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ABSTRACT

We analyse the large-scale correlation function of the 6dF Galaxy Survey (6dFGS)
and detect a Baryon Acoustic Oscillation (BAO) signal. The 6dFGS BAO detection
allows us to constrain the distance-redshift relation at zeff = 0.106. We achieve a
distance measure of DV (zeff) = 456±27 Mpc and a measurement of the distance ratio,
rs(zd)/DV (zeff) = 0.336 ± 0.015 (4.5% precision), where rs(zd) is the sound horizon
at the drag epoch zd. The low effective redshift of 6dFGS makes it a competitive and
independent alternative to Cepheids and low-z supernovae in constraining the Hubble
constant. We find a Hubble constant of H0 = 67± 3.2 km s−1 Mpc−1 (4.8% precision)
that depends only on the WMAP-7 calibration of the sound horizon and on the galaxy
clustering in 6dFGS. Compared to earlier BAO studies at higher redshift, our analysis
is less dependent on other cosmological parameters. The sensitivity to H0 can be used
to break the degeneracy between the dark energy equation of state parameter w and
H0 in the CMB data. We determine that w = −0.97± 0.13, using only WMAP-7 and
BAO data from both 6dFGS and Percival et al. (2010).

We also discuss predictions for the large scale correlation function of two fu-
ture wide-angle surveys: the WALLABY blind HI survey (with the Australian SKA
Pathfinder, ASKAP), and the proposed TAIPAN all-southern-sky optical galaxy sur-
vey with the UK Schmidt Telescope (UKST). We find that both surveys are very likely
to yield detections of the BAO peak, making WALLABY the first radio galaxy survey
to do so. We also predict that TAIPAN has the potential to constrain the Hubble
constant with 3% precision.

Key words: surveys, cosmology: observations, dark energy, distance scale, large scale
structure of Universe

1 INTRODUCTION

The current standard cosmological model, ΛCDM, assumes
that the initial fluctuations in the distribution of matter
were seeded by quantum fluctuations pushed to cosmologi-
cal scales by inflation. Directly after inflation, the universe
is radiation dominated and the baryonic matter is ionised
and coupled to radiation through Thomson scattering. The
radiation pressure drives sound-waves originating from over-
densities in the matter distribution (Peebles & Yu 1970;

⋆ E-mail: florian.beutler@icrar.org

Sunyaev & Zeldovich 1970; Bond & Efstathiou 1987). At
the time of recombination (z∗ ≈ 1090) the photons decouple
from the baryons and shortly after that (at the baryon drag
epoch zd ≈ 1020) the sound wave stalls. Through this pro-
cess each over-density of the original density perturbation
field has evolved to become a centrally peaked perturbation
surrounded by a spherical shell (Bashinsky & Bertschinger
2001, 2002; Eisenstein, Seo & White 2007). The radius of
these shells is called the sound horizon rs. Both over-dense
regions attract baryons and dark matter and will be pre-
ferred regions of galaxy formation. This process can equiv-
alently be described in Fourier space, where during the
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photon-baryon coupling phase, the amplitude of the baryon
perturbations cannot grow and instead undergo harmonic
motion leading to an oscillation pattern in the power spec-
trum.

After the time of recombination, the mean free path
of photons increases and becomes larger than the Hubble
distance. Hence from now on the radiation remains almost
undisturbed, eventually becoming the Cosmic Microwave
Background (CMB).

The CMB is a powerful probe of cosmology due to the
good theoretical understanding of the physical processes de-
scribed above. The size of the sound horizon depends (to
first order) only on the sound speed in the early universe
and the age of the Universe at recombination, both set
by the physical matter and baryon densities, Ωmh2 and
Ωbh

2 (Eisenstein & Hu 1998). Hence, measuring the sound
horizon in the CMB gives extremely accurate constraints
on these quantities (Komatsu et al. 2010). Measurements of
other cosmological parameters often show degeneracies in
the CMB data alone (Efstathiou & Bond 1999), especially
in models with extra parameters beyond flat ΛCDM. Com-
bining low redshift data with the CMB can break these de-
generacies.

Within galaxy redshift surveys we can use the correla-
tion function, ξ, to quantify the clustering on different scales.
The sound horizon marks a preferred separation of galaxies
and hence predicts a peak in the correlation function at the
corresponding scale. The expected enhancement at s = rs
is only ∆ξ ≈ 10−3b2(1 + 2β/3 + β2/5) in the galaxy cor-
relation function, where b is the galaxy bias compared to
the matter correlation function and β accounts for linear
redshift space distortions. Since the signal appears at very
large scales, it is necessary to probe a large volume of the
universe to decrease sample variance, which dominates the
error on these scales (Tegmark 1997; Goldberg & Strauss
1998; Eisenstein, Hu & Tegmark 1998).

Very interesting for cosmology is the idea
of using the sound horizon scale as a standard
ruler (Eisenstein, Hu & Tegmark 1998; Cooray et al.
2001; Seo & Eisenstein 2003; Blake & Glazebrook 2003). A
standard ruler is a feature whose absolute size is known. By
measuring its apparent size, one can determine its distance
from the observer. The BAO signal can be measured in
the matter distribution at low redshift, with the CMB cal-
ibrating the absolute size, and hence the distance-redshift
relation can be mapped (see e.g. Bassett & Hlozek (2009)
for a summary).

The Sloan Digital Sky Survey (SDSS; York et al.
2000), and the 2dF Galaxy Redshift Survey (2dFGRS;
Colless et al. 2001) were the first redshift surveys which
have directly detected the BAO signal. Recently the Wig-
gleZ Dark Energy Survey has reported a BAO measurement
at redshift z = 0.6 (Blake et al. 2011).

Eisenstein et al. (2005) were able to constrain the
distance-redshift relation to 5% accuracy at an effective
redshift of zeff = 0.35 using an early data release of the
SDSS-LRG sample containing ≈ 47 000 galaxies. Subse-
quent studies using the final SDSS-LRG sample and com-
bining it with the SDSS-main and the 2dFGRS sample
were able to improve on this measurement and constrain
the distance-redshift relation at zeff = 0.2 and zeff = 0.35
with 3% accuracy (Percival et al. 2010). Other studies of the

same data found similar results using the correlation func-
tion ξ(s) (Martinez 2009; Gaztanaga, Cabre & Hui 2009;
Labini et al. 2009; Sanchez et al. 2009; Kazin et al. 2010),
the power spectrum P (k) (Cole et al. 2005; Tegmark et al.
2006; Huetsi 2006; Reid et al. 2010), the projected cor-
relation function w(rp) of photometric redshift samples
(Padmanabhan et al. 2007; Blake et al. 2007) and a cluster
sample based on the SDSS photometric data (Huetsi 2009).
Several years earlier a study by Miller, Nichol & Batuski
(2001) found first hints of the BAO feature in a combination
of smaller datasets.

Low redshift distance measurements can directly mea-
sure the Hubble constant H0 with a relatively weak depen-
dence on other cosmological parameters such as the dark en-
ergy equation of state parameter w. The 6dF Galaxy Survey
is the biggest galaxy survey in the local universe, covering
almost half the sky. If 6dFGS could be used to constrain
the redshift-distance relation through baryon acoustic oscil-
lations, such a measurement could directly determine the
Hubble constant, depending only on the calibration of the
sound horizon through the matter and baryon density. The
objective of the present paper is to measure the two-point
correlation function on large scales for the 6dF Galaxy Sur-
vey and extract the BAO signal.

Many cosmological parameter studies add a prior on
H0 to help break degeneracies. The 6dFGS derivation of H0

can provide an alternative source of that prior. The 6dFGS
H0-measurement can also be used as a consistency check of
other low redshift distance calibrators such as Cepheid vari-
ables and Type Ia supernovae (through the so called distance
ladder technique; see e.g. Freedman et al. 2001; Riess et al.
2011). Compared to these more classical probes of the Hub-
ble constant, the BAO analysis has an advantage of simplic-
ity, depending only on Ωmh2 and Ωbh

2 from the CMB and
the sound horizon measurement in the correlation function,
with small systematic uncertainties.

Another motivation for our study is that the SDSS data
after data release 3 (DR3) show more correlation on large
scales than expected by ΛCDM and have no sign of a cross-
over to negative ξ up to 200h−1 Mpc (the ΛCDM prediction
is 140h−1 Mpc) (Kazin et al. 2010). It could be that the
LRG sample is a rather unusual realisation, and the addi-
tional power just reflects sample variance. It is interesting
to test the location of the cross-over scale in another red
galaxy sample at a different redshift.

This paper is organised as follows. In Section 2 we
introduce the 6dFGS survey and the K-band selected
sub-sample used in this analysis. In Section 3 we explain
the technique we apply to derive the correlation function
and summarise our error estimate, which is based on
log-normal realisations. In Section 4 we discuss the need
for wide angle corrections and several linear and non-linear
effects which influence our measurement. Based on this
discussion we introduce our correlation function model. In
Section 5 we fit the data and derive the distance estimate
DV (zeff). In Section 6 we derive the Hubble constant and
constraints on dark energy. In Section 7 we discuss the
significance of the BAO detection of 6dFGS. In Section 8
we give a short overview of future all-sky surveys and their
power to measure the Hubble constant. We conclude and
summarise our results in Section 9.
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Throughout the paper, we use r to denote real space
separations and s to denote separations in redshift space.
Our fiducial model assume a flat universe with Ωfid

m = 0.27,
wfid = −1 and Ωfid

k = 0. The Hubble constant is set to
H0 = 100h km s−1Mpc−1, with our fiducial model using
hfid = 0.7.

2 THE 6DF GALAXY SURVEY

2.1 Targets and Selection Function

The galaxies used in this analysis were selected to K 6

12.9 from the 2MASS Extended Source Catalog (2MASS
XSC; Jarrett et al. 2000) and combined with redshift data
from the 6dF Galaxy Survey (6dFGS; Jones et al. 2009).
The 6dF Galaxy Survey is a combined redshift and peculiar
velocity survey covering nearly the entire southern sky with
|b| < 10◦. It was undertaken with the Six-Degree Field (6dF)
multi-fibre instrument on the UK Schmidt Telescope from
2001 to 2006. The median redshift of the survey is z = 0.052
and the 25% : 50% : 75% percentile completeness values
are 0.61 : 0.79 : 0.92. Papers by Jones et al. (2004, 2006,
2009) describe 6dFGS in full detail, including comparisons
between 6dFGS, 2dFGRS and SDSS.

Galaxies were excluded from our sample if they resided
in sky regions with completeness lower than 60 percent. Af-
ter applying these cuts our sample contains 75 117 galaxies.
The selection function was derived by scaling the survey
completeness as a function of magnitude to match the inte-
grated on-sky completeness, using mean galaxy counts. This
method is the same adopted by Colless et al. (2001) for 2dF-
GRS and is explained in Jones et al. (2006) in detail. The
redshift of each object was checked visually and care was
taken to exclude foreground Galactic sources. The derived
completeness function was used in the real galaxy catalogue
to weight each galaxy by its inverse completeness. The com-
pleteness function was also applied to the mock galaxy cat-
alogues to mimic the selection characteristics of the survey.
Jones et al. (in preparation) describe the derivation of the
6dFGS selection function, and interested readers are referred
to this paper for a more comprehensive treatment.

2.2 Survey volume

We calculated the effective volume of the survey using the
estimate of Tegmark (1997)

Veff =

∫

d3~x

[

n(~x)P0

1 + n(~x)P0

]2

(1)

where n(~x) is the mean galaxy density at position ~x, de-
termined from the data, and P0 is the characteristic power
spectrum amplitude of the BAO signal. The parameter P0

is crucial for the weighting scheme introduced later. We find
that the value of P0 = 40 000h−3 Mpc3 (corresponding to
the value of the galaxy power spectrum at k ≈ 0.06h Mpc−1

in 6dFGS) minimises the error of the correlation function
near the BAO peak.

Using P0 = 40 000h−3 Mpc3 yields an effective volume
of 0.08h−3 Gpc3, while using instead P0 = 10 000h−3 Mpc3

(corresponding to k ≈ 0.15h Mpc−1) gives an effective vol-
ume of 0.045h−3 Gpc3.
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Figure 1. Redshift distribution of the data (black solid line) and
the random catalogue (black dashed line). The weighted distribu-
tion (using weights from eq. 6) is shifted to higher redshift and has
increased shot noise but a smaller error due to sample variance
(blue solid and dashed lines).

The volume of the 6dF Galaxy Survey is approxi-
mately as large as the volume covered by the 2dF Galaxy
Redshift Survey, with a sample density similar to SDSS-
DR7 (Abazajian et al. 2009). Percival et al. (2010) reported
successful BAO detections in several samples obtained from
a combination of SDSS DR7, SDSS-LRG and 2dFGRS
with effective volumes in the range 0.15 − 0.45h−3 Gpc3

(using P0 = 10 000h−3 Mpc3), while the original detec-
tion by Eisenstein et al. (2005) used a sample with Veff =
0.38h−3 Gpc3 (using P0 = 40 000h−3 Mpc3).

3 CLUSTERING MEASUREMENT

We focus our analysis on the two-point correlation func-
tion. In the following sub-sections we introduce the tech-
nique used to estimate the correlation function and outline
the method of log-normal realisations, which we employed
to derive a covariance matrix for our measurement.

3.1 Random catalogues

To calculate the correlation function we need a random sam-
ple of galaxies which follows the same angular and redshift
selection function as the 6dFGS sample. We base our ran-
dom catalogue generation on the 6dFGS luminosity func-
tion of Jones et al. (in preparation), where we use ran-
dom numbers to pick volume-weighted redshifts and lumi-
nosity function-weighted absolute magnitudes. We then test
whether the redshift-magnitude combination falls within the
6dFGS K-band faint and bright apparent magnitude limits
(8.75 6 K 6 12.9).

Figure 1 shows the redshift distribution of the 6dFGS
K-selected sample (black solid line) compared to a random
catalogue with the same number of galaxies (black dashed
line). The random catalogue is a good description of the
6dFGS redshift distribution in both the weighted and un-
weighted case.

c© 0000 RAS, MNRAS 000, 000–000
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Figure 2. The large scale correlation function of 6dFGS. The
best fit model is shown by the black line with the best fit value of
Ωmh2 = 0.138±0.020. Models with different Ωmh2 are shown by
the green line (Ωmh2 = 0.12) and the blue line (Ωmh2 = 0.15).
The red dashed line is a linear CDM model with Ωbh

2 = 0 (and
Ωmh2 = 0.1), while all other models use the WMAP-7 best fit
value of Ωbh

2 = 0.02227 (Komatsu et al. 2010). The significance
of the BAO detection in the black line relative to the red dashed
line is 2.4σ (see Section 7). The error-bars at the data points
are the diagonal elements of the covariance matrix derived using
log-normal mock catalogues.

3.2 The correlation function

We turn the measured redshift into co-moving distance via

DC(z) =
c

H0

∫ z

0

dz′

E(z′)
(2)

with

E(z) =
[

Ωfid
m (1 + z)3 +Ωfid

k (1 + z)2

+ Ωfid
Λ (1 + z)3(1+wfid))

]1/2
, (3)

where the curvature Ωfid
k is set to zero, the dark energy den-

sity is given by Ωfid
Λ = 1−Ωfid

m and the equation of state for
dark energy is wfid = −1. Because of the very low redshift
of 6dFGS, our data are not very sensitive to Ωk, w or any
other higher dimensional parameter which influences the ex-
pansion history of the universe. We will discuss this further
in Section 5.3.

Now we measure the separation between all galaxy pairs
in our survey and count the number of such pairs in each sep-
aration bin. We do this for the 6dFGS data catalogue, a ran-
dom catalogue with the same selection function and a com-
bination of data-random pairs. We call the pair-separation
distributions obtained from this analysis DD(s), RR(s) and
DR(s), respectively. The binning is chosen to be from
10h−1 Mpc up to 190h−1 Mpc, in 10h−1 Mpc steps. In the
analysis we used 30 random catalogues with the same size as
the data catalogue. The redshift correlation function itself
is given by Landy & Szalay (1993):

ξ′data(s) = 1 +
DD(s)

RR(s)

(

nr

nd

)2

− 2
DR(s)

RR(s)

(

nr

nd

)

, (4)

where the ratio nr/nd is given by

nr

nd
=

∑Nr

i wi(~x)
∑Nd

j wj(~x)
(5)

and the sums go over all random (Nr) and data
(Nd) galaxies. We use the inverse density weighting
of Feldman, Kaiser & Peacock (1994):

wi(~x) =
Ci

1 + n(~x)P0
, (6)

with P0 = 40 000h3 Mpc−3 and Ci being the inverse com-
pleteness weighting for 6dFGS (see Section 2.1 and Jones et
al., in preparation). This weighting is designed to minimise
the error on the BAO measurement, and since our sample
is strongly limited by sample variance on large scales this
weighting results in a significant improvement to the analy-
sis. The effect of the weighting on the redshift distribution
is illustrated in Figure 1.

Other authors have used the so called J3-weighting
which optimises the error over all scales by weighting each
scale differently (e.g. Efstathiou 1988; Loveday et al. 1995).
In a magnitude limited sample there is a correlation be-
tween luminosity and redshift, which establishes a correla-
tion between bias and redshift (Zehavi et al. 2005). A scale-
dependent weighting would imply a different effective red-
shift for each scale, causing a scale dependent bias.

Finally we considered a luminosity dependent weighting
as suggested by Percival, Verde & Peacock (2004). However
the same authors found that explicitly accounting for the
luminosity-redshift relation has a negligible effect for 2dF-
GRS. We found that the effect to the 6dFGS correlation
function is ≪ 1σ for all bins. Hence the static weighting of
eq. 6 is sufficient for our dataset.

We also include an integral constraint correction in the
form of

ξdata(s) = ξ′data(s) + ic, (7)

where ic is defined as

ic =

∑

s RR(s)ξmodel(s)
∑

s RR(s)
. (8)

The function RR(s) is calculated from our mock catalogue
and ξmodel(s) is a correlation function model. Since ic de-
pends on the model of the correlation function we have to
re-calculate it at each step during the fitting procedure.
However we note that ic has no significant impact to the
final result.

Figure 2 shows the correlation function of 6dFGS at
large scales. The BAO peak at ≈ 105h−1 Mpc is clearly
visible. The plot includes model predictions of different cos-
mological parameter sets. We will discuss these models in
Section 5.2.

3.3 Log-normal error estimate

To obtain reliable error-bars for the correlation function we
use log-normal realisations (Coles & Jones 1991; Cole et al.
2005; Kitaura et al. 2009). In what follows we summarise
the main steps, but refer the interested reader to Ap-
pendix A in which we give a detailed explanation of how we
generate the log-normal mock catalogues. In Appendix B

c© 0000 RAS, MNRAS 000, 000–000
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Figure 3. Correlation matrix derived from a covariance matrix
calculated from 200 log-normal realisations.

we compare the log-normal errors with jack-knife estimates.

Log-normal realisations of a galaxy survey are usually
obtained by deriving a density field from a model power
spectrum, P (k), assuming Gaussian fluctuations. This den-
sity field is then Poisson sampled, taking into account the
window function and the total number of galaxies. The as-
sumption that the input power spectrum has Gaussian fluc-
tuations can only be used in a model for a density field
with over-densities ≪ 1. As soon as we start to deal with
finite rms fluctuations, the Gaussian model assigns a non-
zero probability to regions of negative density. A log-normal
random field LN(~x), can avoid this unphysical behaviour.
It is obtained from a Gaussian field G(~x) by

LN(~x) = exp[G(~x)] (9)

which is positive-definite but approaches 1 + G(~x) when-
ever the perturbations are small (e.g. at large scales). Cal-
culating the power spectrum of a Poisson sampled density
field with such a distribution will reproduce the input power
spectrum convolved with the window function. As an input
power spectrum for the log-normal field we use

Pnl(k) = APlin(k) exp[−(k/k∗)
2] (10)

where A = b2(1 + 2β/3 + β2/5) accounts for the linear
bias and the linear redshift space distortions. Plin(k) is a
linear model power spectrum in real space obtained from
CAMB (Lewis et al. 2000) and Pnl(k) is the non-linear
power spectrum in redshift space. Comparing the model
above with the 6dFGS data gives A = 4. The damping pa-
rameter k∗ is set to k∗ = 0.33h Mpc−1, as found in 6dFGS
(see fitting results later). How well this input model matches
the 6dFGS data can be seen in Figure 9.

We produce 200 such realisations and calculate the cor-
relation function for each of them, deriving a covariance ma-

trix

Cij =
N
∑

n=1

[

ξn(si)− ξ(si)
] [

ξn(sj)− ξ(sj)
]

N − 1
. (11)

Here, ξn(si) is the correlation function estimate at separa-
tion si and the sum goes over all N log-normal realisations.
The mean value is defined as

ξ(ri) =
1

N

N
∑

n=1

ξn(si). (12)

The case i = j gives the error (ignoring correlations between
bins, σ2

i = Cii). In the following we will use this uncertainty
in all diagrams, while the fitting procedures use the full co-
variance matrix.

The distribution of recovered correlation functions in-
cludes the effects of sample variance and shot noise. Non-
linearities are also approximately included since the distri-
bution of over-densities is skewed.

In Figure 3 we show the log-normal correlation matrix
rij calculated from the covariance matrix. The correlation
matrix is defined as

rij =
Cij

√

CiiCjj

, (13)

where C is the covariance matrix (for a comparison to jack-
knife errors see appendix B).

4 MODELLING THE BAO SIGNAL

In this section we will discuss wide-angle effects and non-
linearities. We also introduce a model for the large scale
correlation function, which we later use to fit our data.

4.1 Wide angle formalism

The model of linear redshift space distortions introduced
by Kaiser (1987) is based on the plane parallel approxi-
mation. Earlier surveys such as SDSS and 2dFGRS are at
sufficiently high redshift that the maximum opening an-
gle between a galaxy pair remains small enough to en-
sure the plane parallel approximation is valid. However, the
6dF Galaxy Survey has a maximum opening angle of 180◦

and a lower mean redshift of z ≈ 0.1 (for our weighted
sample) and so it is necessary to test the validity of the
plane parallel approximation. The wide angle description
of redshift space distortions has been laid out in several
papers (Szalay et al. 1997; Szapudi 2004; Matsubara 2004;
Papai & Szapudi 2008; Raccanelli et al. 2010), which we
summarise in Appendix C.

We find that the wide-angle corrections have only a very
minor effect on our sample. For our fiducial model we found a
correction of ∆ξ = 4 ·10−4 in amplitude at s = 100h−1 Mpc
and ∆ξ = 4.5 · 10−4 at s = 200h−1 Mpc, (Figure C2 in
the appendix). This is much smaller than the error bars on
these scales. Despite the small size of the effect, we never-
theless include all first order correction terms in our correla-
tion function model. It is important to note that wide angle
corrections affect the correlation function amplitude only
and do not cause any shift in the BAO scale. The effect of
the wide-angle correction on the unweighted sample is much

c© 0000 RAS, MNRAS 000, 000–000
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greater and is already noticeable on scales of 20h−1 Mpc.
Weighting to higher redshifts mitigates the effect because it
reduces the average opening angle between galaxy pairs, by
giving less weight to wide angle pairs (on average).

4.2 Non-linear effects

There are a number of non-linear effects which can poten-
tially influence a measurement of the BAO signal. These in-
clude scale-dependent bias, the non-linear growth of struc-
ture on smaller scales, and redshift space distortions. We
discuss each of these in the context of our 6dFGS sample.

As the universe evolves, the acoustic signature in the
correlation function is broadened by non-linear gravitational
structure formation. Equivalently we can say that the higher
harmonics in the power spectrum, which represent smaller
scales, are erased (Eisenstein, Seo & White 2007).

The early universe physics, which we discussed briefly in
the introduction, is well understood and several authors have
produced software packages (e.g. CMBFAST and CAMB)
and published fitting functions (e.g Eisenstein & Hu 1998)
to make predictions for the correlation function and power
spectrum using thermodynamical models of the early uni-
verse. These models already include the basic linear physics
most relevant for the BAO peak. In our analysis we use
the CAMB software package (Lewis et al. 2000). The non-
linear evolution of the power spectrum in CAMB is cal-
culated using the halofit code (Smith et al. 2003). This
code is calibrated by n-body simulations and can describe
non-linear effects in the shape of the matter power spec-
trum for pure CDM models to an accuracy of around
5 − 10% (Heitmann et al. 2010). However, it has previ-
ously been shown that this non-linear model is a poor
description of the non-linear effects around the BAO
peak (Crocce & Scoccimarro 2008). We therefore decided to
use the linear model output from CAMB and incorporate
the non-linear effects separately.

All non-linear effects influencing the correlation func-
tion can be approximated by a convolution with a Gaus-
sian damping factor exp[−(rk∗/2)

2] (Eisenstein et al. 2007;
Eisenstein, Seo & White 2007), where k∗ is the damping
scale. We will use this factor in our correlation function
model introduced in the next section. The convolution with
a Gaussian causes a shift of the peak position to larger scales,
since the correlation function is not symmetric around the
peak. However this shift is usually very small.

All of the non-linear processes discussed so far are not
at the fundamental scale of 105h−1 Mpc but are instead at
the cluster-formation scale of up to 10h−1Mpc. The scale of
105h−1 Mpc is far larger than any known non-linear effect in
cosmology. This has led some authors to the conclusion that
the peak will not be shifted significantly, but rather only
blurred out. For example, Eisenstein, Seo & White (2007)
have argued that any systematic shift of the acoustic scale
in real space must be small (> 0.5%), even at z = 0.

However, several authors report possible shifts of up
to 1% (Guzik & Bernstein 2007; Smith et al. 2008, 2007;
Angulo et al. 2008). Crocce & Scoccimarro (2008) used re-
normalised perturbation theory (RPT) and found percent-
level shifts in the BAO peak. In addition to non-linear evo-
lution, they found that mode-coupling generates additional
oscillations in the power spectrum, which are out of phase

with the BAO oscillations predicted by linear theory. This
leads to shifts in the scale of oscillation nodes with re-
spect to a smooth spectrum. In real space this corresponds
to a peak shift towards smaller scales. Based on their re-
sults, Crocce & Scoccimarro (2008) propose a model to be
used for the correlation function analysis at large scales. We
will introduce this model in the next section.

4.3 Large-scale correlation function

To model the correlation function on large scales, we fol-
low Crocce & Scoccimarro (2008) and Sanchez et al. (2008)
and adopt the following parametrisation1 :

ξ′model(s) = B(s)b2
[

ξ(s) ∗G(r) + ξ11(r)
∂ξ(s)

∂s

]

. (14)

Here, we decouple the scale dependency of the bias B(s)
and the linear bias b. G(r) is a Gaussian damping term, ac-
counting for non-linear suppression of the BAO signal. ξ(s) is
the linear correlation function (including wide angle descrip-
tion of redshift space distortions; eq. C4 in the appendix).
The second term in eq 14 accounts for the mode-coupling of
different Fourier modes. It contains ∂ξ(s)/∂s, which is the
first derivative of the redshift space correlation function, and
ξ11(r), which is defined as

ξ11(r) =
1

2π2

∫ ∞

0

dk kPlin(k)j1(rk), (15)

with j1(x) being the spherical Bessel function of order 1.
Sanchez et al. (2008) used an additional parameter AMC

which multiplies the mode coupling term in equation 14.
We found that our data is not good enough to constrain
this parameter, and hence adopted AMC = 1 as in the orig-
inal model by Crocce & Scoccimarro (2008).

In practice we generate linear model power spectra
Plin(k) from CAMB and convert them into a correlation
function using a Hankel transform

ξ(r) =
1

2π2

∫ ∞

0

dk k2Plin(k)j0(rk), (16)

where j0(x) = sin(x)/x is the spherical Bessel function of
order 0.

The ∗-symbol in eq. 14 is only equivalent to a convo-
lution in the case of a 3D correlation function, where we
have the Fourier theorem relating the 3D power spectrum
to the correlation function. In case of the spherically aver-
aged quantities this is not true. Hence, the ∗-symbol in our
equation stands for the multiplication of the power spectrum
with G̃(k) before transforming it into a correlation function.
G̃(k) is defined as

G̃(k) = exp
[

−(k/k∗)
2
]

, (17)

with the property

G̃(k) → 0 as k → ∞. (18)

The damping scale k∗ can be calculated from linear the-

1 note that r = s, the different letters just specify whether the
function is evaluated in redshift space or real space.
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Table 1. This table contains all parameter constraints from

6dFGS obtained in this paper. The priors used to derive these
parameters are listed in square brackets. All parameters as-
sume Ωbh

2 = 0.02227 and in cases where a prior on Ωmh2 is
used, we adopt the WMAP-7 Markov chain probability distribu-
tion (Komatsu et al. 2010). A(zeff ) is the acoustic parameter de-
fined by Eisenstein et al. (2005) (see equation 27 in the text) and
R(zeff ) is the distance ratio of the 6dFGS BAO measurement to
the last-scattering surface. The most sensible value for cosmolog-
ical parameter constraints is rs(zd)/DV (zeff ), since this measure-
ment is uncorrelated with Ωmh2. The effective redshift of 6dFGS
is zeff = 0.106 and the fitting range is from 10 − 190h−1 Mpc.

Summary of parameter constraints from 6dFGS

Ωmh2 0.138 ± 0.020 (14.5%)
DV (zeff ) 456 ± 27 Mpc (5.9%)
DV (zeff ) 459 ± 18 Mpc (3.9%) [Ωmh2 prior]

rs(zd)/DV(zeff) 0.336± 0.015 (4.5%)
R(zeff ) 0.0324 ± 0.0015 (4.6%)
A(zeff ) 0.526 ± 0.028 (5.3%)

Ωm 0.296 ± 0.028 (9.5%) [Ωmh2 prior]
H0 67± 3.2 (4.8%) [Ωmh2 prior]

ory (Crocce & Scoccimarro 2006; Matsubara 2008) by

k∗ =

[

1

6π2

∫ ∞

0

dk Plin(k)

]−1/2

, (19)

where Plin(k) is again the linear power spectrum. ΛCDM
predicts a value of k∗ ≃ 0.17h Mpc−1. However, we will
include k∗ as a free fitting parameter.

The scale dependance of the 6dFGS bias, B(s), is de-
rived from the GiggleZ simulation (Poole et al., in prepara-
tion); a dark matter simulation containing 21603 particles
in a 1h−1 Gpc box. We rank-order the halos of this simula-
tion by Vmax and choose a contiguous set of 250 000 of them,
selected to have the same clustering amplitude of 6dFGS as
quantified by the separation scale r0, where ξ(r0) = 1. In
the case of 6dFGS we found r0 = 9.3h−1 Mpc. Using the
redshift space correlation function of these halos and of a
randomly subsampled set of ∼ 106 dark matter particles,
we obtain

B(s) = 1 +
(

s/0.474h−1Mpc
)−1.332

, (20)

which describes a 1.7% correction of the correlation function
amplitude at separation scales of 10h−1 Mpc. To derive this
function, the GiggleZ correlation function (snapshot z = 0)
has been fitted down to 6h−1 Mpc, well below the smallest
scales we are interested in.

5 EXTRACTING THE BAO SIGNAL

In this section we fit the model correlation function devel-
oped in the previous section to our data. Such a fit can be
used to derive the distance scale DV (zeff) at the effective
redshift of the survey.

5.1 Fitting preparation

The effective redshift of our sample is determined by

zeff =

Nb
∑

i

Nb
∑

j

wiwj

2N2
b

(zi + zj), (21)

where Nb is the number of galaxies in a particular separa-
tion bin and wi and wj are the weights for those galaxies
from eq. 6. We choose zeff from bin 10 which has the limits
100h−1 Mpc and 110h−1 Mpc and which gave zeff = 0.106.
Other bins show values very similar to this, with a standard
deviation of ±0.001. The final result does not depend
on a very precise determination of zeff , since we are not
constraining a distance to the mean redshift, but a distance
ratio (see equation 24, later). In fact, if the fiducial model is
correct, the result is completely independent of zeff . Only if
there is a z-dependent deviation from the fiducial model do
we need zeff to quantify this deviation at a specific redshift.

Along the line-of-sight, the BAO signal directly con-
strains the Hubble constant H(z) at redshift z. When mea-
sured in a redshift shell, it constrains the angular diameter
distance DA(z) (Matsubara 2004). In order to separately
measure DA(z) and H(z) we require a BAO detection in
the 2D correlation function, where it will appear as a ring
at around 105h−1 Mpc. Extremely large volumes are neces-
sary for such a measurement. While there are studies that
report a successful (but very low signal-to-noise) detection in
the 2D correlation function using the SDSS-LRG data (e.g.
Gaztanaga, Cabre & Hui 2009; Chuang & Wang 2011, but
see also Kazin et al. 2010), our sample does not allow this
kind of analysis. Hence we restrict ourself to the 1D corre-
lation function, where we measure a combination of DA(z)
and H(z). What we actually measure is a superposition of
two angular measurements (R.A. and Dec.) and one line-of-
sight measurement (redshift). To account for this mixture of
measurements it is common to report the BAO distance con-
straints as (Eisenstein et al. 2005; Padmanabhan & White
2008)

DV (z) =

[

(1 + z)2D2
A(z)

cz

H0E(z)

]1/3

, (22)

where DA is the angular distance, which in the case of Ωk =
0 is given by DA(z) = DC(z)/(1 + z).

To derive model power spectra from CAMB we have to
specify a complete cosmological model, which in the case of
the simplest ΛCDM model (Ωk = 0, w = −1), is specified
by six parameters: ωc, ωb, ns, τ , As and h. These parame-
ters are: the physical cold dark matter and baryon density,
(ωc = Ωch

2, ωb = Ωbh
2), the scalar spectral index, (ns), the

optical depth at recombination, (τ ), the scalar amplitude of
the CMB temperature fluctuation, (As), and the Hubble
constant in units of 100 km s−1Mpc−1 (h).

Our fit uses the parameter values from WMAP-
7 (Komatsu et al. 2010): Ωbh

2 = 0.02227, τ = 0.085 and
ns = 0.966 (maximum likelihood values). The scalar ampli-
tude As is set so that it results in σ8 = 0.8, which depends
on Ωmh2. However σ8 is degenerated with the bias parame-
ter b which is a free parameter in our fit. Furthermore, h is
set to 0.7 in the fiducial model, but can vary freely in our
fit through a scale distortion parameter α, which enters the
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Figure 4. Likelihood contours of the distance DV (zeff ) against
Ωmh2. The corresponding values of α are given on the right-hand

axis. The contours show 1 and 2σ errors for both a full fit (blue
solid contours) and a fit over 20 − 190h−1 Mpc (black dashed
contours) excluding the first data point. The black cross marks
the best fitting values corresponding to the dashed black contours
with (DV ,Ωmh2) = (462, 0.129), while the blue cross marks the
best fitting values for the blue contours. The black solid curve
corresponds to a constant Ωmh2DV (zeff ) (DV ∼ h−1), while the
dashed line corresponds to a constant angular size of the sound
horizon, as described in the text.

model as

ξmodel(s) = ξ′model(αs). (23)

This parameter accounts for deviations from the fiducial cos-
mological model, which we use to derive distances from the
measured redshift. It is defined as (Eisenstein et al. 2005;
Padmanabhan & White 2008)

α =
DV (zeff)

Dfid
V (zeff)

. (24)

The parameter α enables us to fit the correlation function
derived with the fiducial model, without the need to re-
calculate the correlation function for every new cosmological
parameter set.

At low redshift we can approximate H(z) ≈ H0, which
results in

α ≈ Hfid
0

H0
. (25)

Compared to the correct equation 24 this approximation
has an error of about 3% at redshift z = 0.1 for our fiducial
model. Since this is a significant systematic bias, we do not
use this approximation at any point in our analysis.

5.2 Extracting DV (zeff) and rs(zd)/DV (zeff)

Using the model introduced above we performed fits to 18
data points between 10h−1 Mpc and 190h−1 Mpc. We ex-
cluded the data below 10h−1 Mpc, since our model for non-

z
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(z
)/

cz
V

D
0fid

H

0.85

0.9

0.95

1

1.05

1.1
6dFGS
Percival et al. (2009)

CDM (fiducial)Λ

0

fid(z) = cz/HVD

Figure 5. The distance measurement DV (z) relative to a low
redshift approximation. The points show 6dFGS data and those
of Percival et al. (2010).

linearities is not good enough to capture the effects on such
scales. The upper limit is chosen to be well above the BAO
scale, although the constraining contribution of the bins
above 130h−1 Mpc is very small. Our final model has 4 free
parameters: Ωmh2, b, α and k∗.

The best fit corresponds to a minimum χ2 of 15.7 with
14 degrees of freedom (18 data-points and 4 free parame-
ters). The best fitting model is included in Figure 2 (black
line). The parameter values are Ωmh2 = 0.138 ± 0.020,
b = 1.81 ± 0.13 and α = 1.036 ± 0.062, where the er-
rors are derived for each parameter by marginalising over
all other parameters. For k∗ we can give a lower limit of
k∗ = 0.19h Mpc−1 (with 95% confidence level).

We can use eq. 24 to turn the measurement of α into
a measurement of the distance to the effective redshift
DV (zeff) = αDfid

V (zeff) = 456 ± 27 Mpc, with a precision
of 5.9%. Our fiducial model gives Dfid

V (zeff) = 440.5 Mpc,
where we have followed the distance definitions of Wright
(2006) throughout. For each fit we derive the parameter
β = Ωm(z)0.545/b, which we need to calculate the wide angle
corrections for the correlation function.

The maximum likelihood distribution of k∗ seems to
prefer smaller values than predicted by ΛCDM, although
we are not able to constrain this parameter very well. This
is connected to the high significance of the BAO peak in the
6dFGS data (see Section 7). A smaller value of k∗ damps the
BAO peak and weakens the distance constraint. For compar-
ison we also performed a fit fixing k∗ to the ΛCDM predic-
tion of k∗ ≃ 0.17h Mpc−1. We found that the error on the
distance DV (zeff) increases from 5.9% to 8%. However since
the data do not seem to support such a small value of k∗ we
prefer to marginalise over this parameter.

The contours of DV (zeff)−Ωmh2 are shown in Figure 4,
together with two degeneracy predictions (Eisenstein et al.
2005). The solid line is that of constant Ωmh2DV (zeff),
which gives the direction of degeneracy for a pure CDM
model, where only the shape of the correlation function
contributes to the fit, without a BAO peak. The dashed
line corresponds to a constant rs(zd)/DV (zeff), which is the
degeneracy if only the position of the acoustic scale con-
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tributes to the fit. The dashed contours exclude the first
data point, fitting from 20 − 190h−1 Mpc only, with the
best fitting values α = 1.049 ± 0.071 (corresponding to
DV (zeff) = 462 ± 31 Mpc), Ωmh2 = 0.129 ± 0.025 and
b = 1.72 ± 0.17. The contours of this fit are tilted towards
the dashed line, which means that the fit is now driven by
the BAO peak, while the general fit (solid contours) seems
to have some contribution from the shape of the correlation
function. Excluding the first data point increases the error
on the distance constraint only slightly from 5.9% to 6.8%.
The value of Ωmh2 tends to be smaller, but agrees within
1σ with the former value.

Going back to the complete fit from 10− 190h−1 Mpc,
we can include an external prior on Ωmh2 from WMAP-7,
which carries an error of only 4% (compared to the ≈ 15%
we obtain by fitting our data). Marginalising over Ωmh2 now
gives DV (zeff) = 459 ± 18 Mpc, which reduces the error
from 5.9% to 3.9%. The uncertainty in Ωmh2 from WMAP-
7 contributes only about 5% of the error in DV (assuming no
error in the WMAP-7 value of Ωmh2 results in DV (zeff) =
459± 17 Mpc).

In Figure 5 we plot the ratio DV (z)/Dlow−z
V (z) as a

function of redshift, where Dlow−z
V (z) = cz/H0. At suffi-

ciently low redshift the approximation H(z) ≈ H0 is valid
and the measurement is independent of any cosmological
parameter except the Hubble constant. This figure also con-
tains the results from Percival et al. (2010).

Rather than including the WMAP-7 prior on Ωmh2 to
break the degeneracy between Ωmh2 and the distance con-
straint, we can fit the ratio rs(zd)/DV (zeff), where rs(zd) is
the sound horizon at the baryon drag epoch zd. In princi-
ple, this is rotating Figure 4 so that the dashed black line
is parallel to the x-axis and hence breaks the degeneracy if
the fit is driven by the BAO peak; it will be less efficient
if the fit is driven by the shape of the correlation function.
During the fit we calculate rs(zd) using the fitting formula
of Eisenstein & Hu (1998).

The best fit results in rs(zd)/DV (zeff) = 0.336 ± 0.015,
which has an error of 4.5%, smaller than the 5.9% found
for DV but larger than the error in DV when adding the
WMAP-7 prior on Ωmh2. This is caused by the small dis-
agreement in the DV − Ωmh2 degeneracy and the line of
constant sound horizon in Figure 4. The χ2 is 15.7, simi-
lar to the previous fit with the same number of degrees of
freedom.

5.3 Extracting A(zeff) and R(zeff)

We can also fit for the ratio of the distance between the
effective redshift, zeff , and the redshift of decoupling (z∗ =
1091; Eisenstein et al. 2005);

R(zeff) =
DV (zeff)

(1 + z∗)DA(z∗)
, (26)

with (1 + z∗)DA(z∗) being the CMB angular comoving dis-
tance. Beside the fact that the Hubble constant H0 can-
cels out in the determination of R, this ratio is also more
robust against effects caused by possible extra relativistic
species (Eisenstein & White 2004). We calculate DA(z∗) for
each Ωmh2 during the fit and then marginalise over Ωmh2.
The best fit results in R = 0.0324 ± 0.0015, with χ2 = 15.7
and the same 14 degrees of freedom.

Focusing on the path from z = 0 to zeff = 0.106, our
dataset can give interesting constraints on Ωm. We derive
the parameter (Eisenstein et al. 2005)

A(zeff) = 100DV (zeff)

√
Ωmh2

czeff
, (27)

which has no dependence on the Hubble constant since
DV ∝ h−1. We obtain A(zeff) = 0.526 ± 0.028 with
χ2/d.o.f. = 15.7/14. The value of A would be identical to√
Ωm if measured at redshift z = 0. At redshift zeff = 0.106

we obtain a deviation from this approximation of 6% for
our fiducial model, which is small but systematic. We can
express A, including the curvature term Ωk and the dark
energy equation of state parameter w, as

A(z) =

√
Ωm

E(z)1/3































[

sinh
(√

Ωkχ(z)
)

√
Ωkz

]2/3

Ωk > 0
[

χ(z)
z

]2/3

Ωk = 0
[

sin
(√

|Ωk|χ(z)
)

√
|Ωk|z

]2/3

Ωk < 0

(28)

with

χ(z) = DC(z)
H0

c
=

∫ z

0

dz′

E(z′)
(29)

and

E(z) =
[

Ωm(1 + z)3 + Ωk(1 + z)2

+ΩΛ(1 + z)3(1+w))
]1/2

. (30)

Using this equation we now linearise our result for Ωm in Ωk

and w and get

Ωm = 0.287 + 0.039(1 + w) + 0.039Ωk ± 0.027. (31)

For comparison, Eisenstein et al. (2005) found

Ωm = 0.273 + 0.123(1 + w) + 0.137Ωk ± 0.025 (32)

based on the SDSS LRG DR3 sample. This result shows the
reduced sensitivity of the 6dFGS measurement to w and Ωk.

6 COSMOLOGICAL IMPLICATIONS

In this section we compare our results to other studies and
discuss the implications for constraints on cosmological pa-
rameters. We first note that we do not see any excess cor-
relation on large scales as found in the SDSS-LRG sample.
Our correlation function is in agreement with a crossover to
negative scales at 140h−1 Mpc, as predicted from ΛCDM.

6.1 Constraining the Hubble constant, H0

We now use the 6dFGS data to derive an estimate of
the Hubble constant. We use the 6dFGS measurement of
rs(zd)/DV (0.106) = 0.336 ± 0.015 and fit directly for the
Hubble constant and Ωm. We combine our measurement
with a prior on Ωmh2 coming from the WMAP-7 Markov
chain results (Komatsu et al. 2010). Combining the cluster-
ing measurement with Ωmh2 from the CMB corresponds to
the calibration of the standard ruler.

We obtain values of H0 = 67±3.2 km s−1Mpc−1 (which
has an uncertainty of only 4.8%) and Ωm = 0.296 ± 0.028.
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10 Florian Beutler et al.

Table 2. wCDM constraints from different datasets. Comparing the two columns shows the influence of the 6dFGS data point. The

6dFGS data point reduces the error on w by 24% compared to WMAP-7+LRG which contains only the BAO data points of Percival et al.
(2010). We assume flat priors of 0.11 < Ωmh2 < 0.16 and marginalise over Ωmh2. The asterisks denote the free parameters in each fit.

parameter WMAP-7+LRG WMAP-7+LRG+6dFGS

H0 69.9± 3.8(*) 68.7± 2.8(*)
Ωm 0.283 ± 0.033 0.293± 0.027
ΩΛ 0.717 ± 0.033 0.707± 0.027
w -1.01± 0.17(*) -0.97± 0.13(*)

Table 3. Parameter constraints from WMAP7+BAO for (i) a flat ΛCDM model, (ii) an open ΛCDM (oΛCDM), (iii) a flat model
with w = const. (wCDM), and (iv) an open model with w = constant (owCDM). We assume flat priors of 0.11 < Ωmh2 < 0.16 and
marginalise over Ωmh2. The asterisks denote the free parameters in each fit.

parameter ΛCDM oΛCDM wCDM owCDM

H0 69.2± 1.1(*) 68.3± 1.7(*) 68.7± 2.8(*) 70.4± 4.3(*)
Ωm 0.288 ± 0.011 0.290 ± 0.019 0.293± 0.027 0.274± 0.035
Ωk (0) -0.0036 ± 0.0060(*) (0) -0.013± 0.010(*)

ΩΛ 0.712 ± 0.011 0.714 ± 0.020 0.707± 0.027 0.726± 0.036
w (-1) (-1) -0.97± 0.13(*) -1.24± 0.39(*)
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Figure 6. The blue contours show the WMAP-7 Ωmh2

prior (Komatsu et al. 2010). The black contour shows con-
straints from 6dFGS derived by fitting to the measurement of
rs(zd)/DV (zeff ). The solid red contours show the combined con-
straints resulting in H0 = 67 ± 3.2 km s−1Mpc−1 and Ωm =
0.296±0.028. Combining the clustering measurement with Ωmh2

from the CMB corresponds to the calibration of the standard
ruler.

Table 1 and Figure 6 summarise the results. The value of
Ωm agrees with the value we derived earlier (Section 5.3).

To combine our measurement with the latest CMB data
we use the WMAP-7 distance priors, namely the acoustic
scale

ℓA = (1 + z∗)
πDA(z∗)

rs(z∗)
, (33)

w
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Figure 7. The blue contours shows the WMAP-7 degeneracy in
H0 and w (Komatsu et al. 2010), highlighting the need for a sec-
ond dataset to break the degeneracy. The black contours show
constraints from BAO data incorporating the rs(zd)/DV (zeff )
measurements of Percival et al. (2010) and 6dFGS. The solid
red contours show the combined constraints resulting in w =
−0.97 ± 0.13. Excluding the 6dFGS data point widens the con-
straints to the dashed red line with w = −1.01± 0.17.

the shift parameter

R = 100

√
Ωmh2

c
(1 + z∗)DA(z∗) (34)

and the redshift of decoupling z∗ (Tables 9 and 10
in Komatsu et al. 2010). This combined analysis reduces
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the error further and yields H0 = 68.7 ± 1.5 km s−1Mpc−1

(2.2%) and Ωm = 0.29 ± 0.022 (7.6%).
Percival et al. (2010) determine a value of H0 =

68.6 ± 2.2 km s−1Mpc−1 using SDSS-DR7, SDSS-LRG and
2dFGRS, while Reid et al. (2010) found H0 = 69.4 ±
1.6 km s−1Mpc−1 using the SDSS-LRG sample and WMAP-
5. In contrast to these results, 6dFGS is less affected by
parameters like Ωk and w because of its lower redshift. In
any case, our result of the Hubble constant agrees very
well with earlier BAO analyses. Furthermore our result
agrees with the latest CMB measurement of H0 = 70.3 ±
2.5 km s−1Mpc−1 (Komatsu et al. 2010).

The SH0ES program (Riess et al. 2011) determined the
Hubble constant using the distance ladder method. They
used about 600 near-IR observations of Cepheids in eight
galaxies to improve the calibration of 240 low redshift
(z < 0.1) SN Ia, and calibrated the Cepheid distances us-
ing the geometric distance to the maser galaxy NGC 4258.
They found H0 = 73.8 ± 2.4 km s−1Mpc−1, a value con-
sistent with the initial results of the Hubble Key project
Freedman et al. (H0 = 72±8 km s−1Mpc−1; 2001) but 1.7σ
higher than our value (and 1.8σ higher when we combine
our dataset with WMAP-7). While this could point toward
unaccounted or under-estimated systematic errors in either
one of the methods, the likelihood of such a deviation by
chance is about 10% and hence is not enough to represent a
significant discrepancy. Possible systematic errors affecting
the BAO measurements are the modelling of non-linearities,
bias and redshift-space distortions, although these system-
atics are not expected to be significant at the large scales
relevant to our analysis.

To summarise the finding of this section we can state
that our measurement of the Hubble constant is competitive
with the latest result of the distance ladder method. The dif-
ferent techniques employed to derive these results have very
different potential systematic errors. Furthermore we found
that BAO studies provide the most accurate measurement
of H0 that exists, when combined with the CMB distance
priors.

6.2 Constraining dark energy

One key problem driving current cosmology is the determi-
nation of the dark energy equation of state parameter, w.
When adding additional parameters like w to ΛCDM we find
large degeneracies in the WMAP-7-only data. One example
is shown in Figure 7. WMAP-7 alone can not constrain H0

or w within sensible physical boundaries (e.g. w < −1/3). As
we are sensitive toH0, we can break the degeneracy between
w and H0 inherent in the CMB-only data. Our assumption
of a fiducial cosmology with w = −1 does not introduce a
bias, since our data is not sensitive to this parameter and
any deviation from this assumption is modelled within the
shift parameter α.

We again use the WMAP-7 distance priors intro-
duced in the last section. In addition to our value of
rs(zd)/DV (0.106) = 0.336 ± 0.015 we use the results
of Percival et al. (2010), who found rs(zd)/DV (0.2) =
0.1905 ± 0.0061 and rs(zd)/DV (0.35) = 0.1097 ± 0.0036.
To account for the correlation between the two latter data
points we employ the covariance matrix reported in their
paper. Our fit has 3 free parameters, Ωmh2, H0 and w.
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Figure 8. The number of log-normal realisations found with a
certain

√

∆χ2, where the ∆χ2 is obtained by comparing a fit us-
ing a ΛCDM correlation function model with a no-baryon model.
The blue line indicates the 6dFGS result.
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Figure 9. The different log-normal realisations used to calculate
the covariance matrix (shown in grey). The red points indicate
the mean values, while the blue points show actual 6dFGS data
(the data point at 5h−1 Mpc is not included in the fit). The red
data points are shifted by 2h−1 Mpc to the right for clarity.

The best fit gives w = −0.97 ± 0.13, H0 = 68.7 ±
2.8 km s−1Mpc−1 and Ωmh2 = 0.1380 ± 0.0055, with a
χ2/d.o.f. = 1.3/3. Table 2 and Figure 7 summarise the re-
sults. To illustrate the importance of the 6dFGS result to
the overall fit we also show how the results change if 6dFGS
is omitted. The 6dFGS data improve the constraint on w by
24%.

Finally we show the best fitting cosmological parame-
ters for different cosmological models using WMAP-7 and
BAO results in Table 3.

7 SIGNIFICANCE OF THE BAO DETECTION

To test the significance of our detection of the BAO sig-
nature we follow Eisenstein et al. (2005) and perform a fit
with a fixed Ωb = 0, which corresponds to a pure CDM

c© 0000 RAS, MNRAS 000, 000–000
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Figure 10. This plot shows the distribution of the parameter α
derived from the 200 log-normal realisations (black). The distri-
bution is well fit by a Gaussian with a mean of µ = 0.998± 0.004
and a width of σ = 0.057 ± 0.005. In blue we show the same dis-
tribution selecting only the log-normal realisations with a strong
BAO peak (> 2σ). The Gaussian distribution in this case gives a
mean of 1.007 ± 0.007 and σ = 0.041± 0.008.

model without a BAO signature. The best fit has χ2 = 21.4
with 14 degrees of freedom and is shown as the red dashed
line in Figure 2. The parameter values of this fit depend on
the parameter priors, which we set to 0.7 < α < 1.3 and
0.1 < Ωmh2 < 0.2. Values of α much further away from
1 are problematic since eq. 24 is only valid for α close to
1. Comparing the best pure CDM model with our previous
fit, we estimate that the BAO signal is detected with a sig-
nificance of 2.4σ (corresponding to ∆χ2 = 5.6). As a more
qualitative argument for the detection of the BAO signal we
would like to refer again to Figure 4 where the direction of
the degeneracy clearly indicates the sensitivity to the BAO
peak.

We can also use the log-normal realisations to deter-
mine how likely it is to find a BAO detection in a survey
like 6dFGS. To do this, we produced 200 log-normal mock
catalogues and calculated the correlation function for each
of them. We can now fit our correlation function model to
these realisations. Furthermore, we fit a no-baryon model to
the correlation function and calculate ∆χ2, the distribution
of which is shown in Figure 8. We find that 26% of all re-
alisations have at least a 2σ BAO detection, and that 12%
have a detection > 2.4σ. The log-normal realisations show a
mean significance of the BAO detection of 1.7± 0.7σ, where
the error describes the variance around the mean.

Figure 9 shows the 6dFGS data points together with
all 200 log-normal realisations (grey). The red data points
indicate the mean for each bin and the black line is the input
model derived as explained in Section 3.3. This comparison
shows that the 6dFGS data contain a BAO peak slightly
larger than expected in ΛCDM.

The amplitude of the acoustic feature relative to
the overall normalisation of the galaxy correlation func-
tion is quite sensitive to the baryon fraction, fb =
Ωb/Ωm (Matsubara 2004). A higher BAO peak could hence
point towards a larger baryon fraction in the local universe.
However since the correlation function model seems to agree

z
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TAIPAN2 (r < 16.5)

Figure 11. Redshift distribution of 6dFGS, WALLABY and two
different versions of the proposed TAIPAN survey. See text for
details.

very well with the data (with a reduced χ2 of 1.12) and is
within the range spanned by our log-normal realisations, we
can not claim any discrepancy with ΛCDM. Therefore, the
most likely explanation for the excess correlation in the BAO
peak is sample variance.

In Figure 10 we show the distribution of the parameter
α obtained from the 200 log-normal realisations. The dis-
tribution is well described by a Gaussian with χ2/d.o.f. =
14.2/20, where we employed Poisson errors for each bin.
This confirms that α has Gaussian distributed errors in the
approximation that the 6dFGS sample is well-described by
log-normal realisations of an underlying ΛCDM power spec-
trum. This result increases our confidence that the appli-
cation of Gaussian errors for the cosmological parameter
fits is correct. The mean of the Gaussian distribution is at
0.998±0.004 in agreement with unity, which shows, that we
are able to recover the input model. The width of the dis-
tribution shows the mean expected error in α in a ΛCDM
universe for a 6dFGS-like survey. We found σ = 0.057±0.005
which is in agreement with our error in α of 5.9%. Figure 10
also contains the distribution of α, selecting only the log-
normal realisations with a strong (> 2σ) BAO peak (blue
data). We included this selection to show, that a stronger
BAO peak does not bias the estimate of α in any direc-
tion. The Gaussian fit gives χ2/d.o.f. = 5/11 with a mean of
1.007± 0.007. The distribution of α shows a smaller spread
with σ = 0.041±0.008, about 2σ below our error on α. This
result shows, that a survey like 6dFGS is able to constrain
α (and hence DV and H0) to the precision we report in this
paper.

8 FUTURE ALL SKY SURVEYS

A major new wide-sky survey of the local Universe will be
the Wide field ASKAP L-band Legacy All-sky Blind surveY
(WALLABY)2. This is a blind HI survey planned for the
Australian SKA Pathfinder telescope (ASKAP), currently

2 http://www.atnf.csiro.au/research/WALLABY
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Figure 12. Predictions for two versions of the proposed TAIPAN
survey. Both predictions assume a 2π steradian southern sky-
coverage, excluding the Galactic plane (i.e. |b| > 10◦). TAIPAN1
contains 406 000 galaxies while TAIPAN2 contains 221 000, (see
Figure 11). The blue points are shifted by 2h−1 Mpc to the right
for clarity. The black line is the input model, which is a ΛCDM
model with a bias of 1.6, β = 0.3 and k∗ = 0.17h Mpc−1. For
a large number of realisations, the difference between the input
model and the mean (the data points) is only the convolution
with the window function.
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Figure 13. Prediction for the WALLABY survey. We have as-
sumed a 4π steradian survey with 602 000 galaxies, b = 0.7,
β = 0.7 and k∗ = 0.17h Mpc−1.

under construction at the Murchison Radio-astronomy Ob-
servatory (MRO) in Western Australia.

The survey will cover at least 75% of the sky with the
potential to cover 4π of sky if the Westerbork Radio Tele-
scope delivers complementary northern coverage. Compared
to 6dFGS, WALLABY will more than double the sky cov-
erage including the Galactic plane. WALLABY will contain
∼ 500 000 to 600 000 galaxies with a mean redshift of around
0.04, giving it around 4 times greater galaxy density com-
pared to 6dFGS. In the calculations that follow, we assume
for WALLABY a 4π survey without any exclusion around
the Galactic plane. The effective volume in this case turns
out to be 0.12h−3 Gpc3.

The TAIPAN survey3 proposed for the UK Schmidt
Telescope at Siding Spring Observatory, will cover a com-
parable area of sky, and will extend 6dFGS in both depth
and redshift (z ≃ 0.08).

The redshift distribution of both surveys is shown in
Figure 11, alongside 6dFGS. Since the TAIPAN survey is
still in the early planning stage we consider two realisa-
tions: TAIPAN1 (406 000 galaxies to a faint magnitude limit
of r = 17) and the shallower TAIPAN2 (221 000 galax-
ies to r = 16.5). We have adopted the same survey win-
dow as was used for 6dFGS, meaning that it covers the
whole southern sky excluding a 10◦ strip around the Galac-
tic plane. The effective volumes of TAIPAN1 and TAIPAN2
are 0.23h−3 Gpc3 and 0.13h−3 Gpc3, respectively.

To predict the ability of these surveys to measure the
large scale correlation function we produced 100 log-normal
realisations for TAIPAN1 and WALLABY and 200 log-
normal realisations for TAIPAN2. Figures 12 and 13 show
the results in each case. The data points are the mean of
the different realisations, and the error bars are the diago-
nal of the covariance matrix. The black line represents the
input model which is a ΛCDM prediction convolved with
a Gaussian damping term using k∗ = 0.17h Mpc−1 (see
eq. 17). We used a bias parameter of 1.6 for TAIPAN and
following our fiducial model we get β = 0.3, resulting in
A = b2(1 + 2β/3 + β2/5) = 3.1. For WALLABY we used a
bias of 0.7 (based on the results found in the HIPASS sur-
vey; Basilakos et al. 2007). This results in β = 0.7 and
A = 0.76. To calculate the correlation function we used
P0 = 40 000h3 Mpc3 for TAIPAN and P0 = 5000h3 Mpc3

for WALLABY.
The error bar for TAIPAN1 is smaller by roughly a fac-

tor of 1.7 relative to 6dFGS, which is consistent with scal-
ing by

√
Veff and is comparable to the SDSS-LRG sample.

We calculate the significance of the BAO detection for each
log-normal realisation by performing fits to the correlation
function using ΛCDM parameters and Ωb = 0, in exactly
the same manner as the 6dFGS analysis described earlier.
We find a 3.5 ± 0.8σ significance for the BAO detection for
TAIPAN1, 2.1±0.7σ for TAIPAN2 and 2.1±0.7σ for WAL-
LABY, where the error again describes the variance around
the mean.

We then fit a correlation function model to the mean
values of the log-normal realisations for each survey, using
the covariance matrix derived from these log-normal real-
isations. We evaluated the correlation function of WAL-
LABY, TAIPAN2 and TAIPAN1 at the effective redshifts
of 0.1, 0.12 and 0.14, respectively. With these in hand, we
are able to derive distance constraints to respective preci-
sions of 7%, 6% and 3%. The predicted value for WAL-
LABY is not significantly better than that from 6dFGS.
This is due to the significance of the 6dFGS BAO peak in
the data, allowing us to place tight constraints on the dis-
tance. As an alternative figure-of-merit, we derive the con-
straints on the Hubble constant. All surveys recover the in-
put parameter of H0 = 70 km s−1Mpc−1, with absolute un-
certainties of 3.7, 3 and 2.2 km s−1Mpc−1 for WALLABY,
TAIPAN2 and TAIPAN1, respectively. Hence, TAIPAN1 is

3 TAIPAN: Transforming Astronomical Imaging surveys through
Polychromatic Analysis of Nebulae
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14 Florian Beutler et al.

able to constrain the Hubble constant to 3% precision. These
constraints might improve when combined with Planck con-
straints on Ωbh

2 and Ωmh2 which will be available when
these surveys come along.

Since there is significant overlap between the survey
volume of 6dFGS, TAIPAN and WALLABY, it might be
interesting to test whether the BAO analysis of the local
universe can make use of a multiple tracer analysis, as sug-
gested recently by Arnalte-Mur et al. (2011). These authors
claim that by employing two different tracers of the matter
density field – one with high bias to trace the central over-
densities, and one with low bias to trace the small density
fluctuations – one can improve the detection and measure-
ment of the BAO signal. Arnalte-Mur et al. (2011) test this
approach using the SDSS-LRG sample (with a very large
bias) and the SDSS-main sample (with a low bias). Although
the volume is limited by the amount of sample overlap, they
detect the BAO peak at 4.1σ. Likewise, we expect that the
contrasting high bias of 6dFGS and TAIPAN, when used in
conjunction with the low bias of WALLABY, would furnish
a combined sample that would be ideal for such an analysis.

Neither TAIPAN nor WALLABY are designed as BAO
surveys, with their primary goals relating to galaxy forma-
tion and the local universe. However, we have found that
TAIPAN1 would be able to improve the measurement of the
local Hubble constant by about 30% compared to 6dFGS go-
ing to only slightly higher redshift. WALLABY could make
some interesting contributions in the form of a multiple
tracer analysis.

9 CONCLUSION

We have calculated the large-scale correlation function of the
6dF Galaxy Survey and detected a BAO peak with a sig-
nificance of 2.4σ. Although 6dFGS was never designed as a
BAO survey, the peak is detectable because the survey con-
tains a large number of very bright, highly biased galaxies,
within a sufficiently large effective volume of 0.08h−3 Gpc3.
We draw the following conclusions from our work:

• The 6dFGS BAO detection confirms the finding by
SDSS and 2dFGRS of a peak in the correlation function at
around 105h−1 Mpc, consistent with ΛCDM. This is impor-
tant because 6dFGS is an independent sample, with a dif-
ferent target selection, redshift distribution, and bias com-
pared to previous studies. The 6dFGS BAO measurement is
the lowest redshift BAO measurement ever made.

• We do not see any excess correlation at large scales
as seen in the SDSS-LRG sample. Our correlation func-
tion is consistent with a crossover to negative values at
140h−1 Mpc, as expected from ΛCDM models.

• We derive the distance to the effective redshift as
DV (zeff) = 456 ± 27 Mpc (5.9% precision). Alternatively,
we can derive rs(zd)/DV (zeff) = 0.336 ± 0.015 (4.5% preci-
sion). All parameter constraints are summarised in Table 1.

• Using a prior on Ωmh2 from WMAP-7, we find Ωm =
0.296 ± 0.028. Independent of WMAP-7, and taking into
account curvature and the dark energy equation of state, we
derive Ωm = 0.287 + 0.039(1 + w) + 0.039Ωk ± 0.027. This
agrees very well with the first value, and shows the very
small dependence on cosmology for parameter derivations
from 6dFGS given its low redshift.

• We are able to measure the Hubble constant, H0 =
67 ± 3.2 km s−1Mpc−1, to 4.8% precision, using only the
standard ruler calibration by the CMB (in form of Ωmh2 and
Ωbh

2). Compared to previous BAO measurements, 6dFGS is
almost completely independent of cosmological parameters
(e.g. Ωk and w), similar to Cepheid and low-z supernovae
methods. However, in contrast to these methods, the BAO
derivation of the Hubble constant depends on very basic
early universe physics and avoids possible systematic errors
coming from the build up of a distance ladder.

• By combining the 6dFGS BAOmeasurement with those
of WMAP-7 and previous redshift samples Percival et al.
(from SDSS-DR7, SDDS-LRG and 2dFGRS; 2010), we can
further improve the constraints on the dark energy equation
of state, w, by breaking the H0 −w degeneracy in the CMB
data. Doing this, we find w = −0.97 ± 0.13, which is an
improvement of 24% compared to previous combinations of
BAO and WMAP-7 data.

• We have made detailed predictions for two next-
generation low redshift surveys, WALLABY and TAIPAN.
Using our 6dFGS result, we predict that both surveys will
detect the BAO signal, and that WALLABY may be the first
radio galaxy survey to do so. Furthermore, we predict that
TAIPAN has the potential to constrain the Hubble constant
to a precision of 3% improving the 6dFGS measurement by
30%.
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APPENDIX A: GENERATING LOG-NORMAL

MOCK CATALOGUES

Here we explain in detail the different steps used to de-
rive a log-normal mock catalogue, as a useful guide for re-
searchers in the field. We start with an input power spec-
trum, (which is determined as explained in Section 3.3) in
units of h−3Mpc3. We set up a 3D grid with the dimensions
Lx ×Ly ×Lz = 1000× 1000× 1000h−1 Mpc with 2003 sub-
cells. We then distribute the quantity P (~k)/V over this grid,

where V is the volume of the grid and ~k =
√

k2
x + k2

y + k2
z

with kx = nx2π/Lx and nx being an integer value specifying
the x coordinates of the grid cells.

Performing a complex-to-real Fourier transform (FT) of
this grid will produce a 3D correlation function. Since the
power spectrum has the property P (−~k) = P (~k)∗ the result
will be real.

The next step is to replace the correlation function ξ(r)
at each point in the 3D grid by ln[1 + ξ(r)], where ln is
the natural logarithm. This step prepares the input model
for the inverse step, which we later use to produce the log-
normal density field.

Using a real-to-complex FT we can revert to k-space
where we now have a modified power spectrum, Pln(~k).
At this point we divide by the number of sub-cells Nc.
The precise normalisation depends on the definition of
the discrete Fourier transform. We use the FFTW li-
brary (Frigo & Johnson 2005), where the discrete FT is de-
fined as

Yi =

Nc−1
∑

j=0

Xj exp
[

±2πij
√
−1/Nc

]

. (A1)

The modified power spectrum Pln(~k) is not guarantied to be
neither positive defined nor a real function, which contra-
dicts the definition of a power spectrum. Weinberg & Cole
(1992) suggested to construct a well defined power spectrum

from Pln(~k) by

P ′
ln(~k) = max

[

0,Re[Pln(~k)]
]

. (A2)

We now generate a real and an imaginary Fourier amplitude
δ(~k) for each point on the grid by randomly sampling from

a Gaussian distribution with r.m.s.

√

P ′
ln(

~k)/2. However, to
ensure that the final over-density field is real, we have to
manipulate the grid, so that all sub-cells follow the condition
δ(−~k) = δ(~k)∗.

Performing another FT results in an over-density field
δ(~x) from which we calculate the variance σ2

G. The mean
of δ(~x) should be zero. The log-normal density field is then
given by

µL(~x) = exp
[

δ(~x)− σ2
G/2

]

, (A3)

Mpc]-1s [h
20 40 60 80 100 120 140 160 180 200

ii
(s

) 
= 

C
ξσ

-210

-3 Mpc3 = 0h
0

LN error, P
-3 Mpc3 = 40 000h

0
LN error, P

-3 Mpc3 = 40 000h
0

jk error, P

Figure B1. Correlation function error for different values of P0.
The weighting with P0 = 40 000h3 Mpc−3 reduces the error at
the BAO scale by almost a factor of four compared to the case
without weighting. The red dashed line indicates the jack-knife
error.

which is now a quantity defined on [0,∞[ only, while δ(~x) is
defined on ]−∞,∞[.

Since we want to calculate a mock catalogue for a par-
ticular survey we have to incorporate the survey selection
function. If W (~x) is the selection function with the normali-
sation

∑

W (~x) = 1, we calculate the mean number of galax-
ies in each grid cell as

ng(~x) = N W (~x) µL(~x), (A4)

where N is the total number of galaxies in our sample. The
galaxy catalogue itself is than generated by Poisson sampling
ng(~x).

The galaxy position is not defined within the sub-cell,
and we place the galaxy in a random position within the box.
This means that the correlation function calculated from
such a distribution is smooth at scales smaller than the sub-
cell. It is therefore important to make sure that the grid
cells are smaller than the size of the bins in the correlation
function calculation. In the 6dFGS calculations presented in
this paper the grid cells have a size of 5h−1 Mpc, while the
correlation function bins are 10h−1 Mpc in size.

APPENDIX B: COMPARISON OF

LOG-NORMAL AND JACK-KNIFE ERROR

ESTIMATES

We have also estimated jack-knife errors for the correlation
function, by way of comparison. We divided the survey into
18 regions and calculated the correlation function by ex-
cluding one region at a time. We found that the size of the
error-bars around the BAO peak varies by around 20% in
some bins, when we increase the number of jack-knife regions
from 18 to 32. Furthermore the covariance matrix derived
from jack-knife resampling is very noisy and hard to invert.

We show the jack-knife errors in Figure B1. The jack-
knife error shows more noise and is larger in most bins com-
pared to the log-normal error. The error shown in Figure B1
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Figure B2. Correlation matrix of the jack-knife errors (upper
left triangle) and log-normal errors (lower right triangle).

is only the diagonal term of the covariance matrix and does
not include any correlation between bins.

The full error matrix is shown in Figure B2, where we
plot the correlation matrix of the jack-knife error estimate
compared to the log-normal error. The jack-knife correla-
tion matrix looks much more noisy and seems to have less
correlation in neighbouring bins.

The number of jack-knife regions can not be chosen ar-
bitrarily. Each jack-knife region must be at least as big as
the maximum scale under investigation. Since we want to
test scales up to almost 200h−1 Mpc our jack-knife regions
must be very large. On the other hand we need at least as
many jack-knife regions as we have bins in our correlation
function, otherwise the covariance matrix is singular. These
requirements can contradict each other, especially if large
scales are analysed. Furthermore the small number of jack-
knife regions is the main source of noise (for a more detailed
study of jack-knife errors see e.g. Norberg et al. 2008).

Given these limitations in the jack-knife error approach,
correlation function studies on large scales usually employ
simulations or log-normal realisations to derive the covari-
ance matrix. We decided to use the log-normal error in our
analysis. We showed that the jack-knife errors tend to be
larger than the log-normal error at larger scales and carry
less correlation. These differences might be connected to the
much higher noise level in the jack-knife errors, which is
clearly visible in all our data. It could be, however, that
our jack-knife regions are too small to deliver reliable errors
on large scales. We use the minimum number of jack-knife
regions to make the covariance matrix non-singular (the cor-
relation function is measured in 18 bins). The mean distance
of the jack-knife regions to each other is about 200h−1 Mpc
at the mean redshift of the survey, but smaller at low red-
shift.

APPENDIX C: WIDE-ANGLE FORMALISM

The general redshift space correlation function (ignoring the
plane parallel approximation) depends on φ, θ and s. Here,
s is the separation between the galaxy pair, θ is the half
opening angle, and φ is the angle of s to the line of sight
(see Figure 1 in Raccanelli et al. 2010). For the following
calculations it must be considered that in this parametrisa-
tion, φ and θ are not independent.

The total correlation function model, including O(θ2)
correction terms, is then given by Papai & Szapudi (2008),

ξs(φ, θ, s) = a00 + 2a02 cos(2φ) + a22 cos(2φ) + b22 sin
2(2φ)

+
[

− 4a02 cos(2φ)− 4a22 − 4b22 − 4a10 cot
2(φ)

+ 4a11 cot
2(φ)− 4a12 cot

2(φ) cos(2φ) + 4b11

− 8b12 cos
2(φ)

]

θ2 +O(θ4)

(C1)

This equation reduces to the plane parallel approximation if
θ = 0. The factors axy and bxy in this equation are given by

a00 =

[

1 +
2β

3
+

2β2

15

]

ξ20(r)

−
[

β

3
+

2β2

21

]

ξ22(r) +
3β2

140
ξ24(r)

a02 = −
[

β

2
+

3β2

14

]

ξ22(r) +
β2

28
ξ24(r)

a22 =
β2

15
ξ20(r)−

β2

21
ξ22(r) +

19β2

140
ξ24(r)

b22 =
β2

15
ξ20(r)−

β2

21
ξ22(r)−

4β2

35
ξ24(r)

a10 =

[

2β +
4β2

5

]

1

r
ξ11(r)−

β2

5r
ξ13(r)

a11 =
4β2

3r2
[

ξ00(r)− 2ξ02(r)
]

a21 =
β2

5r

[

3ξ13(r)− 2ξ11(r)
]

b11 =
4β2

3r2
[

ξ00(r) + ξ02(r)
]

b12 =
2β2

5r

[

ξ11(r) + ξ13(r)
]

,

(C2)

where β = Ωm(z)0.545/b, with b being the linear bias. The
correlation function moments are given by

ξml (r) =
1

2π2

∫ ∞

0

dk kmPlin(k)jl(rk) (C3)

with jl(x) being the spherical Bessel function of order l.

The final spherically averaged correlation function is
given by

ξ(s) =

∫ π

0

∫ π/2

0

ξ(φ, θ, s)N(φ, θ, s) dθdφ, (C4)

where the function N(φ, θ, s) is obtained from the data.
N(φ, θ, s) counts the number of galaxy pairs at different φ, θ
and s and includes the areal weighting sin(φ) which usually
has to be included in an integral over φ. It is normalised
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Figure C1. The half opening angle θ as a function of separation
s of the 6dFGS weighted catalogue. The plane parallel approxi-
mation assumes θ = 0. The mean half opening angle at the BAO
scale is . 10◦. The colour bar gives the number of pairs in each
bin.
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Figure C2. The black line represents the plain correlation func-
tion without redshift space distortions (RSD), ξ(r), obtained by
a Hankel transform of our fiducial ΛCDM power spectrum. The
blue line includes the linear model for redshift space distortions
(linear Kaiser factor) using β = 0.27. The red line uses the same
value of β but includes all correction terms outlined in eq. C1
using the N(φ, θ, s) distribution of the weighted 6dFGS sample
employed in this analysis.

such that
∫ π

0

∫ π/2

0

N(φ, θ, s) dθdφ = 1. (C5)

If the angle θ is of order 1 rad, higher order terms become
dominant and eq. C1 is no longer sufficient. Our weighted
sample has only small values of θ, but growing with s (see
figure C1). In our case the correction terms contribute only
mildly at the BAO scale (red line in figure C2). However
these corrections behave like a scale dependent bias and
hence can introduce systematic errors if not modelled cor-
rectly.
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