from visual import * from time import clock from random import random,uniform import numpy import math # Sets up a bunch of masses and lets them move under the influence of their # mutual gravity. # Masses are put in random positions within a sphere originally. An additional # force is applied which simulates an equal density distributed over the # rest of the universe outside this initial sphere. def randomdirection(): # Generates random direction on sky. # RA (in radians) # Dec (in radians) ra = 2.0*math.pi*random() dec = math.acos(2.0*random()-1.0)-0.5*math.pi return ra,dec def ranvec(): # Generates a randomly orientated unit vector. theta, phi = randomdirection() z = math.sin(phi) x = math.cos(phi)*math.sin(theta) y = math.cos(phi)*math.cos(theta) vec = numpy.array([x,y,z]) return vec # Stars interacting gravitationally # Program uses numpy arrays for high speed computations Nstars = 200 # change this to have more or fewer stars G = 6.7e-11 # Universal gravitational constant # Typical values Msun = 1.5E30 # 2E30 is good Rsun = 3E8 Rtrail = 2e8 L = 4e10 vsun = 0.9*sqrt(G*Msun/Rsun) h0 = 1.0e-5 # Hubble's constant - expansion rate 8.0e-6 is good. scene = display(title="Stars", width=1320, height=830, range=L, forward=(-1,-1,-1)) Stars = [] poslist = [] plist = [] mlist = [] rlist = [] p0 = 0.0*Msun*100000.0 for i in range(Nstars): vec = L*ranvec()*(random()**0.3333) x = vec[0] y = vec[1] z = vec[2] r = Rsun col0 = (uniform(0.7,1.0),uniform(0.7,1.0), uniform(0.7,1.0)) Stars = Stars+[sphere(pos=(x,y,z), radius=r, color=col0)] mass = Msun px = p0*uniform(-1,1) py = p0*uniform(-1,1) pz = p0*uniform(-1,1) poslist.append((x,y,z)) plist.append((px,py,pz)) mlist.append(mass) rlist.append(r) pos = array(poslist) p = array(plist) m = array(mlist) m.shape = (Nstars,1) # Numeric Python: (1 by Nstars) vs. (Nstars by 1) radius = array(rlist) vcm = sum(p)/sum(m) # velocity of center of mass p = p-m*vcm # make total initial momentum equal zero dt = 50.0 Nsteps = 0 pos = pos+(p/m)*(dt/2.) # initial half-step time = clock() Nhits = 0 while 1: rate(50) L *= 1.0+h0*dt con = 1.0*G*Nstars*Msun/(L*L*L)# strength of force to allow for external mass # Compute all forces on all stars try: # numpy r = pos-pos[:,newaxis] # all pairs of star-to-star vectors for n in range(Nstars): r[n,n] = 1e6 # otherwise the self-forces are infinite rmag = sqrt(add.reduce(r*r,-1)) # star-to-star scalar distances hit = less_equal(rmag,radius+radius[:,newaxis])-identity(Nstars) hitlist = sort(nonzero(hit.flat)[0]).tolist() # 1,2 encoded as 1*Nstars+2 F = G*m*m[:,newaxis]*r/rmag[:,:,newaxis]**3 # all force pairs except: # old Numeric r = pos-pos[:,NewAxis] # all pairs of star-to-star vectors for n in range(Nstars): r[n,n] = 1e6 # otherwise the self-forces are infinite rmag = sqrt(add.reduce(r*r,-1)) # star-to-star scalar distances hit = less_equal(rmag,radius+radius[:,NewAxis])-identity(Nstars) hitlist = sort(nonzero(hit.flat)) # 1,2 encoded as 1*Nstars+2 F = G*m*m[:,NewAxis]*r/rmag[:,:,NewAxis]**3 # all force pairs for n in range(Nstars): F[n,n] = 0 # no self-forces p = p+sum(F,1)*dt+pos*con*dt*m # Having updated all momenta, now update all positions pos = pos+(p/m)*dt # Expand universe pos *= 1.0+h0*dt # Update positions of display objects; add trail for i in range(Nstars): Stars[i].pos = pos[i] # If any collisions took place, merge those stars for ij in hitlist: i, j = divmod(ij,Nstars) # decode star pair if not Stars[i].visible: continue if not Stars[j].visible: continue # m[i] is a one-element list, e.g. [6e30] # m[i,0] is an ordinary number, e.g. 6e30 newpos = (pos[i]*m[i,0]+pos[j]*m[j,0])/(m[i,0]+m[j,0]) newmass = m[i,0]+m[j,0] newp = p[i]+p[j] newradius = Rsun*((newmass/Msun)**(1./3.)) iset, jset = i, j if radius[j] > radius[i]: iset, jset = j, i Stars[iset].radius = newradius m[iset,0] = newmass pos[iset] = newpos p[iset] = newp Stars[jset].visible = 0 p[jset] = vector(0,0,0) m[jset,0] = Msun*1E-30 # give it a tiny mass Nhits = Nhits+1 pos[jset] = (10.*L*Nhits, 0, 0) # put it far away Nsteps += 1