
Assignment 2 Semester 1, 2007

1. The Lane-Emden equation is
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Show that the total mass of the polytrope is given by
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where ξs is the value of ξ at the stellar surface.

2. As a crude approximation, we can replace an equation such as
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by a dimensional relation
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where Pc is the central pressure and R and M are the stellar radius and mass, respectively.

Use approximations of this type to show that for a sequence of stars in hydrostatic

equilibrium, consisting of a perfect gas, with a similar average opacity throughout, and in

which energy is transported by radiation

Tc ∼
M

R
, and

L ∼M3.

Here, Tc is the central temperature. (Note. The equation L ∼M 3 is not too bad an

approximation for main-sequence stars with M > M¯: they actually follow a relation

L ∼M3.8.)

The above approximations do not use any information about the source of the luminosity

(nuclear fusion)! Given that most of the stellar luminosity in a main-sequence star is produced

by nuclear fusion near the centre of the star, and that the rate of nuclear energy production

increases very rapidly with central temperature Tc, use the results above to describe how a

newly-formed star comes to a state of thermal and nuclear-burning equilibrium after it

condenses out from a molecular cloud.

3. This example explores the evolution of the sun. The attached figure shows the evolution of

the sun in the theoretical Hertzsprung-Russell diagram, as well as a plot of the hydrogen

abundance XH against mass fraction Mr/M in the sun.

(a) Use the plot to make a rough estimate the mass of hydrogen that has been converted to

helium in the sun during its lifetime, from birth to the present day. Given that the mass of

proton is 1.00870 atomic mass units and the mass of a helium nucleus is 4.0026 atomic mass



units, estimate the sun’s average rate of energy production by nuclear reactions (in solar

luminosities) over its lifetime. Take the age of the sun as 4.5× 109 yr. Does nuclear energy

production seem to successfully account for the energy output of the sun?

(b) Comment on the changes in the abundance profiles as the sun ages. In particular, for each

profile, where is hydrogen burning occurring in each model, why is there a discontinuity in the

abundance profile near mass-fraction 0.31 when the sun is near the base of the red giant

branch, and why is the surface hydrogen abundance slightly reduced in the giant branch model.

Some constants you may need are: M¯ = 1.989× 1033 g; L¯ = 3.9× 1033 erg s−1; speed of

light c = 3× 1010 cm s−1; atomic mass unit = 1.66× 10−24 g.



The CNO bi-cycles

The first way to process H into 4He is by the PP chains, while a second way is through a series

of nuclear reactions involving different isotopes of carbon, nitrogen and oxygen. The reactions

are as follows:

The CN cycle

12C+ p −→
13N+ γ (1)

13N −→
13C+ e+ + νe (2)

13C+ p −→
14N+ γ (3)

14N+ p −→
15O+ γ (4)

15O −→
15N+ e+ + νe (5)

15N+ p −→
12C+ 4He (6)

or the ON cycle, which starts with

14N(p, γ)15O(β+ν)15N (4, 5′)

then follows

15N+ p −→
16O+ γ (7)

16O+ p −→
17F + γ (8)

17F −→
17O+ e+ + νe (9)

17O+ p −→
14N+ 4He. (10)

Note that we are ignoring the extra cycles that involve 18O and 19F.

Part A:

By summing the reacting and the product particles for the CN and ON cycle, show that the C,

N and O nuclei only play the role of catalysts.

Compute the Gamow peak and width for the 12C(p,γ)13N reaction using
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where Za and ZX are the element number, A the reduced mass

A =
AaAX

Aa +AX
(13)

where Aa, AX are the atomic masses. Compute E0 and ∆ for i) 15 million K, appropriate for

the centre of the Sun, and ii) for 25 million K, characteristic of CNO burning on the upper

main sequence.

Comment on your answers, in particular compared to the lowest experimental energy

measurements available. Hint: Look at values in the recent NACRE compilation article,

Angulo, C., 1999, Nuclear Physics A, 656, p3-187.



Part B:

We can define lifetime of a nuclear species in a given environment

τa(X) = (λaXNa)
−1, (14)

where τa(X) is the lifetime of species X against reactions with species a, and λaX =< σv >,

the reaction rate cross section, and Na the number density of species a, given by

Na = (X(a)ρ)/Amu, where X(a) is the mass fraction of a, ρ is the density, A the atomic mass

and mu the atomic mass unit, given by 1.66 ×10−24 grams.

If we assume that the radioactive nuclides 13N, 15O, 17F beta decay essentially instantaneously

to 13C, 15N, 17O, then we can write a simple set of differential equations that govern the

abundances of the C, N and O nuclei as a function of time. These equations are:
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where, in the short-hand notation used here, τ12 refers to the lifetime of 12C against reactions

with protons, and 12C refers to the number density of 12C atoms in the plasma. The constants

α and γ are branching ratios from the CN cycle into the ON cycle.

Compute the equilibrium values (12C/13C)e, (
12C/14N)e, and (16O/14N)e, assuming a

temperature of 25 million K (MK) and ρXH = 50. Assume that the 14N/15N ratio has reached

equilibrium. Comment on your answers.

Hint: Use Table 5–3 from Clayton’s textbook, where he provides

log(
ρXH

100
τ) (21)

as a function of T6, the temperature in units of 106 K, and where the lifetimes τ are expressed

in years. The branching ratio γ has a weak temperature dependence, and multiplication

factors at different temperatures and densities are also provided in Table 5–3. Table 5–3 is

attached to the end of this assignment sheet.



Part C:

The variation of the abundance ni of a species i at a given time t, dni(t)/dt, can be

approximated by the exponential law,

dni

dt
= ke−t/τ (22)

where τ is the lifetime, defined in Part B, and k = −1/τ . This differential equation has the

solution n(t) = Ce−t/τ , where C is some constant.

Using the lifetimes computed previously in Part B for 25MK and ρXH = 50, how long does it

take the initial abundances of 12C to be reduced by a factor of 10? What about 16O? Comment

on the difference between the two times? What about at 75 million K and ρXH = 50?

[Note: The CN cycle reaches equilibrium in a time of the order of τ12, which is much faster

than any significant interchange of nuclei between the CN cycle and the ON cycle. Those two

interchange times are characteristically 103τ14 and τ16.]




