependence of this expression
allows one to extract f without any dependence on the den-
sity field (see Figure 1 in Bernstein & Cai 2011). The den-
sity field is the source of the sampling variance error, since
it will change, depending on the patch of the sky which is
observed. Using the ratio of two tracers, the precision with
which the growth rate f can be determined is (in princi-
ple) only limited by the shot noise, and not by the sampling
variance.

The three surveys discussed above, 6dFGS, WALLABY
and TAIPAN, have a large overlapping volume which al-
lows the potential application of this method. The technique
works best for densely-sampled surveys with very different
bias factors, b1 and b2. While TAIPAN and 6dFGS have very
similar bias, the bias of WALLABY will be much smaller.

We assume an overlap volume of 0.41×0.12h−3 Gpc3 =
0.049h−3 Gpc3, where we multiply the sky coverage of
6dFGS and TAIPAN with the effective volume of WAL-
LABY. For the different surveys we use the parameters as
stated above. We forecast Fisher matrix constraints on fσ8
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of 10.3 (5)% using kmax = 0.1 (0.2)hMpc−1. Because the
overlap volume is only ≈ 1/3 of the WALLABY volume,
this result does not improve the measurement arising from
WALLABY alone, especially considering that WALLABY
itself may be able to include modes up to large kmax in the
fitting process.

Our results show that future surveys such as WAL-
LABY and TAIPAN will provide an accurate measure-
ment of fσ8 at low redshift, and will be able to com-
plement future high-redshift surveys such as BOSS, which
will have a similar accuracy for several data points over
the higher redshift range 0.2 − 0.6 (Song & Percival 2009;
White, Song & Percival 2008; Reid & White 2011).

9 CONCLUSION

In this paper we have measured the 2D correlation func-
tion of the 6dF Galaxy Survey. We derived a covariance
matrix using jack-knife resampling as well as log-normal re-
alisations and showed that both techniques give comparable
results. We have modelled the 2D correlation function with
a simple streaming model and a more advanced approach
suggested by Scoccimarro (2004) combined with the N-body
calibrated results from Jennings, Baugh & Pascoli (2011a).
We formulated these models in real-space including wide-
angle corrections. For the final results on fσ8 we chose the
model by Scoccimarro (2004), although we found that both
models gave consistent results at sufficiently large scales.

We analysed the measurement in two different ways.
First we fitted for the two parameters gθ(zeff) =
f(zeff)σ8(zeff) and gb(zeff) = bσ8(zeff), where these con-
straints depend only on the 6dFGS data. Our second anal-
ysis method assumes a growth index from standard gravity
(γ ≈ 0.55) and fits for σ8, b, Ωm, H0 and σp, where we com-
bine the 6dFGS measurement with a prior in the Hubble
constant. All parameter measurements are summarised in
Table 1. We can summarise the results as follows:

• Our first analysis method found gθ(zeff) =
f(zeff)σ8(zeff) = 0.423 ± 0.055 and gb(zeff) = bσ8(zeff) =
1.134 ± 0.073, at an effective redshift of zeff = 0.067.
The 6dFGS measurement of gθ, unlike high-redshift mea-
surements, does not depend on assumptions about the
expansion history of the Universe and the Alcock-Paczynski
distortion.

• In our second analysis method we used the angle de-
pendence of redshift-space distortions in the 2D correlation
function to break the degeneracy between the galaxy bias
b and the normalisation of the matter clustering statistic
σ8, assuming standard gravity. We found σ8 = 0.76 ± 0.11,
Ωm = 0.250±0.022, b = 1.48±0.27 and σp = 174±73km/s.
This result uses a prior on H0 from Riess et al. (2011).

• Combining our measurement of gθ(zeff) with
WMAP7 (Komatsu et al. 2011) allows us to measure
the growth index γ, directly testing General Relativity. We
found γ = 0.547 ± 0.088 and Ωm = 0.271 ± 0.027, in agree-
ment with the predictions of General Relativity (γ ≈ 0.55).
The 6dFGS measurement of this parameter is independent
of possible degeneracies of γ with other parameters which
affect the correlation function at high redshift, such as the
dark energy equation of state parameter w.

• We used a Fisher matrix analysis to forecast the con-
straints on fσ8 that would be obtained from two future
low-redshift galaxy surveys, WALLABY and TAIPAN. We
found that WALLABY will be able to measure fσ8 to a
forecast accuracy of 10.5% for kmax = 0.1hMpc−1 and 3.9%
for kmax = 0.2hMpc−1. A combination of 6dFGS, TAIPAN
and WALLABY, using the multiple-tracer method proposed
by McDonald & Seljak (2009), will be able to constrain fσ8

to 5 − 10.3%. These measurements would complement fu-
ture large-volume surveys such as BOSS, which will mea-
sure the growth rate at much higher redshift (z > 0.2), and
contribute to future precision tests of General Relativity on
cosmic scales.
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APPENDIX A: PARTIAL ANALYTICAL

SOLUTION FOR THE CORRELATION

FUNCTION MOMENTS INTEGRAL

The double integrals in eqs. 35 and 38 are difficult to solve
numerically. Here we show an analytical solution for the in-
tegral over µ which allows for a faster numerical solution of
the full integral. First we re-write eq. 38 as

ξmℓ,xy(r) =

∫ ∞

0

∫ 1

−1

kmdkdµ

(2π)2
e−(kµσv)

2

× cos(krµ)Dxy(k)Pℓ(µ)

=

∫ ∞

0

kmdk

(2π)2
Qxy(k)

∫ 1

−1

dµ eikrµ−(kµσv)
2Pℓ(µ),

where i is the complex number. More generally the integral
over µ can be written as

Fn(µ) =

∫ 1

−1

dµ eikrµ−(kµσv)
2

µn

=

(

−i
∂

∂(kr)

)n ∫ 1

−1

dµ eikrµ−(kµσv)
2

=

(

− ∂

∂(k2σ2
v)

)n/2 ∫ 1

−1

dµ eikrµ−(kµσv)
2

.

(A1)

The integral on the right can be solved analytically. If we
set a = kr and b = (kσv)

2 we obtain
∫ 1

−1

dµ eikrµ−(kµσv)
2

=
i√
b
e−ia−b

[

Daw

(

a− 2ib

2
√
b

)

− e2iaDaw

(

a+ 2ib

2
√
b

)]

.

(A2)

Taking the n-th derivatives of the real part of the term above
gives Fn(µ). The Dawson integral Daw(x) can be calculated
using the imaginary error function erfi(x):

Daw(x) = e−x2

∫ x

0

ey
2

dy

=

√
π

2
e−x2

erfi(x).

(A3)

We can than construct eq. 38 for the different correlation
function moments:

ξmℓ=0,xy(r) =

∫ ∞

0

kmdk

(2π)2
Qxy(k)F0(µ)

ξmℓ=1,xy(r) =

∫ ∞

0

kmdk

(2π)2
Qxy(k)F1(µ)

ξmℓ=2,xy(r) =

∫ ∞

0

kmdk

(2π)2
Qxy(k)

1

2
[3F2(µ)− F0(µ)]

ξmℓ=3,xy(r) =

∫ ∞

0

kmdk

(2π)2
Qxy(k)

1

2
[5F3(µ)− 3F1(µ)]

ξmℓ=4,xy(r) =

∫ ∞

0

kmdk

(2π)2
Qxy(k)

1

8
[35F4(µ)− 30F2(µ) + 3F0(µ)]

. . .

(A4)

and so on.
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